HP Z Workstations and Autodesk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Autodesk Entertainment Creation Suite
Autodesk Entertainment Creation Suite Top Reasons to Buy and Upgrade Access the power of the industry’s top 3D modeling and animation technology in one unbeatable software suite. Autodesk® Entertainment Creation Suite Options: Autodesk® Maya® Autodesk® 3ds Max® Entertainment Creation Suite 2010 includes: Entertainment Creation Suite 2010 includes: • Autodesk® Maya® 2010 software • Autodesk® 3ds Max® 2010 • Autodesk® MotionBuilder® 2010 software • Autodesk® MotionBuilder® 2010 software • Autodesk® Mudbox™ 2010 software • Autodesk® Mudbox™ 2010 software Comprehensive Creative Toolsets The Autodesk Entertainment Creation Suite offers an expansive range of artist-driven tools designed to handle tough production challenges. With a choice of either Autodesk Maya 2010 software or Autodesk 3ds Max 2010 software, you have access to award-winning, 3D software for modeling, animation, rendering, and effects. The Suite also includes Autodesk Mudbox 2010 software, allowing you to quickly and intuitively sculpt highly detailed models; and Autodesk MotionBuilder 2010 software, to quickly and efficiently create, manipulate and process massive amounts of animation data. The complementary toolsets of the Suite help you to achieve higher quality results more efficiently and more cost-effectively. Real-Time Performance with MotionBuilder The addition of MotionBuilder to a Maya or 3ds Max pipeline helps increase production efficiency, and produce higher quality results when developing projects requiring high-volume character animation. With its real-time 3D engine and dedicated toolsets for character rigging, nonlinear animation editing, motion-capture data manipulation, and interactive dynamics, MotionBuilder is an ideal, complementary toolset to Maya or 3ds Max, forming a unified Image courtesy of Wang Xiaoyu. end-to-end animation solution. Digital Sculpting and Texture Painting with Mudbox Designed by professional artists in the film, games and design industries, Mudbox software gives 3D modelers and texture artists the freedom to create without worrying about technical details. -
Decide What Language Is Right for You || Autodesk Motionbuilder
Decide what language is right for you in Autodesk MotionBuilder Kristine Middlemiss, Developer Consultant Autodesk Developer Network Decide what language is right for you || Autodesk MotionBuilder Contents 1.0 Introduction to Autodesk MotionBuilder ................................................................................ 3 1.1 Why use Programming in Autodesk MotionBuilder ................................................................ 3 1.2 Python Introduction ................................................................................................................ 3 What is Python all about? ............................................................................................................ 3 Advantages .................................................................................................................................. 4 Disadvantages ............................................................................................................................. 4 1.3 What distinguishes Python from the OpenReality SDK?......................................................... 5 Advantages of OpenReality ......................................................................................................... 5 Advantages of Python ................................................................................................................. 5 1.4 How do they both fit in Autodesk MotionBuilder ................................................................... 6 2 | P a g e Decide what language is right for -
A Study on Development and Current Application of Motion Graphic in Taiwan’S Popular Music
PEOPLE: International Journal of Social Sciences ISSN 2454-5899 Chen & Chang, 2019 Volume 5 Issue 1, pp. 124-134 Date of Publication: 23rd March 2019 DOI-https://dx.doi.org/10.20319/pijss.2019.51.124134 This paper can be cited as: Chen, C. M., & Chang. Y. J., (2019). A Study on Development and Current Application of Motion Graphic in Taiwan’s Popular Music. PEOPLE: International Journal of Social Sciences, 5(1), 124-134. This work is licensed under the Creative Commons Attribution-Non Commercial 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. A STUDY ON DEVELOPMENT AND CURRENT APPLICATION OF MOTION GRAPHIC IN TAIWAN’S POPULAR MUSIC Chia Min Chen Department of Graphic Arts and Communications, National Taiwan Normal University, Taipei, Taiwan [email protected] Yen Jung Chang Department of Graphic Arts and Communications, National Taiwan Normal University, Taipei, Taiwan [email protected] Abstract With the advances in technology, the way of communications has become more diverse. Motion graphic combines graphic design, animation design, and film languages. Motion graphic is a new industry with intense performance styles and can be used in different media and platforms, such as commercials, music videos, film and television titles, web pages, and various display screen sizes, etc. Because motion graphic is a non-narrative time-based media, mostly it combines with music. The Taiwan 25th Golden Melody Awards introduced motion graphic design for the first time in 2014. -
Making a Game Character Move
Piia Brusi MAKING A GAME CHARACTER MOVE Animation and motion capture for video games Bachelor’s thesis Degree programme in Game Design 2021 Author (authors) Degree title Time Piia Brusi Bachelor of Culture May 2021 and Arts Thesis title 69 pages Making a game character move Animation and motion capture for video games Commissioned by South Eastern Finland University of Applied Sciences Supervisor Marko Siitonen Abstract The purpose of this thesis was to serve as an introduction and overview of video game animation; how the interactive nature of games differentiates game animation from cinematic animation, what the process of producing game animations is like, what goes into making good game animations and what animation methods and tools are available. The thesis briefly covered other game design principles most relevant to game animators: game design, character design, modelling and rigging and how they relate to game animation. The text mainly focused on animation theory and practices based on commentary and viewpoints provided by industry professionals. Additionally, the thesis described various 3D animation and motion capture systems and software in detail, including how motion capture footage is shot and processed for games. The thesis ended on a step-by-step description of the author’s motion capture cleanup project, where a jog loop was created out of raw motion capture data. As the topic of game animation is vast, the thesis could not cover topics such as facial motion capture and procedural animation in detail. Technologies such as motion matching, machine learning and range imaging were also suggested as topics worth covering in the future. -
Luna Moth: Supporting Creativity in the Cloud
Pedro Alfaiate Instituto Superior Técnico / Luna Moth INESC-ID Inês Caetano Instituto Superior Técnico / INESC-ID Supporting Creativity in the Cloud António Leitão Instituto Superior Técnico / INESC-ID 1 ABSTRACT Algorithmic design allows architects to design using a programming-based approach. Current algo- 1 Migration from desktop application rithmic design environments are based on existing computer-aided design applications or building to the cloud. information modeling applications, such as AutoCAD, Rhinoceros 3D, or Revit, which, due to their complexity, fail to give architects the immediate feedback they need to explore algorithmic design. In addition, they do not address the current trend of moving applications to the cloud to improve their availability. To address these problems, we propose a software architecture for an algorithmic design inte- grated development environment (IDE), based on web technologies, that is more interactive than competing algorithmic design IDEs. Besides providing an intuitive editing interface which facilitates programming tasks for architects, its performance can be an order of magnitude faster than current aalgorithmic design IDEs, thus supporting real-time feedback with more complex algorithmic design programs. Moreover, our solution also allows architects to export the generated model to their preferred computer-aided design applications. This results in an algorithmic design environment that is accessible from any computer, while offering an interactive editing environment that inte- grates into the architect’s workflow. 72 INTRODUCTION programming languages that also support traceability between Throughout the years, computers have been gaining more ground the program and the model: when the user selects a component in the field of architecture. In the beginning, they were only used in the program, the corresponding 3D model components are for creating technical drawings using computer-aided design highlighted. -
Blender Instructions a Summary
BLENDER INSTRUCTIONS A SUMMARY Attention all Mac users The first step for all Mac users who don’t have a three button mouse and/or a thumb wheel on the mouse is: 1.! Go under Edit menu 2.! Choose Preferences 3.! Click the Input tab 4.! Make sure there is a tick in the check boxes for “Emulate 3 Button Mouse” and “Continuous Grab”. 5.! Click the “Save As Default” button. This will allow you to navigate 3D space and move objects with a trackpad or one-mouse button and the keyboard. Also, if you prefer (but not critical as you do have the View menu to perform the same functions), you can emulate the numpad (the extra numbers on the right of extended keyboard devices). It means the numbers across the top of the standard keyboard will function the same way as the numpad. 1.! Go under Edit menu 2.! Choose Preferences 3. Click the Input tab 4.! Make sure there is a tick in the check box for “Emulate Numpad”. 5.! Click the “Save As Default” button. BLENDER BASIC SHORTCUT KEYS OBJECT MODE SHORTCUT KEYS EDIT MODE SHORTCUT KEYS The Interface The interface of Blender (version 2.8 and higher), is comprised of: 1. The Viewport This is the 3D scene showing you a default 3D object called a cube and a large mesh-like grid called the plane for helping you to visualize the X, Y and Z directions in space. And to save time, in Blender 2.8, the camera (left) and light (right in the distance) has been added to the viewport as default. -
The Uses of Animation 1
The Uses of Animation 1 1 The Uses of Animation ANIMATION Animation is the process of making the illusion of motion and change by means of the rapid display of a sequence of static images that minimally differ from each other. The illusion—as in motion pictures in general—is thought to rely on the phi phenomenon. Animators are artists who specialize in the creation of animation. Animation can be recorded with either analogue media, a flip book, motion picture film, video tape,digital media, including formats with animated GIF, Flash animation and digital video. To display animation, a digital camera, computer, or projector are used along with new technologies that are produced. Animation creation methods include the traditional animation creation method and those involving stop motion animation of two and three-dimensional objects, paper cutouts, puppets and clay figures. Images are displayed in a rapid succession, usually 24, 25, 30, or 60 frames per second. THE MOST COMMON USES OF ANIMATION Cartoons The most common use of animation, and perhaps the origin of it, is cartoons. Cartoons appear all the time on television and the cinema and can be used for entertainment, advertising, 2 Aspects of Animation: Steps to Learn Animated Cartoons presentations and many more applications that are only limited by the imagination of the designer. The most important factor about making cartoons on a computer is reusability and flexibility. The system that will actually do the animation needs to be such that all the actions that are going to be performed can be repeated easily, without much fuss from the side of the animator. -
Multimedia Systems DCAP303
Multimedia Systems DCAP303 MULTIMEDIA SYSTEMS Copyright © 2013 Rajneesh Agrawal All rights reserved Produced & Printed by EXCEL BOOKS PRIVATE LIMITED A-45, Naraina, Phase-I, New Delhi-110028 for Lovely Professional University Phagwara CONTENTS Unit 1: Multimedia 1 Unit 2: Text 15 Unit 3: Sound 38 Unit 4: Image 60 Unit 5: Video 102 Unit 6: Hardware 130 Unit 7: Multimedia Software Tools 165 Unit 8: Fundamental of Animations 178 Unit 9: Working with Animation 197 Unit 10: 3D Modelling and Animation Tools 213 Unit 11: Compression 233 Unit 12: Image Format 247 Unit 13: Multimedia Tools for WWW 266 Unit 14: Designing for World Wide Web 279 SYLLABUS Multimedia Systems Objectives: To impart the skills needed to develop multimedia applications. Students will learn: z how to combine different media on a web application, z various audio and video formats, z multimedia software tools that helps in developing multimedia application. Sr. No. Topics 1. Multimedia: Meaning and its usage, Stages of a Multimedia Project & Multimedia Skills required in a team 2. Text: Fonts & Faces, Using Text in Multimedia, Font Editing & Design Tools, Hypermedia & Hypertext. 3. Sound: Multimedia System Sounds, Digital Audio, MIDI Audio, Audio File Formats, MIDI vs Digital Audio, Audio CD Playback. Audio Recording. Voice Recognition & Response. 4. Images: Still Images – Bitmaps, Vector Drawing, 3D Drawing & rendering, Natural Light & Colors, Computerized Colors, Color Palletes, Image File Formats, Macintosh & Windows Formats, Cross – Platform format. 5. Animation: Principle of Animations. Animation Techniques, Animation File Formats. 6. Video: How Video Works, Broadcast Video Standards: NTSC, PAL, SECAM, ATSC DTV, Analog Video, Digital Video, Digital Video Standards – ATSC, DVB, ISDB, Video recording & Shooting Videos, Video Editing, Optimizing Video files for CD-ROM, Digital display standards. -
3D Modeling: Surfaces
CS 430/536 Computer Graphics I Overview • 3D model representations 3D Modeling: • Mesh formats Surfaces • Bicubic surfaces • Bezier surfaces Week 8, Lecture 16 • Normals to surfaces David Breen, William Regli and Maxim Peysakhov • Direct surface rendering Geometric and Intelligent Computing Laboratory Department of Computer Science Drexel University 1 2 http://gicl.cs.drexel.edu 1994 Foley/VanDam/Finer/Huges/Phillips ICG 3D Modeling Representing 3D Objects • 3D Representations • Exact • Approximate – Wireframe models – Surface Models – Wireframe – Facet / Mesh – Solid Models – Parametric • Just surfaces – Meshes and Polygon soups – Voxel/Volume models Surface – Voxel – Decomposition-based – Solid Model • Volume info • Octrees, voxels • CSG • Modeling in 3D – Constructive Solid Geometry (CSG), • BRep Breps and feature-based • Implicit Solid Modeling 3 4 Negatives when Representing 3D Objects Representing 3D Objects • Exact • Approximate • Exact • Approximate – Complex data structures – Lossy – Precise model of – A discretization of – Expensive algorithms – Data structure sizes can object topology the 3D object – Wide variety of formats, get HUGE, if you want each with subtle nuances good fidelity – Mathematically – Use simple – Hard to acquire data – Easy to break (i.e. cracks represent all primitives to – Translation required for can appear) rendering – Not good for certain geometry model topology applications • Lots of interpolation and and geometry guess work 5 6 1 Positives when Exact Representations Representing 3D Objects • Exact -
John Bachofer Graphic Designer
JOHN BACHOFER GRAPHIC DESIGNER Animation/Graphic Design/3D Modelling Marketing/Freelancer [email protected] | (760)-518-0145 http://johnkathrynjanewayba.wixsite.com/johnbachoferartist https://www.linkedin.com/in/johnny-bachofer-32888ab8/ Education Summary B.S. in Graphic Design with Meticulous and knowledgeable Graphic Design graduate known for skill in 3D modeling, rigging Emphasis on Animation and texturing. Deadline driven and results oriented artist who has exhibited exceptional talent in Grand Canyon University building highly detailed products yielding customer satisfaction. Graduated 2018 Key Skills include: graphic design, illustration, modeling/texturing, rigging and animation Software Work Experience Autodesk MAYA Source FilmMaker Real Art Daily Productions - Los Angeles, CA (Online) 11/2019 - Present Blender 3D Adobe Creative Lightwave 3D Suite: Character Animator DAZ Studio Photoshop • Mastered the use of Unreal Engine 4. Unreal Engine 4 Illustrator • Developed comprehensive 3D modelling and rigging skills. MakeHuman InDesign • Completed the company’s first animation of a quadruped character. Autodesk 3DS MAX After Effects • Met project milestones for writing, storyboard development and comencement of production. Unity Lightroom • Successful team member in a diverse and inclusive workplace. ZBrush Microsoft Office Sketchup Suite: Mogul Mommies Inc - New York, NY (Online) Feb 2017 - May 2018 AutoCAD Excel Game Development Artist Mixamo Fuse Word • Developed and released the “Toss That!” mobile app game. Poser Powerpoint -
A Procedural Interface Wrapper for Houdini Engine in Autodesk Maya
A PROCEDURAL INTERFACE WRAPPER FOR HOUDINI ENGINE IN AUTODESK MAYA A Thesis by BENJAMIN ROBERT HOUSE Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Chair of Committee, André Thomas Committee Members, John Keyser Ergun Akleman Head of Department, Tim McLaughlin May 2019 Major Subject: Visualization Copyright 2019 Benjamin Robert House ABSTRACT Game development studios are facing an ever-growing pressure to deliver quality content in greater quantities, making the automation of as many tasks as possible an important aspect of modern video game development. This has led to the growing popularity of integrating procedural workflows such as those offered by SideFX Software’s Houdini FX into the already established de- velopment pipelines. However, the current limitations of the Houdini Engine plugin for Autodesk Maya often require developers to take extra steps when creating tools to speed up development using Houdini. This hinders the workflow for developers, who have to design their Houdini Digi- tal Asset (HDA) tools around the limitations of the Houdini Engine plugin. Furthermore, because of the implementation of the HDA’s parameter display in Maya’s Attribute Editor when using the Houdini Engine Plugin, artists can easily be overloaded with too much information which can in turn hinder the workflow of any artists who are using the HDA. The limitations of an HDA used in the Houdini Engine Plugin in Maya as a tool that is intended to improve workflow can actually frustrate and confuse the user, ultimately causing more harm than good. -
Easy Facial Rigging and Animation Approaches
Pedro Tavares Barata Bastos EASY FACIAL RIGGING AND ANIMATION APPROACHES A dissertation in Computer Graphics and Human-Computer Interaction Presented to the Faculty of Engineering of the University of Porto in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Digital Media Supervisor: Prof. Verónica Costa Orvalho April 2015 ii This work is financially supported by Fundação para a Ciência e a Tecnologia (FCT) via grant SFRH/BD/69878/2010, by Fundo Social Europeu (FSE), by Ministério da Educação e Ciência (MEC), by Programa Operacional Potencial Humano (POPH), by the European Union (EU) and partially by the UT Austin | Portugal program. Abstract Digital artists working in character production pipelines need optimized facial animation solutions to more easily create appealing character facial expressions for off-line and real- time applications (e.g. films and videogames). But the complexity of facial animation has grown exponentially since it first emerged during the production of Toy Story (Pixar, 1995), due to the increasing demand of audiences for better quality character facial animation. Over the last 15 to 20 years, companies and artists developed various character facial animation techniques in terms of deformation and control, which represent a fragmented state of the art in character facial rigging. Facial rigging is the act of planning and building the mechanical and control structures to animate a character's face. These structures are the articulations built by riggers and used by animators to bring life to a character. Due to the increasing demand of audiences for better quality facial animation in films and videogames, rigging faces became a complex field of expertise within character production pipelines.