PoS(MQW7)093 http://pos.sissa.it/ ce. 50 has provoked much imag- ident re-collimation in SS 433’s Here we comment on two of our ons: What was the of the ass and energy contributions from e SNR combined with a simple jet ive Commons Attribution-NonCommercial-ShareAlike Licen [email protected] [email protected] [email protected] 53 models: (i) featuring themodel. SNR evolution alone, and (ii) th a possible supernova explosion are required to produce W50? ination for decades. Thereprogenitor of are the still compact many object in unansweredjets? SS433? questi How recent What is causes SS433’s the current ev precession state? What m The compelling evidence for a connection between SS433 and W Copyright owned by the author(s) under the terms of the Creat c VII Workshop: and Beyond September 1-5 2008 Foca, Izmir, Turkey Fathallah Alouani Bibi St John's College Research Centre, University ofE-mail: Oxford. Katherine Blundell Department of , . E-mail: Paul Goodall Department of Astrophysics, University of Oxford. E-mail: Hydrodynamic Simulations of the SS 433-W50 Complex. PoS(MQW7)093 xis ˆ x , and 3 − −−→ GD GD θ 014pc on the . 3 0 − = x = 1cm chival data from the ∆ from the plane of the 0 n ◦ cal Thermonuclear Flashes: ˆ y tely 2 indicated by the dashed black nteraction between the jets and attributed to the gradient in the y to match that of the Dubner et ormed from Dubner et al, (1998). al resolution y, radio observations confirm that -like region, which is centred upon ndell & Bowler 2004, Lockman et e developed comprehensive models formed through mass ejection from a ly complex and turbulent environment. rom SS 433’s companion star or a wind s in density of 0.25 particles cm ty that these two objects share a mutual or jets alone to produce the morphology α rs for SS 433 and W50, and we implement ψ 2

ˆ δ .

ˆ 1 α 5 arcmins (Lockman et al. 2007). Additionally, the nebular a ∼ at SS 433.

3 GD

θ R=5.1kpc

~ GD Figure.1a Figure.1b Galactic Centre RA (J2000)

(a) The location of W50 within the , created using ar

204pc =204pc z= 1 Degree 96 Parsecs The location of W50 in the Galaxy Plate Scale SS 433 and the conch-shaped W50 nebula are located approxima Courtesy of the University of Chicago Center for Astrophysi The field-of-view of our simulation has been chosen carefull 19.40 19.33 19.26 19.19 19.12 19.05 18.98 18.91 18.84 18.77 18.70 1 -1.0 1.85 7.55 4.70

13.25 3.275 0.425 8.975 6.125 10.40

11.825 e (J2000) Dec Milky Way disc (Fig.1), and together they formW50 an spans intriguing over 200pc in lengthSS 433’s and coordinates features to a within circular bubble these hydrodynamically using FLASH of symmetry is coincident withthe SS distances 433’s to mean both jetal. objects axis. are 2007). Finall approximately Thus 5.5 itevolution. is kpc important It (Blu to is investigate feasible the thatsupernova possibili explosion, the or circular even through region a in strongfrom W50 stellar its wind has f disc. The East-Westthis lobes ejecta. of W50 Under may certain havedisplayed conditions, formed in it via W50. is i also The possible East-Westdensity f asymmetry of of the the ISM lobes towards the canof these Galactic be scenarios plane using (Fig.1). the latest We observational hav paramete GBT6 survey. (b) The orientation ofAn W50 example in of our model the ascontour Galactic transf lines, density with profile adjacent lines used corresponding in to change our model is Figure.1 - Microquasar Jet-SNR Interaction 1. INTRODUCTION http://flash.uchicago.edu/website/home/ normalised to 1 particle cm 2. METHOD al., (1998) image (see Fig.1), and we achieve a maximum spati PoS(MQW7)093 3 . / 40 40 1 0 0 20 20 50 50 -10 -20 -30 -40 -50 -10 -20 -30 -40 -50 30 30 10 10 c i 0 16.50 ej 26 (2.1) . M ⊙ π ρ 0 3 4 = 40 pc M 16.25 h = d 5 of the epi- Z = jet = v 16.00 ej = Sedov M Sedov x 15.75 R v R r f ergs 15.50 51 = 0 25 and . R 15.25 0 = 10 ialised for the jet injection- =  r 15.00 d f blast z adius Z 3 and W50, using the Galactic E et with a mass ejection rate of − 14.75 ulation domain until the Eastern jet d ng to: timates across this region are taken ergs, R R erature profile is adjusted to maintain d. This jet model does not include pre- 45 pc (the approximate size of W50’s 14.50 51 ium. long the x-axis, thus to this region, where n (SNR+jets) are shown in Fig. 3. − ∼ ej 10 d m 14.25 M R R = ] γ 0 − − E ρ 14.00  Entropy Index S(t) Entropy Index S(t) Sim-time: 30000 years. Sim-time: 10000 years. -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 = P 3 exp 13.75 I ) S ISM 13.50 ( log[ o ρ 13.25 )= z = 5.4 kpc is the scale length of the stellar disc, and , 13.00 d R ( R 12.75 ISM ), by adding an ejecta mass ρ 0 y 12.50 , 0 x = 4 kpc, 12.25 m R 12.00 Snapshots of the SN evolution with Evolution of the SNR in the Galactic density gradient: 11.75 . The jet temperature, density, energy and pressure are init 1 − 1. We allow the SNR to evolve until it reaches 11.50 yr ⊙ < r M 11.25 f We then introduce a pre-Sedov supernova explosion within a r This particular jet model consists of a simple cylindrical j Figure.2 - 4 Entropy Index S(t) Entropy Index S(t) Sim-time: 5000 years. Sim-time: 0 years. -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 − 0 0 11.00 50 40 30 20 10 50 40 30 20 10 -10 -20 -30 -40 -50 -10 -20 -30 -40 -50 shell) as shown in Fig. 2 below: and where the constant density profile adapted from Dehnen & Binney (1998), accordi Microquasar Jet-SNR Interaction AMR grid. We create the local background environment of SS 43 is the scale height abovefrom the the Galaxy observations of disc. Lockman et The al.,hydrostatic temperature (2007), equilibrium and es of the the temp unperturbed background med centre of the explosion ( zone cells, which are set to thecession maximum resolution or of orbital the motion, gri and the jets have a velocity only a 10 The evolution of the jets and SNRreaches are approximately monitored 120 pc. within the The sim results of this simulatio PoS(MQW7)093 40 40 40 0 0 0 20 20 20 50 50 50 -10 -20 -30 -40 -50 -10 -20 -30 -40 -50 -10 -20 -30 -40 -50 30 30 30 10 10 10 18.50 cular as 18.25 18.00 17.75 17.50 ergs 17.25 51 17.00 16.75 = 10 16.50 blast ion alone, we observe a small imulation involves a supernova E 16.25 e Dubner et al., (1998) image as 16.00 ffect, by which the focus of the SNR t-shock upon exiting the SNR shell. 15.75 f the SNR in the Galactic exponential t model (no precession) in conjunction bula from the SNR+jets simulation has ssion and of the accretion disc wind. 15.50 ] γ 15.25 ) as the SNR evolves. Although no precession − ρ 0 y 15.00 Entropy Index S(t) Entropy Index S(t)) Normalised Radio Flux Time: ? years. Sim-time: 38962 years. Sim-time: 40462 years. -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 , 0 = P 4 x 14.75 I S 14.50 log[ 14.25 described in the text. 14.00 erg supernova blast with non-precessing cylindrical jets, 13.75 51 ergs evolved to the characteristic size of W50’s central cir 13.50 51 13.25 13.00 12.75 12.50 12.25 Evolution of a 10 Evolution of the SNR in the Galactic density gradient: 12.00 11.75 11.50 We present the results from two of our simulations. The first s 11.25 Figure.3 - Entropy Index S(t) Entropy Index S(t) Entropy Index S(t) Sim-time: 41262 years. Sim-time: 39762 years. Sim-time: 38062 years. -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 -120 -100 -80 -60 -40 -20 0 20 40 60 80 100 0 0 0 11.00 50 40 30 20 10 50 40 30 20 10 50 40 30 20 10 -10 -20 -30 -40 -50 -10 -20 -30 -40 -50 -10 -20 -30 -40 -50 shell. The second simulation featureswith our the most primitive SNR je fromincrease the in previous ellipticity simulation. due todensity For profile. the the The hydrodynamic SNR SNR evolution bubble also evolut o experiencesshell a displaces buoyancy from e the origin of the explosion ( is included in the jet modeldimensions presented and here, a the morphology resultant comparable ne toshown that in of Fig.3, W50 and from shows th evidenceFurther of work will recollimation include of a the full je description of the jet prece Microquasar Jet-SNR Interaction 3. RESULTS 4. SUMMARY remnant with blast energy 10 PoS(MQW7)093 v Astrophysics e-prints, F., Arons, J., 1980, ApJ, 238, , L25 , 306 192, 731 5 , 1998, ApJ, 116, 1842 , 1041 218, 393 7, A&A, 474, 903B 8, ApJ, 678, L47-L50 9, ApJ, 230, L41 G. M., 2008, ArXiv Astrophysics emat, K. M., & Taylor, G. B., 2004, le, M., Lamb, D. Q., MacNeice, P., Spencer, R. E., 1987, Nature, 328, 5-173 -201 Sparke, L. S., 1983, ApJ, 265, 235 1998, Astronomy Reports, 42, 209 . S., Kane, J. F., 2006, ApJ, 650,338- 6 , Spencer, R. E., Stirling, A. M., 1999, , „ 1991, Nature, 353, 329 5 309-313 e-prints, arXiv:astro-ph/0804.0491v1, New. Ast. Rev., 43, 553-557 AAS, 36, 967 349 arXiv:astro-ph/0707.0506v1, Rosner, R., Truran, J. W., Tufo, H., 2000, ApJ, 131, 273-334 722-730, [3] Dehnen, W., &[4] Binney, J., Blundell, 1998, K. MNRAS, M.,[5] 294, et 429, al, Blundell, 2001, K. ApJL, M.,[6] 562, & L79, Bowler, Blundell, M. K. G., M., 2004, & ApJL, Bowler, 616, M. L159 G., Schmidtobreick, L., 200 [7] Blundell, K. M.,[8] & Bowler, Brinkmann, M. W., Aschenbach, G.,[9] B., Schmidtobreick, Kawai, L., Brinkmann, N., 200 W., 1996, Kotani, A&A, T., & 312 Kawai, N., 2005, AAP, 431, 57 [1] Abell, G. O.,[2] & Margon, Begelman, B. M. 1979, C., Nature, 279, Sarazin, 701 C. L., Hatchet, S. P., McKee, C. [43] Woodward, P., Colella, P., 1984, J. Comp. Phys., 54, 174 [44] Zealey, W. J., Dopita, M. A., & Malin, D. F., 1980, MNRAS, [42] Vermeulen, R. C., Schilizzi, R. T., Icke, V., Fejes, I., [39] Safi-Harb, S., &[40] Öegelman, H., Velázquez, P. 1997, F., Raga, ApJ,[41] A. 483, C., 868 Zavala, 2000, J., A&A, 362, Velázquez, 780 P. F., Cerqueira, A. H., Dubner, [35] Mirabel, I. F.,[36] & Rodríguez, Mirabel, L. I. F., F., 1999, & ARAA, Rodríiguez, 37, L. 409 F., 1994, Nature, 371, 4 [37] Murata, K., &[38] Shibazaki, N., Paragi, 1996, Z., PASJ, Vermeulen, 48, R. 819 C., Fejes, I., Schilizzi R. T. [30] Margon, B., Ford, H. C., Grandi, S., & Stone, R. P. S., 197 [31] Margon, B., &[32] Anderson, S. Mazeh, F., T., 1989, Aguilar,[33] L. ApJ, A., 347, Milgrom, 448 Treffers, M., R. 1979,[34] R., A&A, Konigl, 76, A., Mioduszewski, L3 A. & J., Rupen, M. P., Walker, R. C., Schill [29] Lopez, L. A., Marshall, H. L., Canizares, C. R., Shulz, N [25] Hillwig, T. C.,[26] et al King, , A. 2004, R.,[27] ApJ, Taam, 615, R. Kochanek, 422 E., C. & S.,[28] Begelman, & M. Hawley, Lockman, J. C., F., 2000, C. 1990, ApJ, ApJ, 530 S., 350, 561 Blundell, K. M., & Goss, W. M., 2007, ArXi [23] Gies, D R.,[24] Huang, W., Goranskii, McSwain, V. P., M. Esipov, V., V. 2002, F., & ApJ, Cherepashchuk,A. 578, M., L67 [15] Downes, A. J. B., Pauls, T., & Salter, C. J., 1986, MNRAS, [10] Chevalier, R. A.,[11] & Gardner, Colella, J., P., 1974, Woodward,[12] P., ApJ, , 192, 1984, Collins, 457 J. G Comp. W.,[13] Scher Phys., 54, R, Crampton, W., 11 D., 2002, Hutchings,[14] MNRAS, J. 336, B., D’Odorico, 1011 1981, S., ApJ, Oosterloo, 251, T., Zwitter, 604 T., Calvani, M.[16] Dubner, G. M.,[17] Holdaway, M., Eikenberry, Goss, S. W. S., M.,[18] et & al., Mirabel, Elston, 2001, I. R., ApJ, F. &[19] 561, Baum, 1027 S., Fabian, 1987, A. ApJ, C.,[20] 94, Rees, 1633 M. Fabrika, J., S., 1979, 2004,[21] MNRAS, Astro. & 187, Fuchs, Space 13 Y., Phys. Miramond.,[22] Rev., L, 12, K., 1-99 Fryxell, Ábrahám, B., P., 2006, Olson, A&A, K., 578 Ricker, P., Timmes, F. X., Zinga Microquasar Jet-SNR Interaction References