Clemson University TigerPrints All Dissertations Dissertations 12-2008 Hybrid Bond-Order Potential for Silicon Suleiman Oloriegbe Clemson University,
[email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Part of the Physical Chemistry Commons Recommended Citation Oloriegbe, Suleiman, "Hybrid Bond-Order Potential for Silicon" (2008). All Dissertations. 328. https://tigerprints.clemson.edu/all_dissertations/328 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact
[email protected]. HYBRID BOND-ORDER POTENTIAL FOR SILICON _____________________________________ A Dissertation Presented to the Graduate School of Clemson University ___________________________________ In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Chemistry _____________________________________ by Suleiman Yahaya Oloriegbe December 2008 _____________________________________ Accepted by: Dr. Steven J. Stuart, Committee Chair Dr. Brian Dominy Dr. Jason McNeill Dr. Robert Latour ABSTRACT A new hybrid bond-order potential for silicon is developed. The functional form of the potential is derived from hybrid of expressions from empirical bond-order formalism and first principles approximations. The total energy is expressed as the sum of attractive, repulsive and promotion energies. By introducing a screening function derived from approximations to first principles expressions, the potential is made long-ranged by allowing covalent interactions beyond the first nearest neighbor shell of atoms in agreement with quantum mechanical descriptions of the bonding in silicon. Environment- dependent promotion energy is introduced that accurately accounts for energetic interactions due to changes in hybridization state of atoms during chemical bonding.