Recent Clinical Trials Inform the Future for Malaria Vaccines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RTS,S Malaria Vaccine First Malaria Vaccine Will Be Piloted in Areas of Three African Countries Through Routine Immunization Programs
CENTER FOR VACCINE INNOVATION AND ACCESS The RTS,S malaria vaccine First malaria vaccine will be piloted in areas of three African countries through routine immunization programs Summary the vaccine’s role in reducing childhood deaths and severe malaria, and its safety in the context of routine use. Data and Malaria kills more than 400,000 people a year worldwide and information from the MVIP will inform a WHO policy causes illness in tens of millions more, with most deaths recommendation on the broader use of the vaccine. RTS,S has occurring among young children living in sub-Saharan Africa. been approved for use in the pilot evaluation and Phase 4 Although existing interventions have helped to reduce malaria studies by the national regulatory authority in each of the three deaths significantly over the past 15 years, a vaccine could add participating countries. an important complementary tool for malaria control efforts. Financing for the MVIP has been mobilized through an RTS,S/AS01 (RTS,S) is the first malaria vaccine shown to unprecedented collaboration among three global health funding provide partial protection against malaria in young children. It bodies: Gavi, the Vaccine Alliance; the Global Fund to Fight will be the first malaria vaccine provided to young children AIDS, Tuberculosis and Malaria; and Unitaid. Additionally, through national immunization programs in three sub-Saharan WHO, PATH, and GSK are providing in-kind contributions, African countries—Ghana, Kenya, and Malawi. These countries which include GSK’s donation of the vaccine for use in the will introduce the vaccine in selected areas as part of a large- MVIP. -
I Raise the Rates! April Edition
I Raise the Rates! - April Edition I Raise the Rates! April Edition In this edition of I Raise the Rates (IRtR) you will find a variety of new resources from various public health partners, unique education opportunities, and a brief selection of popular media articles related to immunization. Updates from the American College of Physicians (ACP) Opportunity to Participate in ACP Quality Improvement Initiative to Increase Adult Influenza Immunization Rates APPLY NOW - Opportunity to participate in ACP's Quality Improvement Initiative to Increase Adult Influenza Immunization Rates. ACP is recruiting internal medicine and subspecialty practices and residency programs to participate in the I Raise the Rates quality improvement programs to increase influenza and adult immunization rates. ACP’s I Raise the Rates program, which is supported by funding from the CDC, Merck, and GSK, provides QI education and virtual coaching support from ACP Advance expert coaches to support increased adult immunization coverage. The program also offers access to a virtual learning community, tailored educational offerings, and the opportunity to earn more than 54 CME and ABIM MOC credits for program participants. Onboarding is underway so act now! Opportunity is limited, applicants will be considered on a first-come, first-served basis. Please see the attached recruitment flyer for more information about participation benefits and requirements as well as the application link. https://myemail.constantcontact.com/I-Raise-the-Rates----April-Edition---Layout-Template.html?soid=1124874283215&aid=uMyKdB7UvYQ 1/6 I Raise the Rates! - April Edition View the Flyer by Clicking Here ACP COVID-19 Vaccine Forum IV, Practical Clinical Considerations ACP COVID-19 Vaccine Forum IV, Practical Clinical Considerations was the forth in a series of vaccine forums hosted by ACP and Annals of Internal Medicine and was held on March 24, 2021. -
Downloaded from Uniprotkb 667 (UP000005640.Fasta)
medRxiv preprint doi: https://doi.org/10.1101/2021.07.21.21260959; this version posted July 24, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . 1 Title page 2 Proteomic and metabolomic signatures associated with the immune response in 3 healthy individuals immunized with an inactivated SARS-CoV-2 vaccine 4 5 Yi Wang,1,#,* Xiaoxia Wang,2,# Laurence Don Wai Luu,3,# Shaojin Chen2, Fu Jin,1 6 Shufang Wang,4 Xiaolan Huang,1 Licheng Wang,2 Xiaocui Zhou,2 Xi Chen,2 Xiaodai 7 Cui,1 Jieqiong Li,5,* Jun Tai,6,* and Xiong Zhu2,* 8 9 1 Experimental Research Center, Capital Institute of Pediatrics, Beijing, 100020, P.R. 10 China 11 2 Central & Clinical Laboratory of Sanya People’s Hospital, Sanya, Hainan 572000, P. 12 R. China. 13 3 School of Biotechnology and Biomolecular Science, University of New South Wales, 14 Sydney, Australia 15 4 Nursing department of Sanya People’s Hospital, Sanya, Hainan 572000, P. R. China. 16 5 Department of Respiratory Disease, Beijing Pediatric Research Institute, Beijing 17 Children’s Hospital, Capital Medical University, National Center for Children’s 18 Health, Beijing 10045, P. R. China 19 6 Department of Otolaryngology, Head and Neck Surgery, Children's Hospital Capital 20 Institute of Pediatrics, Beijing 100020, P. R. China. 21 22 # These authors contributed equally 23 24 25 * Correspondence: 26 Dr. -
Research Toward Vaccines Against Malaria
© 1998 Nature Publishing Group http://www.nature.com/naturemedicine REVIEW Louis Miller (National Institute of Allergy and Infectious Diseases) and Stephen Hoffman (Naval Medical Research Institute) review progress toward developing malaria vaccines. They argue that multiple antigens from different stages may be needed to protect the diverse populations at risk, and that an optimal vaccine would Induce Immunity against all stages. Vaccines for African children, In whom the major mortality occurs, must induce immunity against ase,cual blood stages. Research toward vaccines against malaria Malaria is one of the major causes of the only stage of the life cycle that causes disease and death between the Tropic LOUIS H. MILLER1 disease. The stages before the asexual of Cancer and Tropic of Capricorn. & STEPHEN L. HOFFMAN2 blood stage are lumped together and Plasmodium falciparum has an especially called pre-erythrocytic. A small propor profound impact on infants and children in sub-Saharan Africa, tion of the asexual blood stages differentiate into sexual stages, where its effect on health is increasing as chloroquine resistance the gametocytes in red cells that infect mosquitoes; vaccines to spreads across the continent. We believe that vaccination the mosquito stages are called transmission-blocking vaccines. against P. falciparum is the intervention with the greatest poten The parasites' multistage life cycle and the fact that immune re tial to reduce malaria-associated severe morbidity and mortality sponses that recognize one stage often do not affect the next in areas with the most intense transmission and that it may do stage have made vaccine development for malaria more diffi so without necessarily preventing blood stage infection. -
Attenuated Pfspz Vaccine Induces Strain-Transcending T Cells and Durable Protection Against Heterologous Controlled Human Malaria Infection
Attenuated PfSPZ Vaccine induces strain-transcending T cells and durable protection against heterologous controlled human malaria infection Kirsten E. Lykea,1, Andrew S. Ishizukab,1, Andrea A. Berrya, Sumana Chakravartyc, Adam DeZureb, Mary E. Enamab, Eric R. Jamesc, Peter F. Billingsleyc, Anusha Gunasekerac, Anita Manojc, Minglin Lic,d, Adam J. Rubenc, Tao Lic, Abraham G. Eappenc, Richard E. Staffordc,d, Natasha KCc,d, Tooba Murshedkarc, Floreliz H. Mendozab, Ingelise J. Gordonb, Kathryn L. Zephirb, LaSonji A. Holmanb, Sarah H. Plummerb, Cynthia S. Hendelb, Laura Novikb, Pamela J. M. Costnerb, Jamie G. Saundersb, Nina M. Berkowitzb, Barbara J. Flynnb, Martha C. Nasone, Lindsay S. Garverf, Matthew B. Laurensa, Christopher V. Plowea, Thomas L. Richiec, Barney S. Grahamb, Mario Roedererb, B. Kim Lee Simc,d, Julie E. Ledgerwoodb, Stephen L. Hoffmanc,2, and Robert A. Sederb,2,3 aCenter for Vaccine Development and Division of Malaria Research, Institute for Global Health, University of Maryland School of Medicine, Baltimore,MD 21201; bVaccine Research Center (VRC), National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; cSanaria Inc., Rockville, MD 20850; dProtein Potential LLC, Rockville, MD 20850; eBiostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892; and fEntomology Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910 Edited by Louis H. Miller, NIH, Rockville, MD, and approved January 19, 2017 (received for review September 27, 2016) A live-attenuated malaria vaccine, Plasmodium falciparum sporo- schedule showed a 26% and 36% reduction in clinical malaria zoite vaccine (PfSPZ Vaccine), confers sterile protection against among 6–12-wk-olds and 5–17-mo-olds, respectively, through 3–4y controlled human malaria infection (CHMI) with Plasmodium falci- of follow-up (7). -
(PPC) for Malaria Vaccines
WHO/IVB/14.09 WHO Preferred Product Characteristics (PPC) for Malaria Vaccines DEPARTMENT OF IMMUNIZATION, VACCINES AND BIOLOGICALS Family, Women’s and Children’s Health (FWC) WHO/IVB/14.09 WHO Preferred Product Characteristics (PPC) for Malaria Vaccines DEPARTMENT OF IMMUNIZATION, VACCINES AND BIOLOGICALS Family, Women’s and Children’s Health (FWC) The Department of Immunization, Vaccines and Biologicals thanks the donors whose unspecified financial support has made the production of this document possible. This document was produced by the Initiative for Vaccine Research (IVR) of the Department of Immunization, Vaccines and Biologicals Ordering code: WHO/IVB/14.09 Published: November 2014 This publication is available on the Internet at: www.who.int/vaccines-documents/ Copies of this document as well as additional materials on immunization, vaccines and biologicals may be requested from: World Health Organization Department of Immunization, Vaccines and Biologicals CH-1211 Geneva 27, Switzerland • Fax: + 41 22 791 4227 • Email: [email protected] • © World Health Organization 2014 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 3264; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. -
Expres2ion Biotech Holding Sponsored Research Initiating Coverage 24 June 2021
ExpreS2ion Biotech Holding Sponsored Research Initiating Coverage 24 June 2021 Rising to the COVID-19 challenge ExpreS2ion Biotech is a contract research organization, which has been founded over 10 years ago. The company specializes in the production of complex proteins using its proprietary protein Target price (SEK) 60 expression platform. More recently, the company has been focusing Share price (SEK) 36 on the development of its pipeline, which includes several vaccine and therapeutic candidates. Out of this group, we regard the Forecast changes ABNCoV2 project (COVID-19 vaccine), carrying the highest near- % 2021e 2022e 2023e term potential. Its partner, Bavarian Nordic, plans to start Phase III Revenues NM NM NM trial later this year, pending funding. We expect an upward EBITDA NM NM NM EBIT adj NM NM NM potential rerating of SEK 50 per share, should the vaccine EPS reported NM NM NM successfully go through clinical development and receive regulatory EPS adj NM NM NM approval. We initiate coverage of ExpreS2ion Biotech with a Buy Source: Pareto rating, target price SEK 60 per share. Ticker EXPRS2.ST, EXPRS2 SS Sector Healthcare COVID-19 vaccine project carries the highest near-term potential Shares fully diluted (m) 27.6 Market cap (SEKm) 988 Despite the rapid success of a number of COVID-19 vaccines, there is Net debt (SEKm) -114 a need for improved vaccines that offer strong immunogenicity as Minority interests (SEKm) 0 well as ease of clinical administration, stability and adaptiveness of Enterprise value 21e (SEKm) 938 platform. Given impressive pre-clinical results, as well as solid interim Free float (%) 83 Phase I safety data, we believe ABNCoV2 has a significant opportunity to succeed through the rest of clinical development. -
The Light Chain of the L9 Antibody Is Critical for Binding Circumsporozoite
bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455919; this version posted August 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. The light chain of the L9 antibody is critical for binding circumsporozoite protein minor repeats and preventing malaria Lawrence T. Wang1,5, Nicholas K. Hurlburt2,5, Arne Schön3, Barbara J. Flynn1, Lais S. Pereira1, Marlon Dillon1, Yevel Flores-Garcia4, Brian Bonilla1, Fidel Zavala4, Azza H. Idris1, Joseph R. Francica1, Marie Pancera2,5,*, Robert A. Seder1,5,6,* 1Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, 20892, USA. 2Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA. 3Department of Biology, Johns Hopkins University, Baltimore, MD, 21218, USA. 4Department of Molecular Microbiology and Immunology, Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, 21205, USA. 5These authors contributed equally 6Lead Contact *Correspondence: [email protected] (M.P.), [email protected] (R.A.S.) bioRxiv preprint doi: https://doi.org/10.1101/2021.08.11.455919; this version posted August 11, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT L9 is a potent human monoclonal antibody (mAb) that preferentially binds two adjacent NVDP minor repeats and cross-reacts with NANP major repeats of the Plasmodium falciparum circumsporozoite protein (PfCSP) on malaria-infective sporozoites. -
Expression and Evaluation of a 297-Amino Acid Fragment of the Blood Stage Protein Pfc0760c from Plasmodium Falciparum
Expression and evaluation of a 297-amino acid fragment of the blood stage protein PfC0760c from Plasmodium falciparum by Zainab Baig BSc (Hons) Biochemistry Submitted in fulfilment of the academic requirements of Master of Science in Biochemistry School of Life Sciences College of Agriculture, Engineering and Science University of KwaZulu-Natal Pietermaritzburg South Africa April 2019 Preface The research contained in this dissertation was completed by the candidate while based in the Discipline of Biochemistry, School of Life Sciences of the College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Pietermaritzburg, South Africa. The research was financially supported by The National Research Foundation. The contents of this work have not been submitted in any form to another university and, except where the work of others is acknowledged in the text, the results reported are due to investigations by the candidate. ii Declaration: Plagiarism I, Zainab Baig, declare that: (i) the research reported in this dissertation, except where otherwise indicated or acknowledged, is my original work; (ii) this dissertation has not been submitted in full or in part for any degree or examination to any other university; (iii) this dissertation does not contain other persons’ data, pictures, graphs or other information, unless specifically acknowledged as being sourced from other persons; (iv) this dissertation does not contain other persons’ writing, unless specifically acknowledged as being sourced from other researchers. Where -
En Este Número
Boletín Científico No. 18 (1-10 julio/2021) EN ESTE NÚMERO VacCiencia es una publicación dirigida a Resumen de candidatos vacu- investigadores y especialistas dedicados a nales contra la COVID-19 ba- la vacunología y temas afines, con el ob- sadas en la plataforma de sub- jetivo de serle útil. Usted puede realizar unidad proteica en desarrollo a sugerencias sobre los contenidos y de es- nivel mundial. (segunda parte) ta forma crear una retroalimentación Artículos científicos más que nos permita acercarnos más a sus recientes de Medline sobre necesidades de información. vacunas. Patentes más recientes en Patentscope sobre vacunas. Patentes más recientes en USPTO sobre vacunas. 1| Copyright © 2020. Todos los derechos reservados | INSTITUTO FINLAY DE VACUNAS Resumen de vacunas contra la COVID-19 basadas en la plataforma de subunidad proteica en desarrollo a nivel mundial (segunda parte) Las vacunas de subunidades antigénicas son aquellas en las que solamente se utilizan los fragmentos específicos (llamados «subunidades antigénicas») del virus o la bacteria que es indispensable que el sistema inmunitario reconozca. Las subunidades antigénicas suelen ser proteínas o hidratos de carbono. La mayoría de las vacunas que figuran en los calendarios de vacunación infantil son de este tipo y protegen a las personas de enfermedades como la tos ferina, el tétanos, la difteria y la meningitis meningocócica. Este tipo de vacunas solo incluye las partes del microorganismo que mejor estimulan al sistema inmunitario. En el caso de las desarrolladas contra la COVID-19 contienen generalmente, la proteína S o fragmentos de la misma como el Dominio de Unión al Receptor (RBD, por sus siglas en inglés). -
September 3, 2021, NIH Record, Vol. LXXIII, No. 18
September 3, 2021 Vol . LXXIII, No . 18 about 150 students in NIH administrative offices. With in-person work prohibited, program organizers had to scramble to INTERNING DURING A PANDEMIC bring students online. Dr. Sharon Milgram, director of the NIH Two Summer Programs Adapt Office of Intramural Training & Education to Virtual Workplaces (OITE), which organizes SIP, recalled the BY AMBER SNYDER difficult decisions NIH faced in those early months. “We had to cancel [SIP] entirely Every summer, student interns descend on in 2020 due to the nature of the program,” the NIH campuses to get some first-hand she said, “which in normal years pairs each experience conducting biomedical research intern with a scientific mentor in a research or learn about the administration that lab.” More than 800 students had already supports that research. The summers of been offered positions by March, which 2020 and 2021 were very different. made cancellation of the program particu- When the majority of NIH switched to larly disappointing. Instead, OITE created a remote work in March 2020, the summer Virtual Summer Enrichment Program and programs had only a few short months made it available to all interested high school to adapt. The NIH Summer Internship and college students. Program (SIP) typically hosts 1,200 to The enrichment program returned 1,300 STEM students in its research for 2021. It is divided into two separate Pathways intern Shelandria Williams groups, and the Pathways program places SEE INTERNS, PAGE 4 Pulmonologist Develops Test ‘NO ALGORITHM FOR EMPATHY’ To Predict Covid-19 Severity Topol Charts AI Path to More BY DANA TALESNIK Accuracy in Medicine Of the various BY CARLA GARNETT hurdles Dr. -
Protection Against Plasmodium Falciparum Malaria by Pfspz Vaccine
Protection against Plasmodium falciparum malaria by PfSPZ Vaccine Judith E. Epstein, … , B. Kim Lee Sim, Stephen L. Hoffman JCI Insight. 2017;2(1):e89154. https://doi.org/10.1172/jci.insight.89154. Clinical Medicine Clinical trials Vaccines BACKGROUND: A radiation-attenuated Plasmodium falciparum (Pf) sporozoite (SPZ) malaria vaccine, PfSPZ Vaccine, protected 6 of 6 subjects (100%) against homologous Pf (same strain as in the vaccine) controlled human malaria infection (CHMI) 3 weeks after 5 doses administered intravenously. The next step was to assess protective efficacy against heterologous Pf (different from Pf in the vaccine), after fewer doses, and at 24 weeks. METHODS: The trial assessed tolerability, safety, immunogenicity, and protective efficacy of direct venous inoculation (DVI) of 3 or 5 doses of PfSPZ Vaccine in non-immune subjects. RESULTS: Three weeks after final immunization, 5 doses of 2.7 × 105 PfSPZ protected 12 of 13 recipients (92.3% [95% CI: 48.0, 99.8]) against homologous CHMI and 4 of 5 (80.0% [10.4, 99.5]) against heterologous CHMI; 3 doses of 4.5 × 105 PfSPZ protected 13 of 15 (86.7% [35.9, 98.3]) against homologous CHMI. Twenty-four weeks after final immunization, the 5-dose regimen protected 7 of 10 (70.0% [17.3, 93.3]) against homologous and 1 of 10 (10.0% [–35.8, 45.6]) against heterologous CHMI; the 3-dose regimen protected 8 of 14 (57.1% [21.5, 76.6]) against homologous CHMI. All 22 controls developed Pf parasitemia. PfSPZ Vaccine […] Find the latest version: https://jci.me/89154/pdf CLINICAL MEDICINE Protection against Plasmodium falciparum malaria by PfSPZ Vaccine Judith E.