Cloning and Characterization of a Haloarchaeal Heat Shock Protein 70

Total Page:16

File Type:pdf, Size:1020Kb

Cloning and Characterization of a Haloarchaeal Heat Shock Protein 70 RESEARCH LETTER Cloning and characterization ofa haloarchaeal heat shock protein 70 functionally expressed in Escherichia coli Hao Zhang, Lu Lin, Chi Zeng, Ping Shen & Yu-Ping Huang Laboratory of Microbial Genetics, College of Life Sciences, Wuhan University, Wuhan, China Downloaded from https://academic.oup.com/femsle/article/275/1/168/499933 by guest on 01 October 2021 Correspondence: Yu-Ping Huang, Abstract Laboratory of Microbial Genetics, College of Life Sciences, Wuhan University, Wuhan The Hsp70 molecular chaperone machine is constituted by the 70-kDa heat shock 430072, China. Tel.: 186-27-68754533; protein Hsp70 (DnaK), cochaperone protein Hsp40 (DnaJ) and a nucleotide- fax: 186-27-68754833; exchange factor GrpE. Although it is one of the best-characterized molecular e-mail: [email protected] chaperone machines, little is known about it in archaea. A 5.2-kb region contain- ing the hsp70 (dnaK) gene was cloned from Natrinema sp. J7 strain and sequenced. Received 7 May 2007; revised 29 June 2007; It contained the Hsp70 chaperone machine gene locus arranged unidirectionally in accepted 13 July 2007. the order of grpE, hsp70 and hsp40 (dnaJ). The hsp70 gene from Natrinema sp. J7 First published online August 2007. was overexpressed in Escherichia coli BL21 (DE3). The recombinant Hsp70 protein was in a soluble and active form, and its ATPase activity was optimally active in DOI:10.1111/j.1574-6968.2007.00881.x 2.0 M KCl, whereas NaCl had less effect. In vivo, the haloarchaeal hsp70 gene 1 Editor: Marco Moracci allowed an E. coli dnak-null mutant to propagate l phages and grow at 42 C. The results suggested that haloarchaeal Hsp70 should be beneficial for extreme Keywords halophiles survival in low-salt environments. hsp70 ; Hsp70; ATPase activity; haloarchaea. structural homology, Hsp70s are highly specific and the Introduction basis of this functional specificity is not well understood A variety of environmental stresses induce the synthesis of a (Buchberger et al., 1994; James et al., 1997). set of highly conserved proteins called heat shock proteins Hsp70 proteins in bacteria and eukaryotes have been (Hsps). Some Hsps are also molecular chaperones, and play extensively studied (Mayer & Bukau, 2005). However, little important roles in normal cellular physiology and in cell information is known regarding haloarchaeal Hsp70 pro- survival in the face of stress (Ellis & van der Vies, 1991). The teins. An Hsp70 homologue from Halobacterium cutiru- heat shock Hsp70 system is one of the best-characterized brum was identified and purified (Tokunaga et al., 1999). chaperone machineries, which contains Hsp70 (DnaK), its Nevertheless, the functional specificity of haloarchaeal cochaperone protein Hsp40 (DnaJ) and the nucleotide Hsp70 has not been reported. Here, the hsp70 gene was exchange factor GrpE (Bukau & Horwich, 1998). Hsp70 cloned from an extremely halophilic archaeon Natrinema sp. systems are not only universally distributed in bacteria and J7, which harbors a high copy number plasmid pHH205 (Ye eukaryotes but are also found in some archaea, especially et al., 2003) and possesses extracellular proteolytic activity that they occur in all haoarchaea with no exceptions (Shi et al., 2006). Then, the ATPase activities of recombinant (Macario et al., 2004). Hsp70 protein expressed in Escherichia coli and functional Hsp70 proteins are one of the most conserved proteins complementation of an E. coli dnaK mutant were analyzed. known to date, which form the central part of the Hsp70 system. Hsp70s are composed of a highly homologous N-terminal ATPase domain, a substrate-binding domain Materials and methods and a C-terminal variable domain (Mayer & Bukau, 2005), Strains, plasmids and culture conditions the ATPase activities of which are all stimulated by Hsp40, GrpE and substrate binding (Liberek et al., 1991), and the Natrinema sp. J7 strain was grown in a complex medium at molecular chaperone functions of Hsp70 seem to be based 45 1C(Yeet al., 2003). The E. coli MC4100 dnaK-null mutant on its ATPase activity. Despite the high sequence and BM271 (Paek & Walker, 1987) and plasmid pTrc99a (Wang c 2007 Federation of European Microbiological Societies FEMS Microbiol Lett 275 (2007) 168–174 Published by Blackwell Publishing Ltd. All rights reserved A haloarchaeal Hsp70 functionally expressed in E. coli 169 Table 1. The oligodeoxynucleotide PCR primers used in this paper with the DNA probes. The inserted fragments obtained from Primer Nucleotide sequence Reference the selected positive plasmid were sequenced. For the construction of the expression vector, the haloarch- Primer63 50-GGAAGGCAGCGACCCCGAAATC-30 hsp70 Primer964 50-CCTGTGGCATTCTCGTGGACCC-30 primers for aeal hsp70 ORF was amplified by PCR with the primer HKF- Halobacterium NdeI and HKR-HindIII. The PCR fragment was digested with sp. NRC-1 the NdeI and HindIII, and then ligated into NdeI/HindIII- HKF-NdeI 50-GGGCATATGGCGAGCAACAAAATTC-30 hsp70 primers digested pET26b1 to construct plasmid pHK2. HKR-HindIII 50-GGGAAGCTTCTCCTCGTCGTCCTCGTC-30 for Natrinema Another expression plasmid, named pTrcK, was con- sp. J7 structed by the introduction of the NcoI–HindIII full-length KP-RT 50-GTCGGCTCGTTGAT-30 hsp70 specific KPF-Out 50-TACTTCTCCGACCGACAGC-30 primers for ORF of hsp70 into a plasmid pTrc99a previously digested KPR-Out 50-GCGTTTGATCTTCTGGAGGA-30 RLM-RACE PCR with the same enzymes. KPF-Inner 50-CGCATCATCAACGAGCCGA-30 Downloaded from https://academic.oup.com/femsle/article/275/1/168/499933 by guest on 01 October 2021 0 0 KPR-Inner 5 -ATCGTCTTTTCGGGGTTCTG-3 Overexpression, purification and ATPase activity assay of the haloarchaeal Hsp70 The expression of Hsp70 was achieved by induction of the et al., 2004) were kindly gifted by Prof. B. Lipinska˜ (Gdansk˜ cultures with 1 mM isopropyl-b-D-thiogalactopyranoside University, Poland) and Dr M.R. Volkert (University of (IPTG) at A 0.6, followed by an incubation of 12 h at Massachusetts Medicine School), respectively. Plasmid 600 nm 30 1C. Then, cultures were harvested and resuspended in pDNAJ (Yoshimune et al., 2005), an expression plasmid for 20 mM Tris-Cl buffer (pH 7.2). Following cell lysis by E. coli DnaJ (EcoDnaJ), was kindly provided by Dr N. Esaki sonication (3–6 pulses of 1 min, interspersed with cooling (Kyoto University, Japan). on ice), cell debris was pelleted by centrifugation at 12 000 g for 20 min, and clear supernatants were obtained. Molecular genetic methods Purifications of Hsp70 were carried out with the Ni-NTA HisBind affinity chromatography kit according to the The genome DNA and total RNA were isolated and purified method of QIAGEN (2002). The protein concentrations according to protocols described in The Halohandbook: were determined using the Bradford method (Bradford, Protocols for Halobacterial Genetics, version 4.9 (http:// 1976) with bovine serum albumin as a standard, and the www.microbiol.unimelb.edu.au/people/dyallsmith/resources/ homogeneity of the final Hsp70 preparation was confirmed halohandbook/index.html). Molecular cloning techniques by 10% sodium dodecylsulfate-polyacrylamide gel were performed using standard procedures (Sambrook & electrophoresis (SDS-PAGE). Russell, 2001). RNA ligase-mediated rapid amplification of ATPase activity of Hsp70 protein was determined by cDNA ends by PCR (RLM-RACE PCR) was performed using measuring the free phosphate released from the ATP hydro- the 50-full RACE Core Set (Takara Biotech, China) according lysis according to the malachite green method (Lanzetta et al., to the manufacturer’s instructions. The oligodeoxynucleo- 1979). All reactions were performed in buffer M (50 mM Tris- tide primers used in this study are shown in Table 1. Cl, pH 7.6; 10 mM MgCl2;5mMATP),and2MKClwas added when the effects of temperature on the ATPase Gene cloning and plasmids construction activities were studied. The salt dependence of the ATPase activity was measured between 0 and 3 M NaCl or KCl, For Southern blot analysis, the genomic DNA was digested respectively. After a 30-min incubation of Hsp70 with buffer with restriction enzymes and separated by electrophoresis in M, the reaction was stopped by addition of 20% tricarboxylic 1% agarose gel and then transferred to a nylon membrane acid. The standard curve was obtained using phosphate buffer (Hybond-N1, Amersham, Buckinghamshire, UK). The 900- (pH 6.8). The enzymatic activity was calculated as nanomole bp PCR-amplified fragment of hsp70 (positions 63–964) of ATP per milligram of DnaK per minute. from Halobacterium sp. NRC-1 was used as a probe. The digoxigenin-labeled probes were hybridized with the digested Immunological identification of the fragments at 42 1C overnight. The membrane was washed, haloarchaeal recombinant Hsp70 and the hybridized signals were detected with a digoxigenin detection kit (Boehringer Mannheim, Germany) as described In order to exclude the contamination of E. coli endogenous in the supplier’s instructions. The DNA fragments whose chaperones in archaeal Hsp70 preparation, Western blotting sizes were similar to those of the hybridized fragments were was performed by transferring the proteins, after electro- ligated into the plasmid vector pUC18, and the resultant phoresis on 10% acrylamide gels, to a nitrocellulose mem- constructs were introduced into E. coli JM109. The plasmids brane using the Transblot cell from BioRad, and then carrying the hsp70 genes were identified by hybridization incubating the membrane with polyclonal anti-DnaKEc, FEMS Microbiol Lett 275 (2007) 168–174 c 2007 Federation of European Microbiological
Recommended publications
  • Coevolutionary Phage Training Leads to Greater Bacterial Suppression and Delays the Evolution of Phage Resistance
    bioRxiv preprint doi: https://doi.org/10.1101/2020.11.02.365361; this version posted November 2, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Coevolutionary phage training leads to greater bacterial suppression and delays the evolution of phage resistance Joshua M. Borin1, Sarit Avrani2, Jeffrey E. Barrick3, Katherine L. Petrie1,4, and Justin R. Meyer1* 1. Division of Biological Sciences, University of California San Diego 92093 2. Department of Evolutionary and Environmental Biology and The Institute of Evolution, University of Haifa 3498838 3. Department of Molecular Biosciences, The University of Texas at Austin 78712 4. Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan 145-0061 *corresponding author Classification BIOLOGICAL SCIENCES, Evolution Keywords Evolution, Coevolution, Resistance, Phage therapy, Phage training Author Contributions JMB, JRM, and SA designed research; JMB, KLP and JRM performed research; JMB and JRM analyzed data; JMB and JRM wrote the paper; SA and JRM provided financial support. All authors edited the manuscript. Significance Statement The evolution of antibiotic resistant bacteria threatens to claim over 10 million lives annually by 2050. This crisis has renewed interest in phage therapy, the use of bacterial viruses to treat infections. A major barrier to successful phage therapy is that bacteria readily evolve phage resistance. One idea proposed to combat resistance is “training” phages by using their natural capacity to evolve to counter resistance.
    [Show full text]
  • Global Analysis of Chaperone Effects Using a Reconstituted Cell-Free Translation System
    Global analysis of chaperone effects using a reconstituted cell-free translation system Tatsuya Niwaa, Takashi Kanamorib,1, Takuya Uedab,2, and Hideki Taguchia,2 aDepartment of Biomolecular Engineering, Graduate School of Biosciences and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan; and bDepartment of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan Edited by George H. Lorimer, University of Maryland, College Park, MD, and approved April 19, 2012 (received for review January 25, 2012) Protein folding is often hampered by protein aggregation, which can three chaperone systems are known to act cooperatively: TF and be prevented by a variety of chaperones in the cell. A dataset that DnaK exhibit overlapping cotranslational roles in vivo (13–15). evaluates which chaperones are effective for aggregation-prone Overexpression of DnaK/DnaJ and GroEL/GroES in E. coli proteins would provide an invaluable resource not only for un- rpoH mutant cells, which are deficient in heat-shock proteins, derstanding the roles of chaperones, but also for broader applications prevents aggregation of newly translated proteins (16). GroEL is in protein science and engineering. Therefore, we comprehensively believed to be involved in folding after the polypeptides are re- evaluated the effects of the major Escherichia coli chaperones, trigger leased from the ribosome, although the possible cotranslational factor, DnaK/DnaJ/GrpE, and GroEL/GroES, on ∼800 aggregation- involvement of GroEL has also been reported (17–20). prone cytosolic E. coli proteins, using a reconstituted chaperone-free Over the past two decades many efforts have been focused on translation system.
    [Show full text]
  • Chloroplast Molecular Chaperone-Assisted Refolding and Reconstitution of an Active Multisubunit Coupling Factor CF1 Core (Atpse/Asembly) GEOFFREY G
    Proc. Nati. Acad. Sci. USA Vol. 91, pp. 11497-11501, November 1994 Plant Biology Chloroplast molecular chaperone-assisted refolding and reconstitution of an active multisubunit coupling factor CF1 core (ATPse/asembly) GEOFFREY G. CHEN* AND ANDRE T. JAGENDORFt Section of Plant Biology, Cornell University, Ithaca, NY 14853 Contributed by Andre T. Jagendorf, August 8, 1994 ABSTRACT The chloroplast coupling factor 1 (CF1) is logues to E. coli DnaJ and GrpE have not yet been identified composed of five kinds of subuits ith a stoichiometry of in chloroplasts. a4313y6e. Reconstitution of a catalyticay active a3I3Y core Unlike the cpn6O homolog in E. coli designated GroEL, the from urea-denatured subnits at a physiological pH is reported chloroplast cpn6O contains two kinds of subunits, which here. A restoration of approximately 90% of the CF1 ATrase share about 50% sequence homology (12). The stoichiometry activity has been observed. The reconstitution was achieved by of its a and (3 subunits has been suggested to be 1:1 (10). using subunits overexpressed in Eschenicia coli, rfied, and Electron microscopic imaging revealed a structure very sim- combined In the presenoe of MgATP, K+, and a m of ilar to that ofGroEL: a stacked double-ring with a sevenfold several chloroplast m r chaperones at pH 7.5. The rotational symmetry and a central cavity where unfolded combination of chaperonin 60 and chaperonin 24 failed to proteins probably bind (17). recotitute the active CF1 core, as did the GroEL/GroES - The chloroplast cochaperonin (cpn24) is a homologue of (E. coil chaperonin 60/10 homoloues). Characteristics of the cpnl0s, but is different from any cpnl0 described previously, reconstituted ATPase were very cose to those of the native including the E.
    [Show full text]
  • Escherichia Coli Dnaj and Grpe Heat Shock Proteins Jointly Stimulate
    Proc. NatI. Acad. Sci. USA Vol. 88, pp. 2874-2878, April 1991 Biochemistry Escherichia coli DnaJ and GrpE heat shock proteins jointly stimulate ATPase activity of DnaK KRZYSZTOF LIBEREK*t, JAROSLAW MARSZALEK*, DEBBIE ANGt, COSTA GEORGOPOULOStt, AND MACIEJ ZYLICZ* *Division of Biophysics, Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822, Gdansk, Poland; and tDepartment of Cellular, Viral, and Molecular Biology, University of Utah School of Medicine, Salt Lake City, UT 84132 Communicated by Allan M. Campbell, December 31, 1990 ABSTRACT The products of the Escherichia coli dnaK, when ATP was added to complexes of hsc70 (a constitutive dnaJ, and grpE heat shock genes have been previously shown member of the hsp70 family) and p53 (an anti-oncogenic to be essential for bacteriophage A DNA replication at all protein) (9), immunoglobulin heavy chains and their binding temperatures and for bacterial survival under certain condi- protein BiP (10), and uncoating ATPase complexed with tions. DnaK, the bacterial heat shock protein hsp7O analogue clathrin or membrane vesicles (11, 12). Recently, Beckmann and putative chaperonin, possesses a weak ATPase activity. et al. (13) have shown that the cytosolic hsp70 proteins may Previous work has shown that ATP hydrolysis allows the interact with a large number of newly synthesized proteins. release ofvarious polypeptides complexed with DnaK. Here we These examples suggest that ATP-dependent release ofhsp70 demonstrate that the ATPase activity of DnaK can be greatly from a complex with its substrate is a common feature of the stimulated, up to 50-fold, in the simultaneous presence of the hsp70 family. However, in all the described cases, the DnaJ and GrpE heat shock proteins.
    [Show full text]
  • Stress-Induced Expression of the Escherichia Coli Phage Shock Protein Operon Is D,E P Endent on 0 -54 and Modulated by Positive and Negative Feedback Mechanisms
    Downloaded from genesdev.cshlp.org on September 25, 2021 - Published by Cold Spring Harbor Laboratory Press Stress-induced expression of the Escherichia coli phage shock protein operon is d,e p endent on 0 -54 and modulated by positive and negative feedback mechanisms Lorin Weiner, Janice L. Brissette, 1 and Peter Model z The Rockefeller University, New York, New York 10021 USA The phage shock protein (psp) operon of Escherichia coli is strongly induced in response to heat, ethanol, osmotic shock, and infection by filamentous bacteriophages. The operon contains at least four genes--pspA, pspB, pspC, and pspE--and is regulated at the transcriptional level. We report here that psp expression is controlled by a network of positive and negative regulatory factors and that transcription in response to all inducing agents is directed by the or-factor r s4. Negative regulation is mediated by both PspA and the r heat shock proteins. The PspB and PspC proteins cooperatively activate expression, possibly by antagonizing the PspA-controlled repression. The strength of this activation is determined primarily by the concentration of PspC, whereas PspB enhances but is not absolutely essential for PspC-dependent expression. PspC is predicted to contain a leucine zipper, a motif responsible for the dimerization of many eukaryotic transcriptional activators. PspB and PspC, though not necessary for psp expression during heat shock, are required for the strong psp response to phage infection, osmotic shock, and ethanol treatment. The psp operon thus represents a third category of transcriptional control mechanisms, in addition to the r 32- and erE-dependent systems, for genes induced by heat and other stresses.
    [Show full text]
  • Heat Shock Protein 90 from Escherichia Coli Collaborates with the Dnak Chaperone System in Client Protein Remodeling
    Heat shock protein 90 from Escherichia coli collaborates with the DnaK chaperone system in client protein remodeling Olivier Genest, Joel R. Hoskins, Jodi L. Camberg, Shannon M. Doyle, and Sue Wickner1 Laboratory of Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892 Contributed by Sue Wickner, March 24, 2011 (sent for review February 21, 2011) Molecular chaperones are proteins that assist the folding, unfold- Hsp90 undergoes large conformational rearrangements that ing, and remodeling of other proteins. In eukaryotes, heat shock are modulated by ATP binding and hydrolysis; several distin- protein 90 (Hsp90) proteins are essential ATP-dependent molecular guishable conformational states of Hsp90 have been identified chaperones that remodel and activate hundreds of client proteins through structural analyses (11–16). Hsp90 dimers transition with the assistance of cochaperones. In Escherichia coli, the activity from an extended open conformation to a compact closed of the Hsp90 homolog, HtpG, has remained elusive. To explore the conformation. ATP binding promotes the conversion from the mechanism of action of E. coli Hsp90, we used in vitro protein open to closed conformation (1, 2, 9, 10). During this transition, reactivation assays. We found that E. coli Hsp90 promotes reacti- a conserved region in the N terminus, known as the active site lid, vation of heat-inactivated luciferase in a reaction that requires closes over the nucleotide-binding pocket, and the N-terminal do- the prokaryotic Hsp70 chaperone system, known as the DnaK sys- mains transiently interact. Following ATP hydrolysis, dissociation tem. An Hsp90 ATPase inhibitor, geldanamycin, inhibits luciferase of ADP restores the open conformation.
    [Show full text]
  • Autoregulation of the Escherichia Coli Heat Shock Response By
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 11019-11023, December 1993 Biochemistry Autoregulation of the Escherichia coli heat shock response by the DnaK and DnaJ heat shock proteins (negative autoregulation/protein-protein interactions) KRZYSZTOF LIBEREK*tt AND COSTA GEORGOPOULOS* *Departement de Biochimie Medicale, Centre Medical Universitaire, 1, rue Michel-Servet, 1211 Geneve 4, Switzerland; and tDivision of Biophysics, Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland Communicated by Werner Arber, August 23, 1993 (receivedfor review March 8, 1993) ABSTRACT All organisms respond to various forms of '"chaperone" (19), usually acts together with two other heat stress, including heat shock. The heat shock response has been shock proteins, DnaJ and GrpE, to constitute a "chaperone universally conserved from bacteria to humans. In Escherichia machine" (20). colithe heat shock response is under the positive transcriptional The DnaJ protein is another example of a heat shock control of the o32 polypeptide and involves transient acceler- protein that has been extensively conserved in evolution (21). ation in the rate of synthesis of a few dozen genes. Three of the Recently, it has been shown that E. coli DnaJ protein can heat shock genes-dnaK, dnaJ, and grpE-are special because suppress the import defect into the endoplasmic reticulum mutations in any one of these lead to constitutive levels of heat and mitochondria of YDJ1-defective yeast mutants (22), shock gene expression, implying that their products negatively demonstrating a functional conservation throughout evolu- autoregulate their own synthesis. The DnaK, DnaJ, and GrpE tion. DnaJ and GrpE work synergistically with DnaK in the proteins have been known to function in various biological replication of bacteriophages A and P1 (23-25).
    [Show full text]
  • Dnak, Dnaj and Grpe Form a Cellular Chaperone Machinery Capable of Repairing Heat-Induced Protein Damage
    The EMBO Journal vol. 12 no. 1 1 pp.4137 - 4144, 1993 DnaK, DnaJ and GrpE form a cellular chaperone machinery capable of repairing heat-induced protein damage Hartwig Schroder', Thomas Langer2, At least for the Escherichia coli homologs DnaK and GroEL, Franz-Ulrich Hartl2 and Bernd Bukau1l3 ATP-dependent substrate release appears to be controlled by the specific cofactors DnaJ and GrpE (for DnaK) and IZentrum fur Molekulare Biologie, Universitat Heidelberg, INF 282, GroES (for GroEL) (Goloubinoff et al., 1989; Liberek D69120 Heidelberg, Germany and 2Program in Cellular Biochemistry et al., 1991; Martin et al., 1991). In the case of DnaJ and and Biophysics, Rockefeller Research Laboratory, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10021, USA GrpE, these cofactors act co-operatively to stimulate the ATPase activity of DnaK (Liberek et al., 1991). 3Corresponding author Interestingly, DnaJ has the capability to bind protein Communicated by H.Bujard substrates independently of DnaK, such as DnaB helicase (Georgopoulos et al., 1990; Liberek et al., 1990), heat Members of the conserved Hsp7O chaperone family are shock transcription factor a32 (Gamer et al., 1992), XP assumed to constitute a main cellular system for the (Georgopoulos et al., 1990), plasmid P1-encoded RepA prevention and the amelioration of stress-induced protein (Wickner, 1990), and unfolded rhodanese (Langer et al., damage, though little direct evidence exists for this 1992). The functional significance of this substrate binding function. We investigated the roles of the DnaK (Hsp7O), by DnaJ is unclear. DnaJ and GrpE chaperones of Escherichia coli in Given their capacity to assist protein folding, it is not prevention and repair of thermally induced protein surprising that Hsp7O chaperones have multiple roles in the damage using firefly luciferase as a test substrate.
    [Show full text]
  • Dnak, Dnaj^ and Grpe Heat Shock Proteins Negatively Regulate Heat Shock Gene Expression by Controlling the Synthesis and Stability of A^^
    Downloaded from genesdev.cshlp.org on October 7, 2021 - Published by Cold Spring Harbor Laboratory Press DnaK, DnaJ^ and GrpE heat shock proteins negatively regulate heat shock gene expression by controlling the synthesis and stability of a^^ David Straus,* William Walter, and Carol A. Gross Department of Bacteriology, University of Wisconsin, Madison, Wisconsin 53706 USA The Escherichia coli DnaK heat shock protein has been identified previously as a negative regulator of E. coli heat shock gene expression. We report that two other heat shock proteins, DnaJ and GrpE, are also involved in the negative regulation of heat shock gene expression. Strains carrying defective dnaK, dnaj, or grpE alleles have enhanced synthesis of heat shock proteins at low temperature and fail to shut off the heat shock response after shift to high temperature. These regulatory defects are due to the loss of normal control over the synthesis and stability of CT^^, the alternate RNA polymerase tr-factor required for heat shock gene expression. We conclude that DnaK, DnaJ, and GrpE regulate the concentration of o-^^. We suggest that the synthesis of heat shock proteins is controlled by a homeostatic mechanism linking the function of heat shock proteins to the concentration of a^^. [Key Words: Heat shock proteins; DnaK heat shock gene expression; o^^] Received August 9, 1990; revised version accepted September 12, 1990. The induction of heat shock proteins following an and after temperature upshift, depends on the function abrupt increase in growth temperature has been ob­ of the rpoH(htpR) gene (Neidhardt and VanBogelen served in every cell type examined, including examples 1981; Yamamori and Yura 1982; Zhou et al.
    [Show full text]
  • Escherichia Coli Dnak and Grpe Heat Shock Proteins Interact Both in Vivo and in Vitro CLAUDIA JOHNSON,T G
    JOURNAL OF BACTERIOLOGY, Mar. 1989, p. 1590-1596 Vol. 171, No. 3 0021-9193/89/031590-07$02.00/0 Copyright © 1989, American Society for Microbiology Escherichia coli DnaK and GrpE Heat Shock Proteins Interact Both In Vivo and In Vitro CLAUDIA JOHNSON,t G. N. CHANDRASEKHAR, AND COSTA GEORGOPOULOS* Department of Cellular, Viral, and Molecular Biology, University of Utah, Salt Lake City, Utah 84132 Received 28 September 1988/Accepted 7 December 1988 Previous studies have demonstrated that the Escherichia coli dnaK and grpE genes code for heat shock proteins. Both the Dnak and GrpE proteins are necessary for bacteriophage A DNA replication and for E. coli growth at all temperatures. Through a series of genetic and biochemical experiments, we have shown that these heat shock proteins functionally interact both in vivo and in vitro. The genetic evidence is based on the isolation of mutations in the dnaK gene, such as dnaK9 and dnaK90, which suppress the Tri phenotype of bacteria carrying the grpE280 mutation. Coimmunoprecipitation of DnaK+ and GrpE: proteins from cell lysates with anti-DnaK antibodies demonstrated their interaction in vitro. In addition, the DnaK756 and GrpE280 mutant proteins did not coinmunoprecipitate efficiently with the GrpE+ and DnaK+ proteins, respectively, suggesting that interaction between the DnaK and GrpE proteins is necessary for E. coli growth, at least at temperatures above 43°C. Using this assay, we found that one of the dnaK suppressor mutations, dnaK9, reinstated a protein-protein interaction between the suppressor DnaK9 and GrpE280 proteins. After being subjected to a sudden rise in temperature, all modulates DnaK activity during the HS response in a organisms tested, from Escherichia coli to Homo sapiens, manner that is sensitive to the ATP concentration in the cell.
    [Show full text]
  • Mge1 Functions As a Nucleotide Release Factor for Ssc1, a Mitochondrial Hsp70 of Saccharomyces Cerevisiae
    JMB MS 1679 [15/1/97] J. Mol. Biol. (1997) 265, 541±552 Mge1 Functions as a Nucleotide Release Factor for Ssc1, a Mitochondrial Hsp70 of Saccharomyces cerevisiae Bingjie Miao, Julie E. Davis and Elizabeth A. Craig* Department of Biomolecular Mge1, a GrpE-related protein in the mitochondrial matrix of the budding Chemistry, 1300 University yeast Saccharomyces cerevisiae, is required for translocation of precursor Avenue, University of proteins into mitochondria. The effect of Mge1 on nucleotide release from Wisconsin, Madison, WI 53706 Ssc1, an Hsp70 of the mitochondrial matrix, was analyzed. The release of USA both ATP and ADP from Ssc1 was stimulated in the presence of Mge1, therefore we conclude that Mge1 functions as a nucleotide release factor for Ssc1. Mge1 bound stably to Ssc1 in vitro; this interaction was resistant to high concentrations of salt but was disrupted by the addition of ATP. ADP was much less effective in releasing Mge1 from Ssc1 whereas ATPgS and AMPPNP could not disrupt the Ssc1/Mge1 complex. Ssc1-3, a temperature sensitive SSC1 mutant protein, did not form a detectable complex with Mge1. Consistent with the lack of a detectable interaction, Mge1 did not stimulate nucleotide release from Ssc1-3. A conserved loop structure on the surface of the ATPase domain of DnaK has been impli- cated in its interaction with GrpE. Since the single amino acid change in Ssc1-3 lies very close to the analogous loop in Ssc1, the role of this loop in the Ssc1:Mge1 interaction was investigated. Deletion of the loop abol- ished the physical and functional interaction of Ssc1 with Mge1, suggesting that the loop in Ssc1 is also important for the Ssc1:Mge1 inter- action.
    [Show full text]
  • The Mammalian Mitochondrial Hsp70 Chaperone System, New Grpe-Like Members and Novel Organellar Substrates
    I'e'oq The mammalian mitochondrial Hsp70 chaperone system, new GrpE-like members and novel organellar substrates Submitted by Dean Jason Naylor BSc. (Hons.) A thesis submitted in total fulfilment of the requirements for the degree of Doctor of Philosophy The Faculty of Agricultural and Natural Resource Sciences The University of Adelaide, V/aite Campus, Department of Horticulture, Viticulture and Oenology Glen Osmond, South Australia 5064, Australia August, 1999 Table of contents , Table of contents Table of contents List of ab brev iatíons........ Summary....,. State ntent of authors lüp Acknowledgments xt List of publications xtL CHAPTER I General introduction 1..1. Scope of chaperone existence and focus of this review.......... .............................1 1.2 The discovery of heat shock (stress) proteins and molecular chaperones................. ............3 1.4 The molecular chaperone concept........ ................. 11 1.5 The Hsp70 molecular chaperone system......... ........12 1.5.1 E. coli constitutes a model systemfor the study of eukaryotic molecular chaperones...................12 1.5.2 The E. coli DnaK (Hsp70) chaperone systenx.. I3 1.5.3 Structure-function relationship of the DnaK(Hsp70)/DnaJ(Hsp40)/GrpE system. .t6 1.5.3.1 DnaK (Hsp70) component.. t6 1.5.3.2 DnaJ (Hsp40) component. 1.5.3. 3 GrpE component, 21 1.5.4 Reaction cycle of the DnaK (Hsp7))/DnaJ (Hsp4})/GrpE system. 22 1.5.5 In some Hsp70 systems, GrpE may be replaced by additional co-factors that broaden the functions of Hsp70 chaperones. ......................24 1.5.6 The DnaK (Hsp70) substrate binding motif.. 26 1.5.7 The contribution of molecular chaperones to the folding of newly synthesised proteins and those unfolded by stress.
    [Show full text]