Modelling the Relationship Between Native Amphibian Species and the Non-Native Marsh Frog

Total Page:16

File Type:pdf, Size:1020Kb

Modelling the Relationship Between Native Amphibian Species and the Non-Native Marsh Frog Kent Academic Repository Full text document (pdf) Citation for published version Mackay, Aidan (2018) Modelling the relationship between native amphibian species and the non-native marsh frog. Doctor of Philosophy (PhD) thesis, University of Kent,. DOI Link to record in KAR https://kar.kent.ac.uk/74092/ Document Version UNSPECIFIED Copyright & reuse Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions for further reuse of content should be sought from the publisher, author or other copyright holder. Versions of research The version in the Kent Academic Repository may differ from the final published version. Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the published version of record. Enquiries For any further enquiries regarding the licence status of this document, please contact: [email protected] If you believe this document infringes copyright then please contact the KAR admin team with the take-down information provided at http://kar.kent.ac.uk/contact.html Modelling the relationship between native amphibian species and the non-native marsh frog Aidan Mackay Durrell Institute of Conservation and Ecology (DICE) School of Anthropology and conservation University of Kent, UK September 2018 Thesis submitted for the degree of Doctor of Philosophy in Biodiversity Management Word count: 36,365 Acknowledgements Firstly, I would like to thank my supervisors Professor Richard Griffiths and Professor Zoe Davies who have always found time to provide useful suggestions and review my draft chapters. I shall always be indebted to them for their dedication to their work which has been inspiring and immensely helpful for my PhD. They have managed to guide me through my PhD and make it a genuinely enjoyable experience. The friendship and support from my fellow students at DICE has also been critical in maintaining my positive outlook. The six years I have spent at DICE have flashed by and I am incredibly grateful to everyone for making me so welcome. I would like to give special thanks to Andrew Buxton, Debbie Fogell, and Hazel Jackson who taught me the ways of the genetics lab and were always very patient when I asked simple questions. I am also grateful to Dimitris Bormpoudakis who advised me on species modelling’ Thanks should also go to Izabela Menezes-Barata who always let me stay on her sofa so I did not have to drive back to Brighton. My survey volunteers: Simon Mahoney, Julie Merrett, Rachel Bates, Georgina Judd, and Chris Drewery made the large numbers of night amphibian surveys possible and fun. Without their help this PhD would not have been achievable in its current form. I owe thanks to all the landowners who gave me permission to survey their ponds. They were all very helpful and generous. I would like to thank Lynsey Harper for the use of her eDNA metabarcoding data and Peter Brotherton from Natural England for granting me permission to use them, which made Chapter 5 possible. Last but not least, I would like to thank my family for the love and support I received from them which sustained me through my entire PhD; whether it be babysitting, proof reading or just being understanding. Particular thanks should go to my wife Maree who has been the stalwart of our family and taken on most of the work while I have studied. I would like i to thank my children Rowan and Elizabeth for being patient and accepting while I have worked through all the family holidays. ii Author’s Declaration All the chapters in this thesis were written my A. J. T. Mackay. R. A. Griffiths had the original idea for the thesis while the author developed the design and analysis with advice from both supervisors. Editorial feedback was provided by R. A. Griffiths and Z. G. Davies. All field work was conducted by A. J. T. Mackay with assistance from volunteers. The University of Kent, School of Anthropology and Conservation Research Ethics Committee approved all research within this thesis. Chapter 1. A. J. T. Mackay wrote this chapter. Editorial comments were given by R. A. Griffiths. Chapter 2. R. A. Griffiths provided the original idea for this chapter. A. J. T. Mackay designed and wrote this chapter with editorial suggestions from R. A. Griffiths and Z. G. Davies. Chapters 3 and 4. These chapters were conceived and written by A. J. T. Mackay with editorial comments from R. A. Griffiths and Z. G. Davies. Chapter 5. A. J. T. Mackay conceived and wrote this chapter with editorial comments from R. A. Griffiths. The eDNA metabarcoding data was provided by L. R. Harper, University of Hull. The pond metrics for ponds surveyed in 2014 for Natural England’s Evidence Enhancement Programme were made available by P. Brotherton from Natural England. All laboratory work was carried out by A. J. T. Mackay with help from A. S. Buxton, D. J. Fogell, and H. Jackson. Chapter 6. A. J. T. Mackay wrote this chapter. Editorial comments were given by R. A. Griffiths. iii Abstract Due to increasing globalization the rate of non-native introductions has rapidly increased. This is likely to continue as climate change leads to increases in range of some species. In some cases, the effect of non-native species on biodiversity has been very severe. However, due to the complex nature of ecosystems it is sometimes difficult to determine if a non-native species is having a negative impact. This can be the case if interactions with other species are involved or native species are declining due to other threats such as habitat loss. This thesis investigates whether the marsh frog (Pelophylax ridibundus), a non-native species introduced to the UK in 1935, is affecting the distribution and abundance of the common frog (Rana temporaria) in Kent, south east England. Species distribution modelling predicted marsh frogs to be present in areas where common frog presence was low. Many of these areas were in coastal regions with lots of watercourses that have higher salinity levels. These conditions are more suited to marsh frogs than common frogs, thereby explaining the predicted distributions. However, an area in the centre of Kent with high pond density was also predicted as less suitable for common frogs. This prediction fitted the hypothesis that in areas of high pond density common frog numbers have been reduced by the combined presence of marsh frogs, and great crested newts (Triturus cristatus). To test this hypothesis, a local level study compared the presence of common frogs in this high pond density area in Kent with ponds in Sussex where marsh frogs were absent. To make the comparison more meaningful, propensity modelling was used to match the ponds to be compared in the two areas by other characteristics as far as possible. Occupancy modelling was used to determine probability of detection for great crested newts and marsh frogs from survey data collected in ponds in Kent. This showed that accounting for variation in detectability did not increase the predicted occupancy of the survey ponds for these species. The presence of common frogs was found to be much higher in the ponds in Sussex. Logistic regression showed that common frogs were positively associated with shaded ponds, which marsh frogs tended to avoid. This suggested predation and/or competition by iv marsh frogs on common frogs was unlikely because of these different habitat preferences. Therefore, a higher proportion of great crested newts in the survey ponds in Kent may be the main cause of the lower number of common frogs in that area. Results from an eDNA metabarcoding analysis of water samples taken in 2014 from ponds in central Kent were obtained. The data provided the presence/absences of common frogs, great crested newts, and marsh frogs. Logistic regression showed that common frogs were not negatively associated with great crested newt presence. However, there was a much higher proportion of ponds with great crested newts compared to ponds with common frogs. In contrast, the proportion of ponds occupied by marsh frogs was very low. This supported the hypothesis that marsh frogs are unlikely to be the cause of lower common frog presence in the area. Common frog spawn surveys were conducted in 2017 on a subset of the same ponds analysed by the DNA metabarcoding in 2014. These showed a change in pond occupancy between 2014 and 2017. This could be due to natural changes in occupancy or metabarcoding could be detecting non-breeding common frog ponds and missing some breeding ponds. Both landscape and local level studies have indicated that common frog presence is lower in an area of high pond density in Kent. This is unlikely to be caused by the presence of marsh frogs because of a difference in pond preference between common frogs and marsh frogs reducing the risk of predation or competition. There was also a relatively low presence of marsh frogs in areas that were showing lower proportions of common frogs compared to great crested newts. The high proportion of ponds occupied by great crested newts is more likely to be the reason for lower common frog presence. Therefore, more active measures to control the spread of marsh frogs is not required when considering conservation measures to protect common frogs. Key words: Amphibian, eDNA, frog, invasive, Kent, non-native, occupancy, Pelophylax, Rana temporaria, species distribution modelling, Triturus cristatus v Contents Chapter 1. General Introduction ................................................................................................... 1 1.1. An introduction to the marsh frog (Pelophylax ridibundus) ................................................ 2 1.1.1.
Recommended publications
  • Cravens Peak Scientific Study Report
    Geography Monograph Series No. 13 Cravens Peak Scientific Study Report The Royal Geographical Society of Queensland Inc. Brisbane, 2009 The Royal Geographical Society of Queensland Inc. is a non-profit organization that promotes the study of Geography within educational, scientific, professional, commercial and broader general communities. Since its establishment in 1885, the Society has taken the lead in geo- graphical education, exploration and research in Queensland. Published by: The Royal Geographical Society of Queensland Inc. 237 Milton Road, Milton QLD 4064, Australia Phone: (07) 3368 2066; Fax: (07) 33671011 Email: [email protected] Website: www.rgsq.org.au ISBN 978 0 949286 16 8 ISSN 1037 7158 © 2009 Desktop Publishing: Kevin Long, Page People Pty Ltd (www.pagepeople.com.au) Printing: Snap Printing Milton (www.milton.snapprinting.com.au) Cover: Pemberton Design (www.pembertondesign.com.au) Cover photo: Cravens Peak. Photographer: Nick Rains 2007 State map and Topographic Map provided by: Richard MacNeill, Spatial Information Coordinator, Bush Heritage Australia (www.bushheritage.org.au) Other Titles in the Geography Monograph Series: No 1. Technology Education and Geography in Australia Higher Education No 2. Geography in Society: a Case for Geography in Australian Society No 3. Cape York Peninsula Scientific Study Report No 4. Musselbrook Reserve Scientific Study Report No 5. A Continent for a Nation; and, Dividing Societies No 6. Herald Cays Scientific Study Report No 7. Braving the Bull of Heaven; and, Societal Benefits from Seasonal Climate Forecasting No 8. Antarctica: a Conducted Tour from Ancient to Modern; and, Undara: the Longest Known Young Lava Flow No 9. White Mountains Scientific Study Report No 10.
    [Show full text]
  • Parasitic Nematodes of Pool Frog (Pelophylax Lessonae) in the Volga Basin
    Journal MVZ Cordoba 2019; 24(3):7314-7321. https://doi.org/10.21897/rmvz.1501 Research article Parasitic nematodes of Pool Frog (Pelophylax lessonae) in the Volga Basin Igor V. Chikhlyaev1 ; Alexander B. Ruchin2* ; Alexander I. Fayzulin1 1Institute of Ecology of the Volga River Basin, Russian Academy of Sciences, Togliatti, Russia 2Mordovia State Nature Reserve and National Park «Smolny», Saransk, Russia. *Correspondence: [email protected] Received: Febrary 2019; Accepted: July 2019; Published: August 2019. ABSTRACT Objetive. Present a modern review of the nematodes fauna of the pool frog Pelophylax lessonae (Camerano, 1882) from Volga basin populations on the basis of our own research and literature sources analysis. Materials and methods. Present work consolidates data from different helminthological works over the past 80 years, supported by our own research results. During the period from 1936 to 2016 different authors examined 1460 specimens of pool frog, using the method of full helminthological autopsy, from 13 regions of the Volga basin. Results. In total 9 nematodes species were recorded. Nematode Icosiella neglecta found for the first time in the studied host from the territory of Russia and Volga basin. Three species appeared to be more widespread: Oswaldocruzia filiformis, Cosmocerca ornata and Icosiella neglecta. For each helminth species the following information included: systematic position, areas of detection, localization, biology, list of definitive hosts, the level of host-specificity. Conclusions. Nematodes of pool frog, excluding I. neglecta, belong to the group of soil-transmitted helminthes (geohelminth) and parasitize in adult stages. Some species (O. filiformis, C. ornata, I. neglecta) are widespread in the host range.
    [Show full text]
  • Diet Composition of the Karpathos Marsh Frog (Pelophylax Cerigensis): What Does the Most Endangered Frog in Europe Eat?
    Animal Biodiversity and Conservation 42.1 (2019) 1 Diet composition of the Karpathos marsh frog (Pelophylax cerigensis): what does the most endangered frog in Europe eat? P. Pafilis, G. Kapsalas, P. Lymberakis, D. Protopappas, K. Sotiropoulos Pafilis, P., Kapsalas, G., Lymberakis, P., Protopappas, D., Sotiropoulos, K., 2019. Diet composition of the Karpathos marsh frog (Pelophylax cerigensis): what does the most endangered frog in Europe eat? Animal Biodiversity and Conservation, 42.1: 1–8, https://doi.org/10.32800/abc.2019.42.0001 Abstract Diet composition of the Karpathos marsh frog (Pelophylax cerigensis): what does the most endangered frog in Europe eat? The Karpathos marsh frog (Pelophylax cerigensis) is considered the most endangered frog in Europe. Here we assess its feeding ecology and examine 76 individuals from the two known populations using the stomach flushing method. We also measured body weight, snout–vent length, mouth width and prey width and length. Pelophylax cerigensis follows the feeding pattern of green frogs of the adjacent areas, with Coleoptera, Araneae, Isopoda and Hymenoptera being the main prey groups. The two populations differed in body size but had similar values of prey abundance and frequency. It seems that P. cerigensis follows a strict feeding strategy. Further research on prey availability in its habitats will provide valuable insight. Key words: Diet, Endangered species, Islands, Frogs, Mediterranean Resumen Composición de la dieta de la rana de Kárpatos (Pelophylax cerigensis): ¿qué come la rana más amenazada de Europa? La rana de Kárpatos (Pelophylax cerigensis) es considerada la rana más amenazada de Europa. Aquí evaluamos su ecología alimentaria y examinamos 76 individuos de las dos poblaciones conocidas usando el método del lavado de estómago.
    [Show full text]
  • Amphibian Identification
    Amphibian Identification Common frog Adults 6-7 cm. Smooth skin, which appears moist. Coloration variable, includes brown, yellow and orange. Some females have red markings on lower body. Usually has a dark ‘mask’ marking behind the eye. Breeding male Markings also variable, Grey/pale blue including varying amounts throat. of black spots and stripes. Thick front legs. Dark (nuptial) pad on inner toes of Young froglets look like the front feet. Spawn is laid in gelatinous smaller versions of the clumps. adults. Common toad Adults 5-9 cm. Rough skin. Brown with darker markings. Less commonly, some individuals are very dark, almost black, others are brick-red. Breeding pair Males smaller than females. Breeding males can also be distinguished by dark (nuptial) pads on innermost two toes of the front feet. Toad spawn is laid in gelatinous strings, wrapped around vegetation. Less conspicuous than common frog spawn. Makes small hops rather than jumps of common frog. Toadlets transforming from the Juveniles are tadpole stage are often very dark similar colours in colour. to adults, including brick-red. ARG UK Natterjack toad Strictly protected species, requiring Similar in size and appearance to common toad, a licence to handle but with a pale stripe running along the back. or disturb. This is a rare species, unlikely to be found outside specific dune and heathland habitats. On hatching common frog and toad tadpoles Frog Tadpoles are black. As they develop, common frog tadpoles become mottled with bronze, whereas toad tadpoles remain uniformly dark until the last stages of development. Common frog and toad tadpoles generally complete Toad development in the summer, but development rates are variable; some tadpoles may not transform until later in the year, or they may even remain as tadpoles over winter, becoming much larger than normal.
    [Show full text]
  • South West Queensland QLD Page 1 of 89 21-Jan-11 Species List for NRM Region South West Queensland, Queensland
    Biodiversity Summary for NRM Regions Species List What is the summary for and where does it come from? This list has been produced by the Department of Sustainability, Environment, Water, Population and Communities (SEWPC) for the Natural Resource Management Spatial Information System. The list was produced using the AustralianAustralian Natural Natural Heritage Heritage Assessment Assessment Tool Tool (ANHAT), which analyses data from a range of plant and animal surveys and collections from across Australia to automatically generate a report for each NRM region. Data sources (Appendix 2) include national and state herbaria, museums, state governments, CSIRO, Birds Australia and a range of surveys conducted by or for DEWHA. For each family of plant and animal covered by ANHAT (Appendix 1), this document gives the number of species in the country and how many of them are found in the region. It also identifies species listed as Vulnerable, Critically Endangered, Endangered or Conservation Dependent under the EPBC Act. A biodiversity summary for this region is also available. For more information please see: www.environment.gov.au/heritage/anhat/index.html Limitations • ANHAT currently contains information on the distribution of over 30,000 Australian taxa. This includes all mammals, birds, reptiles, frogs and fish, 137 families of vascular plants (over 15,000 species) and a range of invertebrate groups. Groups notnot yet yet covered covered in inANHAT ANHAT are notnot included included in in the the list. list. • The data used come from authoritative sources, but they are not perfect. All species names have been confirmed as valid species names, but it is not possible to confirm all species locations.
    [Show full text]
  • Origin of the Parasites of an Invading Species, the Australian Cane Toad (Bufo Marinus): Are the Lungworms Australian Or American?
    Molecular Ecology (2008) 17, 4418–4424 doi: 10.1111/j.1365-294X.2008.03922.x FASTBlackwell Publishing Ltd TRACK Origin of the parasites of an invading species, the Australian cane toad (Bufo marinus): are the lungworms Australian or American? SYLVAIN DUBEY and RICHARD SHINE School of Biological Sciences A08, University of Sydney, Sydney, NSW 2006 Australia Abstract Phylogeographical analyses that identify the geographical origin of parasites in invading species can clarify the parasites’ potential for biological control of the invader and the risks posed by the parasite to native species. Our data on nuclear and mitochondrial genetic sequences show that the nematode lungworms (Rhabdias spp.) in invasive Australian populations of cane toads (Bufo marinus) are Rhabdias pseudosphaerocephala, a South American species. We did not find this lungworm species in any Australian frogs sympatric with cane toads, suggesting that the parasite does not attack Australian frogs and hence may offer potential as a biocontrol agent of the toad. Keywords: amphibians, invasive species, mitochondrial gene, nuclear gene, parasite Received 14 July 2008; revision received 31 July 2008; accepted 7 August 2008 arises if the invader’s parasites are taxa from the introduced Introduction range, because in such cases the lack of host-specificity The process of biological invasion often modifies host- rules out use of the parasite as a biological control, and the parasite relationships. Invasive species may leave some or prior distribution of the parasite means that the invaders’ all of their ancestral (native-range) pathogens behind in the spread will not expose the native fauna to novel pathogens. process of translocation and may be infected by novel Unfortunately, distinguishing whether the parasite of an parasites from the introduced range (Mitchell & Power invading species is itself translocated vs.
    [Show full text]
  • Frogs Eat Butterflies
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Nota lepidopterologica Jahr/Year: 2010 Band/Volume: 33 Autor(en)/Author(s): Stefanescu Constanti, Paramo Ferran Artikel/Article: Frogs eat butterflies: temporary prey-specialization on the Painted Lady butterfly, Vanessa cardui, by Sahara frog, Pelophylax saharicus, in the Moroccan Anti Atlas 127-131 , ©Societas Europaea Lepidopterologica; download unter http://www.biodiversitylibrary.org/ und www.zobodat.at Notalepid. 33(1): 127-131 127 Frogs eat butterflies: temporary prey-specialization on the Painted Lady butterfly, Vanessa cardui, by Sahara frog, Pelophylax saharicus, in the Moroccan Anti Atlas CONSTANTI STEFANESCU & FERRAN PÀRAMO Butterfly Monitoring Scheme, Museu de Granollers-Ciències Naturals, c/Francesc Macià, 51 08402 Granollers, Spain; [email protected] Abstract. Observations of prédation of adult butterflies in the wild are normally very difficult to obtain. Although there is the popular belief that frogs are amongst the natural enemies of butterflies, empirical evidence for such a relationship is almost lacking. In this note we report various observations showing that this predator-prey interaction seems to occur on a regular basis between the Sahara frog, Pelophylax saharicus, and the Painted Lady, Vanessa cardui. Following seasonal increases in the local abundance of the Painted Lady in the Moroccan Anti Atlas, P. saharicus shows temporary prey-specialization on this migrant butterfly. "Frogs Eat Butterflies. Snakes Eat Frogs. Hogs Eat Snakes. Men Eat Hogs" Wallace Stevens (1879-1955) Introduction The title of a poem from Wallace Stevens's first book of poetry, Harmonium (1922), brings to our minds a frog extending its fleshy tongue or leaping with its mouth open in an attempt to catch a butterfly.
    [Show full text]
  • Genetic Structure and Dynamics of All-Hybrid Edible Frog Populations ______
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2010 Genetic structure and function of all-hybrid edible frog populations Christiansen, Ditte Guldager Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-24569 Dissertation Published Version Originally published at: Christiansen, Ditte Guldager. Genetic structure and function of all-hybrid edible frog populations. 2010, University of Zurich, Faculty of Science. Genetic Structure and Dynamics of All-hybrid Edible Frog Populations ______________________________________________ Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Ditte Guldager Christiansen aus Dänemark Promotionskomitee Prof. Dr. Heinz-Ulrich Reyer (Vorsitz und Leitung) Prof. Dr. Lukas Keller Prof. Dr. Trevor J. C Beebee Zürich 2010 Genetic structure and function of all-hybrid edible frog populations by Ditte Guldager Christiansen PhD thesis at Ecology, Zoological Institute University of Zurich, Switzerland October 2009 Supervisors / examiners: Heinz-Ulrich Reyer Lukas Keller Trevor J. C. Beebee Leo Beukeboom Contents 1 Contents Summary…… ............................................................................................................................ 2 Zusammenfassung.....................................................................................................................
    [Show full text]
  • Ecology Assessment Report Lot 2AB132 and 3AB51 Report
    Ecology Assessment Report Lot 2AB132 and 3AB51 Report Release Notice This document is available through the Australia Pacific LNG Upstream Phase 1 Project controlled document system TeamBinder™. The responsibility for ensuring that printed copies remain valid rests with the user. Once printed, this is an uncontrolled document unless issued and stamped Controlled Copy. Third-party issue can be requested via the Australia Pacific LNG Upstream Phase 1 Project Document Control Group. Document Conventions The following terms in this document apply: • Will, shall or must indicate a mandatory course of action • Should indicates a recommended course of action • May or can indicate a possible course of action. Document Custodian The custodian of this document is the Australia Pacific LNG Upstream Phase 1 Project – Environmental Approvals Team Leader. The custodian is responsible for maintaining and controlling changes (additions and modifications) to this document and ensuring the stakeholders validate any changes made to this document. Deviations from Document Any deviation from this document must be approved by the Australia Pacific LNG Upstream Phase 1 Project – Environmental Approvals Team Leader. Doc Ref: Q-4200-15-RP-1002 Revision: 0 Page 2 of 90 Approvals, Land & Stakeholder Team, Australia Pacific LNG Upstream Phase 1 Uncontrolled when printed unless issued and stamped Controlled Copy. Ecology Assessment Report Lot 2AB132 and 3AB51 Report Table of Contents 1. Definitions & Abbreviations ......................................................................................
    [Show full text]
  • 3Systematics and Diversity of Extant Amphibians
    Systematics and Diversity of 3 Extant Amphibians he three extant lissamphibian lineages (hereafter amples of classic systematics papers. We present widely referred to by the more common term amphibians) used common names of groups in addition to scientifi c Tare descendants of a common ancestor that lived names, noting also that herpetologists colloquially refer during (or soon after) the Late Carboniferous. Since the to most clades by their scientifi c name (e.g., ranids, am- three lineages diverged, each has evolved unique fea- bystomatids, typhlonectids). tures that defi ne the group; however, salamanders, frogs, A total of 7,303 species of amphibians are recognized and caecelians also share many traits that are evidence and new species—primarily tropical frogs and salaman- of their common ancestry. Two of the most defi nitive of ders—continue to be described. Frogs are far more di- these traits are: verse than salamanders and caecelians combined; more than 6,400 (~88%) of extant amphibian species are frogs, 1. Nearly all amphibians have complex life histories. almost 25% of which have been described in the past Most species undergo metamorphosis from an 15 years. Salamanders comprise more than 660 species, aquatic larva to a terrestrial adult, and even spe- and there are 200 species of caecilians. Amphibian diver- cies that lay terrestrial eggs require moist nest sity is not evenly distributed within families. For example, sites to prevent desiccation. Thus, regardless of more than 65% of extant salamanders are in the family the habitat of the adult, all species of amphibians Plethodontidae, and more than 50% of all frogs are in just are fundamentally tied to water.
    [Show full text]
  • Reintroduction Strategy for the Pool Frog Rana Lessonaein England
    Report Number 642 Reintroduction strategy for the pool frog Rana lessonae in England English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 642 Reintroduction strategy for the pool frog Rana lessonae in England John Buckley and Jim Foster (Editors) You may reproduce as many additional copies of this report as you like, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA ISSN 0967-876X © Copyright English Nature 2005 This report was edited by John Buckley (The Herpetological Conservation Trust) and Jim Foster (English Nature) on behalf of the Pool frog Species Action Plan Steering Group. Members of the Steering Group (see Appendix 1) contributed text and suggestions for this document. This document is a slightly amended version of the reintroduction strategy being used as a working document by the Steering Group to guide pool frog conservation efforts. The current version is largely identical, apart from text and figure changes which were made to ensure that potential reintroduction site locations are not identifiable. It was considered necessary to keep the locations confidential to protect any released pool frogs. The methods outlined in this report were the most efficient and practical ones identified at the time of writing; it should be noted that in practice the methods used may vary slightly from these depending on the circumstances at the time of reintroduction. The authors may be contacted at: JB, The Herpetological Conservation Trust, 655a Christchurch Road, Boscombe, Bournemouth, Dorset BH1 4AP; tel 01202 391319; email [email protected]; JF, English Nature, Northminster House, Peterborough PE1 1UA; tel 01733 455251; [email protected].
    [Show full text]
  • Pool Frog (Pelophylax Lessonae) Camerano 1882 (Anura, Ranidae), an Addition to the Finnish Amphibian Fauna
    Memoranda Soc. Fauna Flora Fennica 89: 25–31. 2013 25 Pool frog (Pelophylax lessonae) CAMERANO 1882 (Anura, Ranidae), an addition to the Finnish amphibian fauna Tom Hoogesteger, Joel Rahkonen & Ari Karhilahti Hoogesteger, T., Department of Biological and Environmental Science, FI-40014 University of Jyväskylä, Finland. E-mail: [email protected] Rahkonen, J., Department of Biological and Environmental Science, FI-40014 University of Jyväskylä, Finland. E-mail: [email protected] Karhilahti, A., Zoological Museum, FI-20014 University of Turku, Finland. E-mail: [email protected] A population of pool frogs (Pelophylax lessonae) has been discovered in the municipality of Kaari- na, southwestern Finland. The species had not previously been recorded from Finland. The frogs show the external characteristics of the northern clade of the species, which suggests that they are of different origin than the allochthonous edible frogs (Pelophylax kl. esculentus) that are also present in southwestern Finland. Introduction is the case in Denmark and southernmost Swe- den, where P. kl. esculentus is common but nei- In the northern and central parts of Europe, the ther of the parental species is present (Gasc et al. green frog complex consists of two species: the 1997, Fog et al. 2001, Christiansen et al. 2005). marsh frog (Pelophylax ridibundus) and the pool Ridibundus – esculentus -systems, in which P. frog (P. lessonae), as well as the hybrid between kl. esculentus reproduces with P. ridibundus, are these two species, the edible frog (P. kl. esculen- known from Germany, the Baltic coast of Poland tus). The hybrids reproduce by means of hybri- and the island of Bornholm, Denmark (Rybacki dogenesis, in which one parental genome is com- & Fog 1995, Fog et al.
    [Show full text]