Modelling of the Auditory Ribbon Synapse

Total Page:16

File Type:pdf, Size:1020Kb

Modelling of the Auditory Ribbon Synapse Psychological and Physiological Acoustics (others): Paper ICA2016-625 Modelling of the auditory ribbon synapse Pablo Etchemendy(a), Ramiro Vergara(a) and Manuel Eguía(a) (a)Laboratorio de Acústica y Percepción Sonora, Departamento de Ciencias Sociales, Universidad Nacional de Quilmes, B1876BXD, Bernal, Bs. As., Argentina. [email protected] Abstract The coding of the fine temporal details of auditory stimuli by the auditory system is required for many auditory tasks. For instance, the temporal information conveys information necessary for the perception of pitch and for the angular localization of sound sources. The first stage where this kind of information is processed is the auditory periphery. Inside the periphery, the ribbon synapse (RS) of auditory inner hair cells excels for its temporal acuity, a fact that has driven many recent physiological and computational studies. In this work we present a biophysical model of the auditory Ribbon Synapse (RS) of inner hair cells, which contains many anatomical details obtained from the electrophysiological data available in the literature, and is able to reproduce known features of the RS, namely, temporal adaptation of exocytosis due to partial vesicular depletion and gradual increment of the exocytosis rate as the membrane is depolarized. We used the model to study some aspects that are difficult to tackle experimentally, in particular, the influence of a vesicular fusion step on: (a) the formation of a “ring-like” spatial pattern of exocitosis, compatible with the spatial structure of postsynaptic receptors; and (b) the degree of synchronization of exocytosis as a function of release event size. The results described could be relevant in order to improve our knowledge of the temporal coding of auditory stimuli at the auditory periphery level. Keywords: auditory periphery, ribbon synapse, temporal coding, computational modelling, inner hair cell Modelling of the auditory ribbon synapse 1 Introduction The auditory system excels at temporal processing tasks. Acoustic source localization, pitch perception, speech recognition and source separation, among other functions, rely on the pre- cise coding of temporal features in the range between tens of microseconds and a few mil- liseconds. In order to achieve this formidable task, the auditory system has developed several specialized mechanisms in the periphery and the first stages of neural processing. A promi- nent and widely studied structure among them is the synapse between the Inner Hair Cells (IHC) and the auditory nerve afferent fibers (spiral ganglion cells). This is the first synapse in the auditory system and is the responsible of transducing the graded potential of the IHC (in response to the basilar membrane displacements) into all-or-none events at the postsynaptic nerve fibers. This synapse bears a highly advanced and specialized structure, the synaptic ribbon, that many studies have spotted as the main responsible of completing the demanding signalling task: the sustained neurotransmitter release with high reliability, low latency and min- imum variability. This structure positions a great amount of synaptic vesicles close to release sites, within nanometers of calcium channels and directly across from postsynaptic glutamate receptors, in the so-called “active zone”. Whenever a basilar membrane displacement depolar- izes the IHC the opening probability of the calcium channels increases. It has been shown that the opening of a single calcium channel in the active zone can trigger the vesicle release (ex- ocytosis) and a postsynaptic action potential. Also, individual ribbons are capable of sustaining exocytosis at several hundreds of vesicles per second without fatigue, which is in turn reflected in rates of action potentials in individual auditory nerve fibers of hundred of hertz. Despite its phenomenal and well studied capabilities (see [1, 2] for review), a complete picture of the machinery of the ribbon synapse is still missing and many fundamental questions about its underlying mechanisms remain unanswered. For example, individual postsynaptic potentials vary in amplitude, suggesting multiquantal release of vesicles, either by homotypic fusion before exocytosis, or by synchronous exocytosis of multiple vesicles docked beneath the ribbon. Yet, a recent work has questioned the multiquantal release proposing an alternative mechanism [3]. Thus, the origin and possible roles of multivesicular release are still unclear. Also, several works have confirmed that the distribution of postsynaptic receptors displays a ring-like shape [4, 5]. Since a great part of the outstanding characteristics of the synaptic ribbon comes from its precise co-localization with presynaptic channels, it is reasonable to hypothesize that this ring-like distribution could be related to the spatial distribution of vesicle release. In this work we advance in a dynamical, yet simplified and hopefully accurate biophysical model of the auditory ribbon synapse, that could give some insight into the underlying mechanisms of this complex structure. Models are useful not only for interpreting and understanding ex- perimental results but also for testing alternative hypothesis, and for selection an planning of new experiments, as long as the models have some predictive power. Previous models of the whole ribbon synapse have been proposed either as phenomenological [6] or minimal theoreti- cal descriptions [7], and there is only one work that develops a detailed biophysical description 2 of the structure [8]. However this last model does not incorporate the multivesicular release. We will develop an experimentally constrained biophysical model focusing on the spatial and timing characteristics of the ribbon synapse and the possible roles of multivesicular release. Hence we will model in detail the spatial distribution and time events of channels and vesicles, resigning other not less important features as calcium diffusion and buffering and kinetics of calcium sensors. 2 Description of the model The main feature of the model is the description of the ribbon synapse from a spatial point of view. The synaptic ribbon is represented as a two-dimensional, square grid in which tethered vesicles are able to diffuse freely (Fig. 1). The mapping of the synaptic ribbon’s spheroidal surface to a square allows to capture one important aspect of this structure: the ribbon is believed to act as a vesicle trap, reducing the dimension of the space available for diffusion and thus helping vesicles to reach the active zone [9, 10]. Each site of the grid can be empty or filled by a single vesicle. The ribbon is divided in two regions. Sites located at three sites or less from the center define the active zone (AZ), which corresponds to the lower region of the ribbon. Vesicles located at the active zone are in contact with the plasmalemma, and near to voltage-gated CaV1.3 calcium channels located within the plasma membrane [11]. In hair cells, these channels are colocalized with the synaptic body [12], which facilitates the interaction between the entering Ca2+ and the neighboring vesicles exocytic sensors. In the model, a total of 80 calcium channels [13] are located within a 4.5-sites radius from the AZ center. The middle and upper regions of the ribbon are represented by the remaining sites. Vesicles can enter the ribbon through a simple refilling process, controlled by the probability per free site and per time unit that a free vesicle gets tethered to the ribbon. Only sites outside the active zone can accept new vesicles and the process is unidirectional; vesicles can abandon the ribbon only through exocytosis. The combination of refilling, diffusion and exocytosis processes allows to model the continuous activity of the auditory synaptic ribbon, and therefore investigate aspects related to the reliable transmission of long-lasting auditory stimuli. In the rest of this section we will describe the details of the model and its implementation. In Table 1 we list the model parameters along with the references from the literature used to set their values. The model was implemented in Matlab 2013. Calcium channels dynamic was solved using Gillespie’s “direct method” [14], with an upper limit for the sampled time to next reaction set to 0.01 ms for variable inputs. 2.1 Anatomic aspects The grid has a size of 13×13 sites, thus having a total of 169 sites. The active zone (AZ) is defined by a circle of radius RAZ equal to 3 sites, which gives a total of 29 sites. These figures are between the values reviewed by Nouvian et al. [15] for the ribbon-associated vesicles at the mouse IHC (125 to 200 vesicles, depending on the microscopy method) and for the docked vesicles at the AZ (16 to 30 vesicles). Each site can be considered as having a size of 40×40 3 Figure 1: (a) Schematic of the anatomy of the synapse. The elements included in the model are the synaptic ribbon, the synaptic vesicles and the calcium channels located at the cellular membrane. (b) Spatial grid describing the synapse. The legend on the right shows the correspondence between anatomy and model. nm, thus representing a 20-nm radius vesicle [16]. The total number of calcium channels (NCC) is the mean number of ribbon-associated calcium channels considering all synapses in the entire cell [13]. We assumed a uniform distribution of channels inside a circle of radius RCC located at the base of the synaptic body, concentric with the active zone; in each simulation channel locations were sampled at time zero and then remained constant. RCC was set to 4.5 sites, a value a little greater than RAZ, which guarantees that inner and outer sites of the active zone are surrounded by the same number of channels in average. 2.2 Dynamic of calcium channels and exocytosis mechanism Each calcium channel is stochastically modelled by a simple two-state scheme: a O )−−−−* C (1) b where O represents the “open” state and C the “closed” state. Transitions between states are governed by the voltage-dependent rates a(V) (opening) and b(V) (closing): h h −1 a(V) = a0 · (V −Va ) · (1 − exp((Va −V)=ka )) ; h −1 (2) b(V) = b0 − b1 · (1 + exp((V −Vb )=kb )) ; Parameter values were obtained by fitting the experimental data referred by Wittig and Parsons [8].
Recommended publications
  • View Full Page
    8358 • The Journal of Neuroscience, June 11, 2014 • 34(24):8358–8372 Cellular/Molecular Specialized Postsynaptic Morphology Enhances Neurotransmitter Dilution and High-Frequency Signaling at an Auditory Synapse Cole W. Graydon,1,2* Soyoun Cho,3* Jeffrey S. Diamond,1 Bechara Kachar,2 Henrique von Gersdorff,3 and William N. Grimes1,4 1Synaptic Physiology Section, National Institute of Neurological Disorders and Stroke, and 2Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, Bethesda, Maryland 20892, 3Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, and 4Howard Hughes Medical Institute/University of Washington, Department of Biophysics and Physiology, Seattle, Washington 98195 Sensory processing in the auditory system requires that synapses, neurons, and circuits encode information with particularly high temporalandspectralprecision.Intheamphibianpapillia,soundfrequenciesupto1kHzareencodedalongatonotopicarrayofhaircells and transmitted to afferent fibers via fast, repetitive synaptic transmission, thereby promoting phase locking between the presynaptic and postsynaptic cells. Here, we have combined serial section electron microscopy, paired electrophysiological recordings, and Monte Carlo diffusion simulations to examine novel mechanisms that facilitate fast synaptic transmission in the inner ear of frogs (Rana catesbeiana and Rana pipiens). Three-dimensional anatomical reconstructions reveal specialized spine-like contacts between individual afferent fibers and
    [Show full text]
  • Intrinsically Different Retinal Progenitor Cells Produce Specific Types Of
    PERSPECTIVES These clonal data demonstrated that OPINION RPCs are generally multipotent. However, these data could not determine whether Intrinsically different retinal the variability in clones was due to intrinsic differences among RPCs or extrinsic and/ progenitor cells produce specific or stochastic effects on equivalent RPCs or their progeny. Furthermore, the fates identi- fied within a clone demonstrated an RPC’s types of progeny ‘potential’ but not the ability of an RPC to make a specific cell type at a specific devel- Connie Cepko opmental time or its ‘competence’ (BOX 2). Moreover, although many genes that regu- Abstract | Lineage studies conducted in the retina more than 25 years ago late the development of retinal cell types demonstrated the multipotency of retinal progenitor cells (RPCs). The number have been studied, using the now classical and types of cells produced by individual RPCs, even from a single time point in gain- and loss‑of‑function approaches18,19, development, were found to be highly variable. This raised the question of the precise roles of such regulators in defin- whether this variability was due to intrinsic differences among RPCs or to extrinsic ing an RPC’s competence or potential have not been well elucidated, as most studies and/or stochastic effects on equivalent RPCs or their progeny. Newer lineage have examined the outcome of a perturba- studies that have made use of molecular markers of RPCs, retrovirus-mediated tion on the development of a cell type but lineage analyses of specific RPCs and live imaging have begun to provide answers not the stage and/or cell type in which such a to this question.
    [Show full text]
  • The Glutamate–Aspartate Transporter GLAST Mediates Glutamate Uptake at Inner Hair Cell Afferent Synapses in the Mammalian Cochlea
    The Journal of Neuroscience, July 19, 2006 • 26(29):7659–7664 • 7659 Brief Communications The Glutamate–Aspartate Transporter GLAST Mediates Glutamate Uptake at Inner Hair Cell Afferent Synapses in the Mammalian Cochlea Elisabeth Glowatzki,1 Ning Cheng,2 Hakim Hiel,1 Eunyoung Yi,1 Kohichi Tanaka,4 Graham C. R. Ellis-Davies,5 Jeffrey D. Rothstein,3 and Dwight E. Bergles1,2 Departments of 1Otolaryngology–Head and Neck Surgery, 2Neuroscience, and 3Neurology, Johns Hopkins University, Baltimore, Maryland 21205, 4Laboratory of Molecular Neuroscience, School of Biomedical Science and Medical Research Institute, Tokyo Medical and Dental University, Tokyo 113- 8510, Japan, and 5Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, Pennsylvania 19102 Ribbon synapses formed between inner hair cells (IHCs) and afferent dendrites in the mammalian cochlea can sustain high rates of release, placing strong demands on glutamate clearance mechanisms. To investigate the role of transporters in glutamate removal at these synapses, we made whole-cell recordings from IHCs, afferent dendrites, and glial cells adjacent to IHCs [inner phalangeal cells (IPCs)] in whole-mount preparations of rat organ of Corti. Focal application of the transporter substrate D-aspartate elicited inward currents in IPCs, which were larger in the presence of anions that permeate the transporter-associated anion channel and blocked by the transporter antagonist D,L-threo-␤-benzyloxyaspartate. These currents were produced by glutamate–aspartate transporters (GLAST) (excitatory amino acid transporter 1) because they were weakly inhibited by dihydrokainate, an antagonist of glutamate transporter-1 Ϫ/Ϫ (excitatory amino acid transporter 2) and were absent from IPCs in GLAST cochleas.
    [Show full text]
  • Lack of Fractalkine Receptor on Macrophages Impairs Spontaneous Recovery of Ribbon Synapses After Moderate Noise Trauma in C57BL/6 Mice Tejbeer Kaur
    Washington University School of Medicine Digital Commons@Becker Open Access Publications 2019 Lack of fractalkine receptor on macrophages impairs spontaneous recovery of ribbon synapses after moderate noise trauma in C57BL/6 mice Tejbeer Kaur Anna C. Clayman Andrew J. Nash Angela D. Schrader Mark E. Warchol See next page for additional authors Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs Authors Tejbeer Kaur, Anna C. Clayman, Andrew J. Nash, Angela D. Schrader, Mark E. Warchol, and Kevin K. Ohlemiller fnins-13-00620 June 12, 2019 Time: 17:26 # 1 ORIGINAL RESEARCH published: 13 June 2019 doi: 10.3389/fnins.2019.00620 Lack of Fractalkine Receptor on Macrophages Impairs Spontaneous Recovery of Ribbon Synapses After Moderate Noise Trauma in C57BL/6 Mice Tejbeer Kaur1*, Anna C. Clayman2, Andrew J. Nash2, Angela D. Schrader1, Mark E. Warchol1 and Kevin K. Ohlemiller1,2 1 Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States, 2 Program in Audiology and Communication Sciences, Washington University School of Medicine, St. Louis, MO, United States Noise trauma causes loss of synaptic connections between cochlear inner hair cells (IHCs) and the spiral ganglion neurons (SGNs). Such synaptic loss can trigger slow and progressive degeneration of SGNs. Macrophage fractalkine signaling is critical for neuron survival in the injured cochlea, but its role in cochlear synaptopathy is Edited by: unknown. Fractalkine, a chemokine, is constitutively expressed by SGNs and signals Isabel Varela-Nieto, via its receptor CX3CR1 that is expressed on macrophages. The present study Spanish National Research Council characterized the immune response and examined the function of fractalkine signaling (CSIC), Spain in degeneration and repair of cochlear synapses following noise trauma.
    [Show full text]
  • Review of Hair Cell Synapse Defects in Sensorineural Hearing Impairment
    Otology & Neurotology 34:995Y1004 Ó 2013, Otology & Neurotology, Inc. Review of Hair Cell Synapse Defects in Sensorineural Hearing Impairment *†‡Tobias Moser, *Friederike Predoehl, and §Arnold Starr *InnerEarLab, Department of Otolaryngology, University of Go¨ttingen Medical School; ÞSensory Research Center SFB 889, þBernstein Center for Computational Neuroscience, University of Go¨ttingen, Go¨ttingen, Germany; and §Department of Neurology, University of California, Irvine, California, U.S.A. Objective: To review new insights into the pathophysiology of are similar to those accompanying auditory neuropathy, a group sensorineural hearing impairment. Specifically, we address defects of genetic and acquired disorders of spiral ganglion neurons. of the ribbon synapses between inner hair cells and spiral ganglion Genetic auditory synaptopathies include alterations of glutamate neurons that cause auditory synaptopathy. loading of synaptic vesicles, synaptic Ca2+ influx or synaptic Data Sources and Study Selection: Here, we review original vesicle turnover. Acquired synaptopathies include noise-induced publications on the genetics, animal models, and molecular hearing loss because of excitotoxic synaptic damage and subse- mechanisms of hair cell ribbon synapses and their dysfunction. quent gradual neural degeneration. Alterations of ribbon synapses Conclusion: Hair cell ribbon synapses are highly specialized to likely also contribute to age-related hearing loss. Key Words: enable indefatigable sound encoding with utmost temporal precision. GeneticsVIon
    [Show full text]
  • Multivesicular Release Differentiates the Reliability of Synaptic Transmission Between the Visual Cortex and the Somatosensory Cortex
    11994 • The Journal of Neuroscience, September 8, 2010 • 30(36):11994–12004 Cellular/Molecular Multivesicular Release Differentiates the Reliability of Synaptic Transmission between the Visual Cortex and the Somatosensory Cortex Chao-Hua Huang, Jin Bao, and Takeshi Sakaba Independent Junior Research Group Biophysics of Synaptic Transmission, Max Planck Institute for Biophysical Chemistry, 37077, Goettingen, Germany Neurons in layer 4 (L4) of the cortex play an important role in transferring signals from thalamus to other layers of the cortex. Under- standing the fundamental properties of synaptic transmission between L4 neurons helps us gain a clear picture of how the neuronal network in L4 cooperates to process sensory information. In the present study, we have determined the underlying parameters that govern synaptic strength, such as quantal size, size of readily releasable vesicle pool, and release probability (Pr) of excitatory synaptic connections within L4 of the visual cortex (V1) and the somatosensory cortex (S1) in mice. Although only a single vesicle is released per release site under physiological conditions at V1 synapses, multivesicular release (MVR) is observed at S1 synapses. In addition, we observed a saturation of postsynaptic receptors at S1 synapses. Other synaptic properties are similar in both cortices. Dynamic clamp experiments suggest that higher Pr and MVR at S1 synapses lower the requirement of the number of synaptic inputs to generate postsynaptic action potentials. In addition, the slower decay of synaptic current and the intrinsic membrane properties of the postsyn- aptic neuron also contribute to the reliable transmission between S1 neurons. Introduction synapses, remains controversial. Variability of synaptic responses Synaptic strength is determined by both presynaptic and postsyn- is further determined by postsynaptic receptor properties such as aptic factors.
    [Show full text]
  • Synaptics and the Auditory Nerve;.Pdf
    Salamanca Study Abroad Program: Neurobiology of Hearing Synaptics and the auditory nerve R. Keith Duncan University of Michigan [email protected] Review Resources Reviews: Safieddine et al., 2012, The auditory hair cell ribbon synapse: From assembly to function, Ann Rev Neurosci, 35:509-528 Kim et al., 2013, Single Ca2+ channels and exocytosis at sensory synapses, J Physiol, epub Note: this is an excellent review describing the differences between cochlear and retinal ribbon synapses. Rabbitt and Brownell, 2011 Efferent modulation of hair cell function, Curr Opinion Otolaryngol Head Neck Surg,19:376-381 Outline Exocytosis and synaptics Afferent physiology Efferent physiology Afferent cochlear innervation Type 1 afferents: • 95% of cochlear afferents • account for hearing • each innervates only 1 IHC • ~20 innervate one IHC Type 2 afferents: • less well-described • en passant innervation of OHCs; 4 Hair cells form ribbon synapses with afferent neurons 5 Distinct pools of vesicles • Electron tomography reconstruction shows 4 pools Ribbon docked vesicles (readily releasable pool, ~10) Tethered vesicles (releasable pool, ~200) Extrasynaptic docked vesicles Cytoplasmic vesicles (recruitable pool?) • These pools likely contribute to distinct kinetics of exocytosis as Lenzi & von Gersdorff, 2001 stimulus duration increases. Distinct phases of exocytosis Capacitance is a proxy for exocytosis. Vesicle fusion increases surface area which increases capacitance. (see supplemental slides) Exocytosis occurs in calcium nanodomains Hair cells The synaptic vesicle cycle NT uptake, translocation, docking Molecular Components of Ribbon Synapses Differ from Conventional Synapses Vesicle related: • Synaptotagmins are the Ca2+ sensors in most synapses. Mature hair cells lack SYT I and II but have IV, VI-IX (rare types).
    [Show full text]
  • The Diverse Roles of Ribbon Synapses in Sensory Neurotransmission
    Nature Reviews Neuroscience | AOP, published online 3 November 2010; doi:10.1038/nrn2924 REVIEWS The diverse roles of ribbon synapses in sensory neurotransmission Gary Matthews* and Paul Fuchs‡ Abstract | Sensory synapses of the visual and auditory systems must faithfully encode a wide dynamic range of graded signals, and must be capable of sustained transmitter release over long periods of time. Functionally and morphologically, these sensory synapses are unique: their active zones are specialized in several ways for sustained, rapid vesicle exocytosis, but their most striking feature is an organelle called the synaptic ribbon, which is a proteinaceous structure that extends into the cytoplasm at the active zone and tethers a large pool of releasable vesicles. But precisely how does the ribbon function to support tonic release at these synapses? Recent genetic and biophysical advances have begun to open the ‘black box’ of the synaptic ribbon with some surprising findings and promise to resolve its function in vision and hearing. Changes in our external environment are detected by photoreceptors, electroreceptors, and hair cells of sensory receptor cells, which transduce sensory stim- vesti bular organs and the lateral line system. In the uli into an electrical signal that is graded depending visual system, ribbons are also found at the output on the stimulus intensity. In vision, balance and hear- synapses of the second-order retinal b ipolar neurons, ing, synapses of the receptor cells are unusual because which signal by means of graded changes in mem- they function tonically — that is, they transmit graded brane potential, similar to photoreceptors and hair information with high fidelity across a broad range of cells.
    [Show full text]
  • Molecular Assembly and Structural Plasticity of Sensory Ribbon Synapses—A Presynaptic Perspective
    International Journal of Molecular Sciences Review Molecular Assembly and Structural Plasticity of Sensory Ribbon Synapses—A Presynaptic Perspective Roos Anouk Voorn 1,2,3 and Christian Vogl 1,3,* 1 Presynaptogenesis and Intracellular Transport in Hair Cells Junior Research Group, Institute for Auditory Neuroscience and InnerEarLab, University Medical Center Goettingen, 37075 Goettingen, Germany; [email protected] 2 Göttingen Graduate Center for Neurosciences, Biophysics and Molecular Biosciences, 37075 Goettingen, Germany 3 Collaborative Research Center 889 “Cellular Mechanisms of Sensory Processing”, 37075 Goettingen, Germany * Correspondence: [email protected] Received: 21 October 2020; Accepted: 17 November 2020; Published: 19 November 2020 Abstract: In the mammalian cochlea, specialized ribbon-type synapses between sensory inner hair cells (IHCs) and postsynaptic spiral ganglion neurons ensure the temporal precision and indefatigability of synaptic sound encoding. These high-through-put synapses are presynaptically characterized by an electron-dense projection—the synaptic ribbon—which provides structural scaffolding and tethers a large pool of synaptic vesicles. While advances have been made in recent years in deciphering the molecular anatomy and function of these specialized active zones, the developmental assembly of this presynaptic interaction hub remains largely elusive. In this review, we discuss the dynamic nature of IHC (pre-) synaptogenesis and highlight molecular key players as well as the transport pathways underlying this process. Since developmental assembly appears to be a highly dynamic process, we further ask if this structural plasticity might be maintained into adulthood, how this may influence the functional properties of a given IHC synapse and how such plasticity could be regulated on the molecular level.
    [Show full text]
  • Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems Nicolas Michalski, Christine Petit
    Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems Nicolas Michalski, Christine Petit To cite this version: Nicolas Michalski, Christine Petit. Genes Involved in the Development and Physiology of Both the Peripheral and Central Auditory Systems. Annual Review of Neuroscience, Annual Reviews, 2019, 42, pp.67-86. 10.1146/annurev-neuro-070918-050428. pasteur-02874563 HAL Id: pasteur-02874563 https://hal-pasteur.archives-ouvertes.fr/pasteur-02874563 Submitted on 6 Jul 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Genes Involved in the Development and Physiology of both the Peripheral and Central Auditory Systems 1,2,3,# 1,2,3,4,5,# Nicolas Michalski & Christine Petit 1 Unité de Génétique et Physiologie de l’Audition, Institut Pasteur, 75015 Paris, France 2 UMRS 1120, Institut National de la Santé et de la Recherche Médicale (INSERM), 75015 Paris, France 3 Sorbonne Universités, UPMC Université Paris 06, Complexité
    [Show full text]
  • The Integrity of Cochlear Hair Cells Is Established and Maintained
    Ninoyu et al. Cell Death and Disease (2020) 11:536 https://doi.org/10.1038/s41419-020-02743-z Cell Death & Disease ARTICLE Open Access The integrity of cochlear hair cells is established and maintained through the localization of Dia1 at apical junctional complexes and stereocilia Yuzuru Ninoyu1,2, Hirofumi Sakaguchi2, Chen Lin1, Toshiaki Suzuki 1, Shigeru Hirano2,YasuoHisa2, Naoaki Saito1 and Takehiko Ueyama 1 Abstract Dia1, which belongs to the diaphanous-related formin family, influences a variety of cellular processes through straight actin elongation activity. Recently, novel DIA1 mutants such as p.R1213X (p.R1204X) and p.A265S, have been reported to cause an autosomal dominant sensorineural hearing loss (DFNA1). Additionally, active DIA1 mutants induce progressive hearing loss in a gain-of-function manner. However, the subcellular localization and pathological function of DIA1(R1213X/R1204X) remains unknown. In the present study, we demonstrated the localization of endogenous Dia1 and the constitutively active DIA1 mutant in the cochlea, using transgenic mice expressing FLAG-tagged DIA1 (R1204X) (DIA1-TG). Endogenous Dia1 and the DIA1 mutant were regionally expressed at the organ of Corti and the spiral ganglion from early life; alongside cochlear maturation, they became localized at the apical junctional complexes (AJCs) between hair cells (HCs) and supporting cells (SCs). To investigate HC vulnerability in the DIA1-TG mice, we exposed 4-week-old mice to moderate noise, which induced temporary threshold shifts with cochlear synaptopathy and ultrastructural changes in stereocilia 4 weeks post noise exposure. Furthermore, we established a knock-in (KI) fi 1234567890():,; 1234567890():,; 1234567890():,; 1234567890():,; mouse line expressing AcGFP-tagged DIA1(R1213X) (DIA1-KI) and con rmed mutant localization at AJCs and the tips of stereocilia in HCs.
    [Show full text]
  • The Ubiquitous Nature of Multivesicular Release
    Feature Review The ubiquitous nature of multivesicular release 1 1 2 Stephanie Rudolph , Ming-Chi Tsai , Henrique von Gersdorff , and 1 Jacques I. Wadiche 1 Department of Neurobiology and Evelyn McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, AL 35294, USA 2 The Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA ‘Simplicity is prerequisite for reliability’ (E.W. Dijkstra [1]) fluctuations of evoked synaptic responses [11] and high Presynaptic action potentials trigger the fusion of vesicles transmitter concentration in the synaptic cleft [12]. To to release neurotransmitter onto postsynaptic neurons. reconcile these findings, a more flexible hypothesis pro- Each release site was originally thought to liberate at poses that multiple vesicles can be released per active zone most one vesicle per action potential in a probabilistic with each action potential, defined as MVR. Indeed, stud- fashion, rendering synaptic transmission unreliable. How- ies have established that MVR occurs at many inhibitory ever, the simultaneous release of several vesicles, or and excitatory synapses throughout the brain, including multivesicular release (MVR), represents a simple mecha- nism to overcome the intrinsic unreliability of synaptic transmission. MVR was initially identified at specialized synapses but is now known to be common throughout Glossary the brain. MVR determines the temporal and spatial dis- Active zone: ultrastructurally and functionally specialized area at the pre- persion of transmitter, controls the extent of receptor synaptic terminal where readily-releasable vesicles fuse (see also Release site). Coefficient of variation (CV): standard deviation s divided by the mean (e.g., s activation, and contributes to adapting synaptic strength of current amplitude fluctuations and mean current).
    [Show full text]