HCI OSS Licenses V1.6.4.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

HCI OSS Licenses V1.6.4.Pdf HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Contact Information : Hitachi Content Intelligence Product Manager Lumada Data Catalog v 1 . 6 . 4 Hitachi Vantara LLC 2535 Augustine Dr. Santa Clara CA 95054 Component Version License Modified "Java Concurrency in Practice" book 1 Creative Commons Attribution 2.5 annotations #NAME? 0.1.38-webpack MIT License #NAME? 2.3.0 Apache License 2.0 #NAME? 3.3.0 MIT License abbrev 1.0.9 ISC License BSD 3-clause "New" or "Revised" ace-builds 1.2.8 License BSD 3-clause "New" or "Revised" ace-builds 1.3.3 License Acorn 1.2.2 MIT License Acorn 2.7.0 MIT License Acorn 4.0.13 MIT License Aether :: API 1.0.2.v20150114 Eclipse Public License 1.0 Aether :: SPI 1.0.2.v20150114 Eclipse Public License 1.0 Aether :: Utilities 1.0.2.v20150114 Eclipse Public License 1.0 Aether Connector Basic 1.0.2.v20150114 Eclipse Public License 1.0 Aether Implementation 1.0.2.v20150114 Eclipse Public License 1.0 Aether Transport Wagon 1.0.2.v20150114 Eclipse Public License 1.0 agentkeepalive 2.2.0 MIT License aggs-matrix-stats 5.3.1 Apache License 2.0 airbnb/chronos 2.3.3 Apache License 2.0 aircompressor 0.8 Apache License 2.0 Airline - io.airlift:airline 0.6 Apache License 2.0 akka-actor 2.3.16 Apache License 2.0 akka-persistence_2.11 2.5.5 Apache License 2.0 alibaba/x-deeplearning 20181224-snapshot-ffc8b733 Apache License 2.0 An open source Java toolkit for 0.9.0 Apache License 2.0 Amazon S3 An open source Java toolkit for 0.9.4 Apache License 2.0 Amazon S3 HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Component Version License Modified analytics-zoo 0.6.0 Apache License 2.0 Android - platform - frameworks - base 8.1.0+r23 Apache License 2.0 android-json-org-java 5.0.2 Apache License 2.0 Angular 1.6.6 MIT License Angular v1.7.2 MIT License Angular Material 1.1.10 MIT License Angular UI Bootstrap 0.12.1 MIT License Angular-Breadcrumb 0.5.0 MIT License angular-cookies 1.6.1 MIT License angular-file-saver 1.1.1 MIT License angular-file-upload 7.0.16 MIT License angular-gridster2 1.21.0 MIT License angular-material-data-table 0.10.10 MIT License angular-pageslide-directive 2.1.5 MIT License angular-perfect-scrollbar 0.2.0 MIT License angular-sortable-view 0.0.14 MIT License angular-sortable-view 0.0.15 MIT License AngularJS ui-mask 1.8.7 MIT License Annotations for Metrics 3.0.0-RC1 Apache License 2.0 Anserini 0.5.1 Apache License 2.0 ansi-regex 2.0.0 MIT License ansi-regex 2.1.1 MIT License ansicolors 0.3.2 MIT License ant-nodeps 1.8.1 Apache License 2.0 antler:commons-io 2.2.0 Eclipse Public License 1.0 ANTLR 2.7.7 ANTLR Software Rights Notice BSD 3-clause "New" or "Revised" ANTLR 3.4 License BSD 3-clause "New" or "Revised" ANTLR 3.5.2 License BSD 3-clause "New" or "Revised" ANTLR 4.5.1-1 License BSD 3-clause "New" or "Revised" ANTLR 4.7 License HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Component Version License Modified AOP Alliance (Java/J2EE AOP 1 Public Domain standard) Aopalliance Version 1.0 Repackaged Common Development and 2.4.0-b34 As A Module Distribution License 1.1 Aopalliance Version 1.0 Repackaged Common Development and 2.5.0-b32 As A Module Distribution License 1.1 Apache ActiveMQ 5.8.0 Apache License 2.0 Apache ActiveMQ 5.9.0 Apache License 2.0 Apache Ant 1.8.2 Apache License 2.0 Apache Avro 1.7.4 Apache License 2.0 Apache Avro 1.7.7 Apache License 2.0 Apache Avro IPC 1.7.7 Apache License 2.0 Apache Avro Mapred API 1.7.7 Apache License 2.0 Apache Calcite Avatica 1.9.0 Apache License 2.0 Apache Commons BeanUtils 1.7.0 Apache License 2.0 Apache Commons BeanUtils 1.8.0 Apache License 2.0 Apache Commons BeanUtils 1.8.3 Apache License 2.0 Apache Commons CLI 1.1 Apache License 2.0 Apache Commons CLI 1.2 Apache License 2.0 Apache Commons CLI 1.3.1 Apache License 2.0 Apache Commons CLI 1.4 Apache License 2.0 Apache Commons Codec 1.1 Apache License 2.0 Apache Commons Codec 1.2 Apache License 1.1 Apache Commons Codec 1.4 Apache License 2.0 Apache Commons Codec 1.6 Apache License 2.0 Apache Commons Collections 3.2.1 Apache License 2.0 Apache Commons Collections 3.2.2 Apache License 2.0 Apache Commons Collections 4.1 Apache License 2.0 Apache Commons Compress 1.14 Apache License 2.0 Apache Commons Compress 1.16 Apache License 2.0 Apache Commons Compress 1.16.1 Apache License 2.0 Apache Commons Compress 1.18 Apache License 2.0 Apache Commons Compress 1.4.1 Apache License 2.0 Apache Commons Configuration 1.1 Apache License 2.0 HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Component Version License Modified Apache Commons Configuration 1.6 Apache License 2.0 Apache Commons Crypto 1.0.0 Apache License 2.0 Apache Commons CSV 1.5 Apache License 2.0 Apache Commons Daemon 1.0.13 Apache License 2.0 Apache Commons Daemon 1.0.15 Apache License 2.0 Apache Commons DBCP 1.4 Apache License 2.0 Apache Commons Digester 1.8 Apache License 1.1 Apache Commons Digester 2.1 Apache License 1.1 Apache Commons Email 1.3.1 Apache License 2.0 Apache Commons Exec 1.3 Apache License 2.0 Apache Commons FileUpload 1.3.2 Apache License 2.0 Apache Commons Lang 2.6 Apache License 2.0 Apache Commons Lang 3.1 Apache License 2.0 Apache Commons Lang 3.2.1 Apache License 2.0 Apache Commons Lang 3.3.2 Apache License 2.0 Apache Commons Lang 3.4 Apache License 2.0 Apache Commons Lang 3.5 Apache License 2.0 Apache Commons Logging 1.1.3 Apache License 2.0 Apache Commons Logging 1.2 Apache License 2.0 Apache Commons Math 3.1.1 Apache License 2.0 Apache Commons Math 3.2 Apache License 2.0 Apache Commons Math 3.4.1 Apache License 2.0 Apache Commons Net 2.2 Apache License 2.0 Apache Commons Net 3.1 Apache License 2.0 Apache Commons Pool 1.5.4 Apache License 2.0 Apache Derby 10.12.1.1 Apache License 2.0 Apache Derby 10.9.1.0 Apache License 2.0 Apache Derby Tools 10.9.1.0 Apache License 2.0 Apache Directory API ASN.1 API 1.0.0-M20 Apache License 2.0 Apache Directory LDAP API Client All 1.0.0-M32 Apache License 2.0 Apache Directory LDAP API I18n 1.0.0-M20 Apache License 2.0 Apache Directory LDAP API Utilities 1.0.0-M20 Apache License 2.0 HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Component Version License Modified Apache Directory Studio 2.0.0-M15 Apache License 2.0 Apache Extras Companion for log4j 1.2.17 Apache License 2.0 1.2. Apache Flink 0.7.0 Apache License 2.0 Apache FontBox 2.0.12 Apache License 2.0 Apache FontBox 2.0.6 Apache License 2.0 Apache Groovy 2.4.6 Apache License 2.0 Apache Hadoop 2.0.4-alpha Apache License 2.0 Apache Hadoop rel-release-2.8.1 Apache License 2.0 Apache Hadoop Amazon Web 2.7.7 Apache License 2.0 Services support Apache Hadoop Annotations 2.7.3 Apache License 2.0 Apache Hadoop Annotations 2.7.4 Apache License 2.0 Apache Hadoop Annotations 2.7.7 Apache License 2.0 Apache Hadoop Annotations 2.9.2 Apache License 2.0 Apache Hadoop Ant Tasks 2.7.6 Apache License 2.0 Apache Hadoop Archives 2.7.7 Apache License 2.0 Apache Hadoop Assemblies 2.7.7 Apache License 2.0 Apache Hadoop Auth 2.7.3 Apache License 2.0 Apache Hadoop Auth 2.7.4 Apache License 2.0 Apache Hadoop Auth 2.7.6 Apache License 2.0 Apache Hadoop Auth 2.8.0 Apache License 2.0 Apache Hadoop Azure support 2.7.7 Apache License 2.0 Apache Hadoop Client 2.7.3 Apache License 2.0 Apache Hadoop Data Join 2.7.7 Apache License 2.0 Apache Hadoop Distributed Copy 2.7.3 Apache License 2.0 Apache Hadoop Distributed Copy 2.7.7 Apache License 2.0 Apache Hadoop Distribution 2.7.3.2.6.2.31-1 Apache License 2.0 Apache Hadoop Extras 2.7.7 Apache License 2.0 Apache Hadoop Gridmix 2.7.7 Apache License 2.0 Apache Hadoop HDFS Client 2.8.0 Apache License 2.0 Apache Hadoop HDFS-NFS 2.7.7 Apache License 2.0 Apache Hadoop HttpFS 2.7.3 Apache License 2.0 HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Component Version License Modified Apache Hadoop HttpFS 2.7.3JYHTEST Apache License 2.0 Apache Hadoop KMS 2.7.3 Apache License 2.0 Apache Hadoop KMS 2.7.7 Apache License 2.0 Apache Hadoop MapReduce 2.7.7 Apache License 2.0 Examples Apache Hadoop Maven Plugins 2.7.6 Apache License 2.0 Apache Hadoop Mini-Cluster 2.7.6 Apache License 2.0 Apache Hadoop MiniKDC 2.7.7 Apache License 2.0 Apache Hadoop NFS 2.7.7 Apache License 2.0 Apache Hadoop OpenStack support 2.7.7 Apache License 2.0 Apache Hadoop Rumen 2.7.6 Apache License 2.0 Apache Hadoop Rumen 2.8.0 Apache License 2.0 Apache Hadoop Scheduler Load 2.7.3 Apache License 2.0 Simulator Apache Hadoop Tools Dist 2.7.3.2.6.2.19-1 Apache License 2.0 Apache Hive 1.2.1.spark2 Apache License 2.0 Apache HttpClient 3.1 Apache License 2.0 Apache HttpClient 4.2.5 Apache License 2.0 Apache HttpClient 4.4.1 Apache License 2.0 Apache HttpClient 4.5.2 Apache License 2.0 Apache HttpClient 4.5.4 Apache License 2.0 Apache HttpClient 4.5.5 Apache License 2.0 Apache HttpComponents AsyncClient 4.1.2 Apache License 2.0 Apache HttpComponents AsyncClient 4.1.3 Apache License 2.0 Apache HttpComponents Core 4.2.5 Apache License 2.0 Apache HttpComponents Core 4.4.1 Apache License 2.0 Apache HttpComponents Core 4.4.4 Apache License 2.0 Apache HttpComponents Core 4.4.5 Apache License 2.0 Apache HttpComponents Core 4.4.8 Apache License 2.0 Apache HttpComponents Core 4.4.9 Apache License 2.0 Apache HttpMime 4.4.1 Apache License 2.0 Apache HttpMime 4.5.2 Apache License 2.0 Apache HttpMime 4.5.5 Apache License 2.0 HITACHI Inspire the Next 2535 Augustine Drive Santa Clara, CA 95054 USA Component Version License Modified Apache Ivy 2.4.0 Apache License 2.0 Apache Jackrabbit 1.20.0 Apache License 2.0 Apache JAMES Mime4j (DOM) 0.7.2 Apache
Recommended publications
  • Commonjavajars - a Package with Useful Libraries for Java Guis
    CommonJavaJars - A package with useful libraries for Java GUIs To reduce the package size of other R packages with Java GUIs and to reduce jar file conflicts, this package provides a few commonly used Java libraries. You should be able to load them by calling the rJava .jpackage function (a good place is most likely the .onLoad function of your package): .jpackage("CommonJavaJars", jars=c("forms-1.2.0.jar", "iText-2.1.4.jar")) We provide the following Java libraries: Apache Commons Logging under the Apache License, Version 2.0, January 2004, http://commons. apache.org/logging/, Copyright 2001-2007 The Apache Software Foundation Apache jog4j under Apache License 2.0, http://logging.apache.org/log4j/, Copyright 2007 The Apache Software Foundation Apache Commons Lang under Apache License 2.0, http://commons.apache.org/lang/, Copyright 2001-2011 The Apache Software Foundation Apache POI under Apache License 2.0, http://poi.apache.org/, Copyright 2001-2007 The Apache Software Foundation Apache Commons Collections under the Apache License, Version 2.0, January 2004, http://commons. apache.org/collections/, Copyright 2001-2008 The Apache Software Foundation Apache Commons Validator under the Apache License, Version 2.0, January 2004, http://commons. apache.org/validator/, Copyright 2001-2010 The Apache Software Foundation JLaTeXMath under GPL >= 2.0, http://forge.scilab.org/index.php/p/jlatexmath/, Copyright 2004-2007, 2009 Calixte, Coolsaet, Cleemput, Vermeulen and Universiteit Gent iText 2.1.4 under LGPL, http://itextpdf.com/, Copyright
    [Show full text]
  • Apache Directory Studio Ldap Browser Documentation
    Apache Directory Studio Ldap Browser Documentation Branching and semiliterate Bernard vitaminizes while solid Clarance parachuted her opaque eminently and relucts matrimonially. Kitty-cornered Sidnee hepatizes her granter so cattily that Arnoldo smites very notarially. Breathtaking Romain never umpire so subterraneously or disentails any irremediableness glissando. Path back and ldap browser tool will describe how they Error messages are often times cryptic. Expand it possible connection profiles, apache documentation is. This wonderful LDAP client can be used to search, read create edit any standard LDAP directory. Delete attributes from directory studio, and documents and is helpful, llc contents select only. Bookmarks could be used to cancel access frequently used entries. Liferay user directory studio is apache. This will chart an additional index file but will greatly enhance the speed of better search. As this certificate is used to decrypt data, you should carefully control access. Compruebe si la dirección es correcta o regrese. JPEG photo from file. Ldap browser has a studio can assign it only let you like apache directory studio ldap browser documentation. If you welcome page in an unindexed search and documents and uninstall software into which is. Any other hints there? Every partition are data to organize our website, apache directory studio ldap browser documentation table entry with referrals can create a real action up knime server where an admin email clients. The directory browsers can be contextual masonry inspired by clients to restart, as a new value deleting entries of any reason, enable ldap browser tool! It only takes a minute you sign up. To twilight the selected value has another value editor choose one medium the listed editors.
    [Show full text]
  • Java Linksammlung
    JAVA LINKSAMMLUNG LerneProgrammieren.de - 2020 Java einfach lernen (klicke hier) JAVA LINKSAMMLUNG INHALTSVERZEICHNIS Build ........................................................................................................................................................... 4 Caching ....................................................................................................................................................... 4 CLI ............................................................................................................................................................... 4 Cluster-Verwaltung .................................................................................................................................... 5 Code-Analyse ............................................................................................................................................. 5 Code-Generators ........................................................................................................................................ 5 Compiler ..................................................................................................................................................... 6 Konfiguration ............................................................................................................................................. 6 CSV ............................................................................................................................................................. 6 Daten-Strukturen
    [Show full text]
  • Apache Flink™: Stream and Batch Processing in a Single Engine
    Apache Flink™: Stream and Batch Processing in a Single Engine Paris Carboney Stephan Ewenz Seif Haridiy Asterios Katsifodimos* Volker Markl* Kostas Tzoumasz yKTH & SICS Sweden zdata Artisans *TU Berlin & DFKI parisc,[email protected][email protected][email protected] Abstract Apache Flink1 is an open-source system for processing streaming and batch data. Flink is built on the philosophy that many classes of data processing applications, including real-time analytics, continu- ous data pipelines, historic data processing (batch), and iterative algorithms (machine learning, graph analysis) can be expressed and executed as pipelined fault-tolerant dataflows. In this paper, we present Flink’s architecture and expand on how a (seemingly diverse) set of use cases can be unified under a single execution model. 1 Introduction Data-stream processing (e.g., as exemplified by complex event processing systems) and static (batch) data pro- cessing (e.g., as exemplified by MPP databases and Hadoop) were traditionally considered as two very different types of applications. They were programmed using different programming models and APIs, and were exe- cuted by different systems (e.g., dedicated streaming systems such as Apache Storm, IBM Infosphere Streams, Microsoft StreamInsight, or Streambase versus relational databases or execution engines for Hadoop, including Apache Spark and Apache Drill). Traditionally, batch data analysis made up for the lion’s share of the use cases, data sizes, and market, while streaming data analysis mostly served specialized applications. It is becoming more and more apparent, however, that a huge number of today’s large-scale data processing use cases handle data that is, in reality, produced continuously over time.
    [Show full text]
  • Declarative Languages for Big Streaming Data a Database Perspective
    Tutorial Declarative Languages for Big Streaming Data A database Perspective Riccardo Tommasini Sherif Sakr University of Tartu Unversity of Tartu [email protected] [email protected] Emanuele Della Valle Hojjat Jafarpour Politecnico di Milano Confluent Inc. [email protected] [email protected] ABSTRACT sources and are pushed asynchronously to servers which are The Big Data movement proposes data streaming systems to responsible for processing them [13]. tame velocity and to enable reactive decision making. However, To facilitate the adoption, initially, most of the big stream approaching such systems is still too complex due to the paradigm processing systems provided their users with a set of API for shift they require, i.e., moving from scalable batch processing to implementing their applications. However, recently, the need for continuous data analysis and pattern detection. declarative stream processing languages has emerged to simplify Recently, declarative Languages are playing a crucial role in common coding tasks; making code more readable and main- fostering the adoption of Stream Processing solutions. In partic- tainable, and fostering the development of more complex appli- ular, several key players introduce SQL extensions for stream cations. Thus, Big Data frameworks (e.g., Flink [9], Spark [3], 1 processing. These new languages are currently playing a cen- Kafka Streams , and Storm [19]) are starting to develop their 2 3 4 tral role in fostering the stream processing paradigm shift. In own SQL-like approaches (e.g., Flink SQL , Beam SQL , KSQL ) this tutorial, we give an overview of the various languages for to declaratively tame data velocity. declarative querying interfaces big streaming data.
    [Show full text]
  • Getting Started with Derby Version 10.14
    Getting Started with Derby Version 10.14 Derby Document build: April 6, 2018, 6:13:12 PM (PDT) Version 10.14 Getting Started with Derby Contents Copyright................................................................................................................................3 License................................................................................................................................... 4 Introduction to Derby........................................................................................................... 8 Deployment options...................................................................................................8 System requirements.................................................................................................8 Product documentation for Derby........................................................................... 9 Installing and configuring Derby.......................................................................................10 Installing Derby........................................................................................................ 10 Setting up your environment..................................................................................10 Choosing a method to run the Derby tools and startup utilities...........................11 Setting the environment variables.......................................................................12 Syntax for the derbyrun.jar file............................................................................13
    [Show full text]
  • Pharmacy Product System – National (Pps-N) Installation Guide
    PHARMACY PRODUCT SYSTEM – NATIONAL (PPS-N) INSTALLATION GUIDE December 2016 Version 1.2 Department of Veterans Affairs Office of Information and Technology (OIT) PPS-N Installation Guide v1.2 i December 2016 Revision History Date Version Revised Description Author Pages November 1.2 All Updated content with installation REDACTED. HPE 2016 instructions for Fixed Medication Copay FMCT Team. Tiers (FMCT) Release 1.2. May 2015 1.1.02 Updated date and version number to 1.1.02. Enterprise Updated the PPS-N EAR file name. Application Maintenance August 1.1.01 Updated version number to 1.1.01, updated Enterprise 2014 the PPS-N EAR file name and the PPSNS Application MUMPS KIDS file name. Maintenance Added instructions to Undeploy the application. And made some formatting changes. November 1.0.01 Updated version number to 1.0.01, updated Enterprise 2013 the PPS-N EAR file name and the PPSNS Application MUMPS KIDS file name. Maintenance January 1.0 Updated document to modify formatting SwRI 2013 based on NRR Review. December 1.0 No applicable updates for this document SwRI 2012 November 1.0 Updated section 10.5.1 to include a SwRI 2012 reference to other applications updating the image folder October 1.0 Version 1.0 updates SwRI 2012 September 1.0 Version 1.0 SwRI 2012 PPS-N Installation Guide v1.2 ii December 2016 TABLE OF CONTENTS 1 PROJECT SCOPE ....................................................................................................................... 1 1.1 Project Identification .....................................................................................................................
    [Show full text]
  • The Pentaho Big Data Guide This Document Supports Pentaho Business Analytics Suite 4.8 GA and Pentaho Data Integration 4.4 GA, Documentation Revision October 31, 2012
    The Pentaho Big Data Guide This document supports Pentaho Business Analytics Suite 4.8 GA and Pentaho Data Integration 4.4 GA, documentation revision October 31, 2012. This document is copyright © 2012 Pentaho Corporation. No part may be reprinted without written permission from Pentaho Corporation. All trademarks are the property of their respective owners. Help and Support Resources If you have questions that are not covered in this guide, or if you would like to report errors in the documentation, please contact your Pentaho technical support representative. Support-related questions should be submitted through the Pentaho Customer Support Portal at http://support.pentaho.com. For information about how to purchase support or enable an additional named support contact, please contact your sales representative, or send an email to [email protected]. For information about instructor-led training on the topics covered in this guide, visit http://www.pentaho.com/training. Limits of Liability and Disclaimer of Warranty The author(s) of this document have used their best efforts in preparing the content and the programs contained in it. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, express or implied, with regard to these programs or the documentation contained in this book. The author(s) and Pentaho shall not be liable in the event of incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of the programs, associated instructions, and/or claims. Trademarks Pentaho (TM) and the Pentaho logo are registered trademarks of Pentaho Corporation.
    [Show full text]
  • Operational Database Offload
    Operational Database Offload Partner Brief Facing increased data growth and cost pressures, scale‐out technology has become very popular as more businesses become frustrated with their costly “Our partnership with Hortonworks is able to scale‐up RDBMSs. With Hadoop emerging as the de facto scale‐out file system, a deliver to our clients 5‐10x faster performance Hadoop RDBMS is a natural choice to replace traditional relational databases and over 75% reduction in TCO over traditional scale‐up databases. With Splice like Oracle and IBM DB2, which struggle with cost or scaling issues. Machine’s SQL‐based transactional processing Designed to meet the needs of real‐time, data‐driven businesses, Splice engine, our clients are able to migrate their legacy database applications without Machine is the only Hadoop RDBMS. Splice Machine offers an ANSI‐SQL application rewrites” database with support for ACID transactions on the distributed computing Monte Zweben infrastructure of Hadoop. Like Oracle and MySQL, it is an operational database Chief Executive Office that can handle operational (OLTP) or analytical (OLAP) workloads, while scaling Splice Machine out cost‐effectively from terabytes to petabytes on inexpensive commodity servers. Splice Machine, a technology partner with Hortonworks, chose HBase and Hadoop as its scale‐out architecture because of their proven auto‐sharding, replication, and failover technology. This partnership now allows businesses the best of all worlds: a standard SQL database, the proven scale‐out of Hadoop, and the ability to leverage current staff, operations, and applications without specialized hardware or significant application modifications. What Business Challenges are Solved? Leverage Existing SQL Tools Cost Effective Scaling Real‐Time Updates Leveraging the proven SQL processing of Splice Machine leverages the proven Splice Machine provides full ACID Apache Derby, Splice Machine is a true ANSI auto‐sharding of HBase to scale with transactions across rows and tables by using SQL database on Hadoop.
    [Show full text]
  • Apache Apex: Next Gen Big Data Analytics
    Apache Apex: Next Gen Big Data Analytics Thomas Weise <[email protected]> @thweise PMC Chair Apache Apex, Architect DataTorrent Apache Big Data Europe, Sevilla, Nov 14th 2016 Stream Data Processing Data Delivery Transform / Analytics Real-time visualization, … Declarative SQL API Data Beam Beam SAMOA Operator SAMOA DAG API Sources Library Events Logs Oper1 Oper2 Oper3 Sensor Data Social Databases CDC (roadmap) 2 Industries & Use Cases Financial Services Ad-Tech Telecom Manufacturing Energy IoT Real-time Call detail record customer facing (CDR) & Supply chain Fraud and risk Smart meter Data ingestion dashboards on extended data planning & monitoring analytics and processing key performance record (XDR) optimization indicators analysis Understanding Reduce outages Credit risk Click fraud customer Preventive & improve Predictive assessment detection behavior AND maintenance resource analytics context utilization Packaging and Improve turn around Asset & Billing selling Product quality & time of trade workforce Data governance optimization anonymous defect tracking settlement processes management customer data HORIZONTAL • Large scale ingest and distribution • Enforcing data quality and data governance requirements • Real-time ELTA (Extract Load Transform Analyze) • Real-time data enrichment with reference data • Dimensional computation & aggregation • Real-time machine learning model scoring 3 Apache Apex • In-memory, distributed stream processing • Application logic broken into components (operators) that execute distributed in a cluster •
    [Show full text]
  • Reference Guide
    Apache Syncope - Reference Guide Version 2.1.9 Table of Contents 1. Introduction. 2 1.1. Identity Technologies. 2 1.1.1. Identity Stores . 2 1.1.2. Provisioning Engines . 4 1.1.3. Access Managers . 5 1.1.4. The Complete Picture . 5 2. Architecture. 7 2.1. Core . 7 2.1.1. REST . 7 2.1.2. Logic . 8 2.1.3. Provisioning . 8 2.1.4. Workflow. 9 2.1.5. Persistence . 9 2.1.6. Security . 9 2.2. Admin UI. 10 2.2.1. Accessibility . 10 2.3. End-user UI. 12 2.3.1. Password Reset . 12 2.3.2. Accessibility . 13 2.4. CLI . 15 2.5. Third Party Applications. 15 2.5.1. Eclipse IDE Plugin . 15 2.5.2. Netbeans IDE Plugin. 15 3. Concepts . 16 3.1. Users, Groups and Any Objects . 16 3.2. Type Management . 17 3.2.1. Schema . 17 Plain . 17 Derived . 18 Virtual . 18 3.2.2. AnyTypeClass . 19 3.2.3. AnyType . 19 3.2.4. RelationshipType . 21 3.2.5. Type Extensions . 22 3.3. External Resources. 23 3.3.1. Connector Bundles . 24 3.3.2. Connector Instance details . 24 3.3.3. External Resource details . 25 3.3.4. Mapping . 26 3.3.5. Linked Accounts . 29 3.4. Realms . 29 3.4.1. Realm Provisioning . 30 3.4.2. LogicActions . 31 3.5. Entitlements. 31 3.6. Privileges . 31 3.7. Roles. 31 3.7.1. Delegated Administration . 32 3.8. Provisioning. 33 3.8.1. Overview. 33 3.8.2.
    [Show full text]
  • Open Source Used in Cisco Unity Connection 11.5 SU 1
    Open Source Used In Cisco Unity Connection 11.5 SU 1 Cisco Systems, Inc. www.cisco.com Cisco has more than 200 offices worldwide. Addresses, phone numbers, and fax numbers are listed on the Cisco website at www.cisco.com/go/offices. Text Part Number: 78EE117C99-132949842 Open Source Used In Cisco Unity Connection 11.5 SU 1 1 This document contains licenses and notices for open source software used in this product. With respect to the free/open source software listed in this document, if you have any questions or wish to receive a copy of any source code to which you may be entitled under the applicable free/open source license(s) (such as the GNU Lesser/General Public License), please contact us at [email protected]. In your requests please include the following reference number 78EE117C99-132949842 Contents 1.1 ace 5.3.5 1.1.1 Available under license 1.2 Apache Commons Beanutils 1.6 1.2.1 Notifications 1.2.2 Available under license 1.3 Apache Derby 10.8.1.2 1.3.1 Available under license 1.4 Apache Mina 2.0.0-RC1 1.4.1 Available under license 1.5 Apache Standards Taglibs 1.1.2 1.5.1 Available under license 1.6 Apache STRUTS 1.2.4. 1.6.1 Available under license 1.7 Apache Struts 1.2.9 1.7.1 Available under license 1.8 Apache Xerces 2.6.2. 1.8.1 Notifications 1.8.2 Available under license 1.9 axis2 1.3 1.9.1 Available under license 1.10 axis2/cddl 1.3 1.10.1 Available under license 1.11 axis2/cpl 1.3 1.11.1 Available under license 1.12 BeanUtils(duplicate) 1.6.1 1.12.1 Notifications Open Source Used In Cisco Unity Connection
    [Show full text]