Casting Defects and Root Causes for Engine Parts While Casting Process

Total Page:16

File Type:pdf, Size:1020Kb

Casting Defects and Root Causes for Engine Parts While Casting Process Vaibhav Ingle. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.47-54 RESEARCH ARTICLE OPEN ACCESS Defects, Root Causes in Casting Process and Their Remedies: Review Vaibhav Ingle1 Madhukar Sorte2 1ME Mechanical Student, SCOE, Navi Mumbai, [email protected] 2Asso.Prof.in Mechanical Engg Department, SCOE, Navi Mumbai,[email protected] ABSTRACT Many industry aims to improve quality as well as productivity of manufacturing product. So need to number of process parameter to must controlled while casting process, so there are no of uncertainty and defects are face by organizations. In casting process industries are need to technical solution to minimize the uncertainty and defects. In this review paper to represent various casting defects and root causes for engine parts while casting process. Also provide preventive action to improve quality as well as productivity an industrial level. Keywords: Casting defects and their root causes, remedies for casting defects. I. INTRODUCTION II. MOTIVATION Casting is a manufacturing process, in Mostly casting defects are concerned with which a hot molten metal is use to poured into process parameters. Hence one has to control the a mold box, which contains a hollow cavity of the process parameter to achieve zero defect parts. For desired shape, and then allowed to solidify. That controlling process parameter one must have solidified part is known as a casting, Casting is knowledge about effect of process parameter on most often used for making complex shapes that casting and their influence on defect. The correct would be otherwise difficult or uneconomical to identification of the casting defects at the initial make by other methods. Casting is a process which stage is essential for taking remedial actions. carries risk of failure occurrence during all the Analysis of defects like shrinkage porosities process of accomplishment of the finished product. computer aided casting simulation technique is the Hence necessary action should be taken while most efficient and accurate method. The quality manufacturing of cast product so that defect free and yield of the casting can be efficiently improved parts are obtained. During the process of casting, by modifying like SQC DOE Method simulation there is always a chance where defect will occur. technique in shortest possible time and without Minor defect can be adjusted easily but high carrying out the actual trials on foundry shop floor. rejected rates could lead to significant change at high cost. Therefore it is essential for die caster to III. LITERATURE REVIEW have knowledge on the type of defect and be able Rajesh Rajkolhe, J.G. Khan conclude that to identify the exact root cause, and their remedies. various defect are generated in casting process In this review paper an attempt has been made to while manufacturing, defects may like as filling provide all casting related defect with their causes related, shape related, thermal related and other and remedies. defects by appearance. While performing various In a casting process, the material is first number of process parameters as trial and error heated to completely melt and then poured into a basis they find out various challenges and cavity of the mold. As soon as the molten metal is uncertainty in casting process. Such types of in the mold, it begins to cool. When the defects are developed poor quality and temperature drops below the freezing point productivity. To obtain high quality they was found (melting point) of the material, solidification starts. their remedies to minimize those challenges and Solidification involves a change of phase of the uncertainty also rejections. This action may helps material and differs depending on whether the to improve quality as well as productivity in material is a pure element or an alloy. A pure metal manufacturing industry. solidifies at a constant temperature, which is its Mr. Siddalingswami , S. Hiremath, dr, melting point (freezing point).An attempt has been S.R. dulange stated that various casting defects and made to analyze the critical defects and possible their causes. they go through a industry was remedial measures are suggested for cast masters to kirloskar ferros industry ltd. Solapur, they identify have a sound knowledge about such defects with an a defects for 4R cylinder block which they found a aim to minimize rejections rates. rejection rate was more than 40%. They also www.ijera.com DOI: 10.9790/9622- 0703034754 47 | P a g e Vaibhav Ingle. Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 7, Issue 3, ( Part -3) March 2017, pp.47-54 conclude that , while production involve various analyze, also found the mold filling and parameter like pattern making, moulding, core solidification stage in casting parameters also making, and melting. A various defects like found filling behavior, solidification sequence, blowhole shrinkage, gas porosity, cold shot, sand thermal stress distribution in casting process for inclusion etc. are generated while casting process. achieve high quality and productivity. for improved their casting quality, they use product Alagarsamy are used trial and error process search analysis, inspection method, design method to solve casting related problem which of experiment method to found out their remedies helps find the defects and their root causes. Using a in casting process. powerful technique to mapping defects and finding C. M. Choudhari, B. E. Narkhede, S. K. questionnaires such as design of experiments Mahajan, are state that various casting defects can (DOE) for identify the defects and control the be minimize by simulation software basis, software variables in casting process. They also conclude the helps to improve quality of casting process and various defects in casting and root cause so also parameters. Utilization of methodology which they found their remedies to improve quality. involve four decision (1) orientation and parting Malcolm Blair, Raymond Monroe, line, (2) core print design, (3) feeder design, and Christoph Beckermann, Rishard Hardin, Kent (4) gating design. Experiment are perform for Carlson and Charles Monroe state that casting process by trial basis with help of simulation design are based on experience of designer who software which optimize faster and better result. It developed the design utilization factor of safety for helps to minimize the bottleneck and non value casting process. Also, utilizes unquantified factor added time in casting development as it reduce the such as shrinkage, porosity, also consider in number of trail for casting required on shop floor. casting. They predict the occurrence and nature of P. Shailesh, S.Sundarrajan and defects and effect on performance of casting. M.Komaraiah studied that optimization of process A.P.More, Dr.R.N.Baxi, Dr.S.B.Raju parameter in casting process for Al-Si alloy by Mechanical Engineering Department, G.H.Raisoni using Design of Experiments (DOE) method. It College of Engineering, reviewed that casting helps to improve the mechanical properties of yield defect analyze in initial improvement process to strength and density. The result is reducing the identify casting defects and their root cause. They pouring temperature and increasing the speed of die minimize the various casting defects their critical lead of casted component. They also studied component in casting process to improve quality. shrinkage characteristics and control the producing Identifying various defects and eliminates those defects casting. defects by taking appropriate corrective action to Dr. M. Arasu (Head department of achive higher productivity. foundry technology, PSG Polytechnic College) Elena Fiorese, Franco bollono and Gaiulio conclude that every casting process achieve to have Timelli department of management and cost effectiveness and high quality for customer engineering, stated that various process are point of view. They meant that cost effectiveness available for production of aluminium alloy, but means a strategy of utilization of raw material and significant role played by foundry process. they equipment to improve finish products with good highlight on multilevel classification of structural quality for defect free casting in casting process. defects and imperfection in aluminium alloy While in casting process of poorly maintained casting. The frist level of types of defects basis on equipment used then they affect to die as well as their internal, external and geometric. Second level casting parameters. So indirectly it fails to maintain distingwish on their metallurgical origin and third quality, and defect developed on external as well as level refer to the specific types of defects. In high internal side on casting components. pressure die casting required production rate up to T.R.Vijayaram, S.Sulaiman, A.M.S. 120 casting / hr. required high filling velocities of Hamouda, and M.H.M. Ahmad (Metal casting molten alloy up to 40 m/sec. (131 ft/sec)with industries) they was work on scrap rejection and significant turbulence in the flow. Solidification rework in manufacturing and state that for avoid takes place in few seconds and die is first contact the defects by implementation of various modified with a molten metal alloy temperature higher than technique which helps to eliminate the uncontrolled 700* C, (1292* F) and after 30-40 seconds, spray scrap and rejections. The modified technique such with a die relies agent at room temperature. as statistical quality control (SQC) to adopted for Solidification parameter is play main role to cooled developing metallurgical engineering foundry. the mold in casting so various defects can Guo-fa MI, Xiand-yu, Kuang-fei WANG, generated while differences in solidification time. Heng-Zhi FU, are applied numerical value as a M. Avalle, G. Belingardi, M.P. cavatorta, simulation for casting process. Types of defects R. Deglione Department of mechanical engineering like shrinkage, gas porosity, cold shut were politechno de Torino Italy, stated that the influence www.ijera.com DOI: 10.9790/9622- 0703034754 48 | P a g e Vaibhav Ingle.
Recommended publications
  • RESEARCH PROJECT No. 40
    Ductile Iron Society RESEARCH PROJECT No. 40 Survey of Greensand Properties of Member Foundries Mary Beth Krysiak Sand Technology Co. LLC, New Hudson MI Dr. Hathibelagal Roshan K & S Data Services LLC, Fox Point WI DUCTILE IRON SOCIETY Issued by the Ductile Iron Society for the use of its Member Companies – Not for General Distribution DUCTILE IRON SOCIETY 15400 Pearl Road, Suite 234 Strongsville, Ohio 44136 (440) 665-3686 SEPTEMBER 2007 Research Report Project #40 2007 Survey of Greensand Properties of Member Foundries A Cooperative Project of Ductile Iron Society And Member Foundries Reported by Mary Beth Krysiak Dr. Hathibelagal Roshan Ductile Iron Society Issued by the Ductile Iron Society Located at 15400 Pearl Road, Suite 234; Strongsville, Ohio 44136 Contents 1, Executive Summary - pdf 2. Survey report Part A - pdf 3. Survey report Part B pdf 4. Correlations - pdf 5. Sand data sheet for collecting info - pdf 6. Sand grain photos - pdf 7. Test data - XL 8. Sand tests and guide to controls – chart - pdf 9. Sand tests and guide to controls – chart - Word Sand Survey Report Executive Summary 1. The sand tests were done in one laboratory known to have many years of expertise in sand testing. During transport, regardless of how well samples are sealed, the samples age and while moisture content remains fairly stable, compactability drops as the moisture is absorbed further into the clay. In addition, the sands cool from the temperature at which they were in use at foundry. While the cooling effect could not be negated on a practical level, the sands were retempered or conditioned, prior to testing, to the reported target compactability at the foundry.
    [Show full text]
  • Basic Facts About Stainless Steel
    What is stainless steel ? Stainless steel is the generic name for a number of different steels used primarily for their resistance to corrosion. The one key element they all share is a certain minimum percentage (by mass) of chromium: 10.5%. Although other elements, particularly nickel and molybdenum, are added to improve corrosion resistance, chromium is always the deciding factor. The vast majority of steel produced in the world is carbon and alloy steel, with the more expensive stainless steels representing a small, but valuable niche market. What causes corrosion? Only metals such as gold and platinum are found naturally in a pure form - normal metals only exist in nature combined with other elements. Corrosion is therefore a natural phenomena, as nature seeks to combine together elements which man has produced in a pure form for his own use. Iron occurs naturally as iron ore. Pure iron is therefore unstable and wants to "rust"; that is, to combine with oxygen in the presence of water. Trains blown up in the Arabian desert in the First World War are still almost intact because of the dry rainless conditions. Iron ships sunk at very great depths rust at a very slow rate because of the low oxygen content of the sea water . The same ships wrecked on the beach, covered at high tide and exposed at low tide, would rust very rapidly. For most of the Iron Age, which began about 1000 BC, cast and wrought iron was used; iron with a high carbon content and various unrefined impurities. Steel did not begin to be produced in large quantities until the nineteenth century.
    [Show full text]
  • Metal Casting Process
    Sand Casting Sand Mold Making Procedure The first step in making mold is to place the pattern on the molding board. The drag is placed on the board Dry facing sand is sprinkled over the board and pattern to provide a non sticky layer. Molding sand is then riddled in to cover the pattern with the fingers; then the drag is completely filled. The sand is then firmly packed in the drag by means of hand rammers. The ramming must be proper i.e. it must neither be too hard or soft. After the ramming is over, the excess sand is leveled off with a straight bar known as a strike rod. With the help of vent rod, vent holes are made in the drag to the full depth of the flask as well as to the pattern to facilitate the removal of gases during pouring and solidification. The finished drag flask is now rolled over to the bottom board exposing the pattern. Cope half of the pattern is then placed over the drag pattern with the help of locating pins. The cope flask on the drag is located aligning again with the help of pins The dry parting sand is sprinkled all over the drag and on the pattern. A sprue pin for making the sprue passage is located at a small distance from the pattern. Also, riser pin, is placed at an appropriate place. The operation of filling, ramming and venting of the cope proceed in the same manner as performed in the drag. The sprue and riser pins are removed first and a pouring basin is scooped out at the top to pour the liquid metal.
    [Show full text]
  • Metals in the Bible: Silver (Part 1)
    The Testimony, August 2004 329 times of restitution of all things” (Acts 3:21, AV). the last verse of his song does look forward to In contrast, the song of Moses in chapter 32 pre- the time of blessing when the Gentiles will re- dicts future rebellion and consequent punish- joice with God’s people and atonement will have ment that would occur before the final glory been provided for both land and people (v. 43). would be attained by the nation. Nevertheless, (To be continued) New feature Metals in the Bible 3. Silver (Part 1) Peter Hemingray In 1996 and 1997 The Testimony published two two-part articles under the title, “Metals in the Bible”, in which we looked at iron and copper.1 We considered the ancient technology of iron, and how this knowledge helps illuminate the Biblical references to it. In particular, we saw how the introduction of iron during the period of the conquest affected the Israelites, who had to overcome superior technology through the power of God. For copper (or brass, as the AV terms it) the ancient metalworking methods were illuminated with illustrations from Timnah in Palestine, and we argued for the symbology of copper in the Bible being primarily that of strength, and only rarely that of the strength of sin. The intention was to complete these studies on metals of the Bible by considering silver, then gold. This we have now done in two further two-part articles to be published in this and the coming months, God willing. E WILL CONTINUE the theme of il- • examine the references to refining and cruci- lustrating the Biblical passages about bles in the light of our knowledge of ancient Wmetals with descriptions of the ancient metalworking practices metalworking techniques, as we consider silver, • look at the few references to lead in the Bible, the next metal up in Nebuchadnezzar’s image often associated with silver for reasons we after the iron and brass already considered.
    [Show full text]
  • Compression Behavior of Entrapped Gas in High Pressure Diecasting
    Materials Transactions, Vol. 53, No. 3 (2012) pp. 483 to 488 ©2012 Japan Foundry Engineering Society Compression Behavior of Entrapped Gas in High Pressure Diecasting Yasushi Iwata, Shuxin Dong, Yoshio Sugiyama and Hiroaki Iwahori Toyota Central R&D Labs., Inc., Nagakute 480-1192, Japan Die castings generally contain a large quantity of porosities due to the entrapment of air or gas in molten metal during mold filling. Although the entrapped air or gas is compressed by high casting pressure during pressurization, it will eventually remain in the castings as defects after solidification. Therefore, it is important to clarify the relation between the volume of gas defects and the pressure applied to the molten metal so as to optimize the casting design. In this study, we investigated the compression behavior of entrapped gas during casting. We determined the volume of gas defects and gas content in die castings by density measurement and vacuum fusion extraction method respectively. Then we calculated the gas pressure in the defects from the above volume of defects and gas content, and compared with the die casting pressure. The calculated gas pressure in the defects was found to be not equal to the die casting pressure, but equal to the pressure of the molten metal just before it dropped abruptly due to the complete blocking of the liquid metal channel by solidification. From the experimental results, the behavior of the entrapped gas can be inferred as follows. Immediately after the mold was filled with molten metal, the entrapped gas was instantly compressed. After that, the pressure of molten metal decreased gradually with the progress of solidification of the molten metal channel, and the volume of entrapped gas increased correspondingly until the pressure of the molten metal dropped abruptly.
    [Show full text]
  • DROSS in DUCTILE IRON by Hans Roedter, Sorelmetal Technical Services
    98 DROSS IN DUCTILE IRON by Hans Roedter, Sorelmetal Technical Services WHAT IS “DROSS ”? magnesium with other elements. Dross also Dross is a reaction product which is formed from occurs in the form of long stringers instead of Mg treatment and during subsequent reoxidation concentrated “slag like” areas. When it occurs in of Mg rejected from the molten metal before it this string like form it acts like cracks or flake solidifies. It is therefore just another word for a graphite in the structure and so fatigue strength specific type of slag (reaction product). and impact strength of the material are lowered considerably. The reaction binds magnesium with sulphur, oxygen and silicon and forms continuously. This “dross” is light weight and so it will generally be found in the upper surfaces and under cores, but it can be entrained throughout the metal as well, especially with colder pouring tempera - tures. It is very difficult to completely avoid the reaction of magnesium with these other elements, since we need magnesium to form nodules. We are always confronted with the problem of dross in the production of Ductile Iron. WHAT IS PROMOTING “DROSS ” AND WHAT CAN BE DONE TO KEEP THE “DROSS ” OUT OF THE CASTING ? Since “dross” is always connected with magnesium, it is necessary to keep the magnesium level as low as possible. Good inoculation practice with some late inoculation in conjunction with sufficient magnesium will When looking at “dross” in the microscope you produce nice round small nodules. See will almost always find flake graphite in Suggestion Sheet 76.
    [Show full text]
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Lecture 8: Casting Technology
    Lecture 8: Casting Technology MT321: Principles of Materials Processing Lecture 8:Casting Technology 1 Design of Gating Systems Functions of a gating system: To deliver liquid metal to mould cavity within a short time. To minimise turbulent flow. To keep dross and/or inclusion particles from entering mould cavity. MT321: Principles of Materials Processing Lecture 8:Casting Technology 2 MT321: Principles of Materials Processing Lecture 8:Casting Technology 3 How to deliver liquid metal fast? By using a sufficient large cross sectional area; By using multiple runners. How to minimise turbulent flow? By using tapered sprue and runners. By bottom filling of the liquid into the mould cavity. By regulating the change of cross sectional area of the channels according to fluid dynamics principles. MT321: Principles of Materials Processing Lecture 8:Casting Technology 4 How to keep dross and inclusion particles from entering mould cavity? By using dross traps. By using filters. MT321: Principles of Materials Processing Lecture 8:Casting Technology 5 Various types of ceramic filters that may be inserted into the gating systems of metal castings MT321: Principles of Materials Processing Lecture 8:Casting Technology 6 MT321: Principles of Materials Processing Lecture 8:Casting Technology 7 Solidification Shrinkage The liquid of most metals and alloys shrinks during solidification. Solidification shrinkage (percent) of some common engineering metals and alloys MT321: Principles of Materials Processing Lecture 8:Casting Technology 8 Two considerations must be made in designing a casting mould, due to the solidification shrinkage: A riser, which is a reservoir of liquid, is needed to compensate for the shrinkage of the whole casting.
    [Show full text]
  • Download European Recycling Services Brochure
    ALPHA Reclamation Services Brochure Maximize Your Metal Recovery Return macdermidalpha.com August, 2020 Europe ASSEMBLY SOLUTIONS ALPHA Metal Reclamation Services Minimise Your Environmental Liability, Maximise the Value of Your Waste Materials Environmental legislation specifies the importance of proper waste management, recovery and recycling techniques to reduce pressure on resources and improve their use. Due to these requirements and considering that metal waste is recyclable, it is now essential for you to have a reliable and efficient recycler. Alpha, a brand of MacDermid Alpha Electronics Solutions, offers a safe and efficient recycling service which helps companies to meet their environmental and legislative requirements and at the same time, maximize the value of their waste stream. • Alpha’s experienced staff are dedicated to reclamation efforts and will maximize the amount of metal processed from your reclaim material. • Reclaim material sent to Alpha is carefully processed and no material that has a metal content is sent to a landfill. • Alpha provides tough, sealable and disposable metal recycling buckets and drums. • All shipments are lot traceable and certification can be provided on request. • Alpha’s Certified Recycling Partner Program enables our customers to work with local partners operating throughout Europe who are legally authorized to collect waste from electronics assembly processes. 2 ALPHA Metal Reclamation Services Recycling Waste Streams Wave Solder Dross and Hot Air Solder Level (HASL Dross) – Oxidation particles that form on the surface of molten metal (solder). This material can be skimmed off and recycled. Solder Paste – Paste that has expired its shelf life or been removed from the stencil Empty Paste Jars and Cartridges Solder Bar and Wire – Expired solder bar and wire Pot Dump and Contaminated Solder Bath – From wave and selective soldering machines.
    [Show full text]
  • Defect Analysis for Sand Casting Process (Case Study in Foundry of Kombolcha Textile Share Company)
    International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395-0056 Volume: 07 Issue: 01 | Jan 2020 www.irjet.net p-ISSN: 2395-0072 Defect Analysis for Sand Casting process (Case Study in foundry of Kombolcha Textile Share Company) Wossenu Ali Wollo University, Kombolcha Institute of Technology, Mechanical Engineering Department, Kombolcha, Ethiopia ---------------------------------------------------------------------***---------------------------------------------------------------------- Abstract - This research aimed to identify the cause of casting product. Deviation of any process parameter casting defect and to suggest possible remedies in order will cause one or more casting defects on the product. to produce conforming casting product in the foundry of Kombolcha textile share company, Ethiopia. During A few manufacturing industries are found in Ethiopia casting defect analysis, the common casting defects in which casting process is the one that uses to produce blowholes, pinholes and shrinkage were identified. The metallic parts. These parts use for internal customers major and minor process variables which were who wants to substitute their broken spare parts. Since responsible for each casting defects were indicated using the process is supported by shop-floor trial and there is fishbone diagram. For analysis of possible causes, shortage of skilled workers, the casting products Experiments were conducted for moulding sand to produced are not quality product to satisfy customers determine clay content and grain fineness number need. Solving this problem in these foundries is (GFN). For defective part, composition analysis using important to satisfy customers need. spectrometer was also done. Analysis showed that high Casting process in foundry of Kombolcha textile clay content (52.7%) of moulding sand, wrong gating Share Company produces parts such as Armature disk, system design, incorrect pattern design and unknown front flange, real flange, and pulley of different size, pouring temperature were responsible for the defects.
    [Show full text]
  • Raymond & Leigh Danielle Austin
    PRODUCT TRENDS, BUSINESS TIPS, NATIONAL TONGUE PIERCING DAY & INSTAGRAM FAVS Metal Mafia PIERCER SPOTLIGHT: RAYMOND & LEIGH DANIELLE AUSTIN of BODY JEWEL WITH 8 LOCATIONS ACROSS OHIO STATE Friday, August 14th is NATIONAL TONGUE PIERCING DAY! #nationaltonguepiercingday #nationalpiercingholidays #metalmafialove 14G Titanium Barbell W/ Semi Precious Stone Disc Internally Threaded Starting At $7.54 - TBRI14-CD Threadless Starting At $9.80 - TTBR14-CD 14G Titanium Barbell W/ Swarovski Gem Disc Internally Threaded Starting At $5.60 - TBRI14-GD Threadless Starting At $8.80 - TTBR14-GD @fallenangelokc @holepuncher213 Fallen Angel Tattoo & Body Piercing 14G Titanium Barbell W/ Dome Top 14G Titanium Barbell W/ Dome Top 14G ASTM F-67 Titanium Barbell Assortment Internally Threaded Starting At $5.46 - TBRI14-DM Internally Threaded Starting At $5.46 - TBRI14-DM Starting At $17.55 - ATBRE- Threadless Starting At $8.80 - TTBR14-DM Threadless Starting At $8.80 - TTBR14-DM 14G Threaded Barbell W Plain Balls 14G Steel Internally Threaded Barbell W Gem Balls Steel External Starting At $0.28 - SBRE14- 24 Piece Assortment Pack $58.00 - ASBRI145/85 Steel Internal Starting At $1.90 - SBRI14- @the.stabbing.russian Titanium Internal Starting At $5.40 - TBRI14- Read Street Tattoo Parlour ANODIZE ANY ASTM F-136 TITANIUM ITEM IN-HOUSE FOR JUST 30¢ EXTRA PER PIECE! Blue (BL) Bronze (BR) Blurple Dark Blue (DB) Dark Purple (DP) Golden (GO) Light Blue (LB) Light Purple (LP) Pink (PK) Purple (PR) Rosey Gold (RG) Yellow(YW) (Blue-Purple) (BP) 2 COPYRIGHT METAL MAFIA 2020 COPYRIGHT METAL MAFIA 2020 3 CONTENTS Septum Clickers 05 AUGUST METAL MAFIA One trend that's not leaving for sure is the septum piercing.
    [Show full text]
  • Minimization of Casting Defects in Aluminum Alloy Wheels of Grade A356.2 K.Pundari Kaksha #1 P.Satish Reddy #2 N.Guru Murthy #3 S.Siva Kumar #4 PG Scholar, Assoc
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by International Journal of Science Engineering and Advance Technology (IJSEAT) ISSN 2321-6905 February- 2018 International Journal of Science Engineering and Advance Technology, IJSEAT, Vol. 6, Issue 2 Minimization of Casting Defects In Aluminum Alloy Wheels of Grade A356.2 K.Pundari Kaksha #1 P.Satish Reddy #2 N.Guru Murthy #3 S.Siva Kumar #4 PG Scholar, Assoc. Professor, Asst Professor, Asst Professor Dept of Mechanical Engineering, Prasiddha College of Engg & Tech, Anathavaram [email protected],[email protected],[email protected], [email protected] So, precautions should be taken while casting the wheel. Throughout the production of aluminum ABSTRACT: alloy wheels the typically used raw material is Al- The primary motive of this project is Si casting alloys. As of their good casting identification of the casting defects in Aluminium properties and due to these alloys will provide good alloy wheels, to reduce the losses due to scrap and corrosion resistance and strength so that vehicle rework and also applications of techniques to can acclimatize to road and weather condition. reduce the defects to a minimum level. To identify 1.1 A356.2-COMPOSITION: the defects in the product, the process adopted in casting, inspection and testing procedures are Al - 92.4% studied. Reasons for defects in hub, spoke and rim Si - 6.5%-7.5% are identified. Number of defects occurred in hub, spoke and rim are collected and techniques to Mg - 0.25-0.45% minimize these are suggested.
    [Show full text]