Health Risk Assessment for Bromate (Bro3–) Traces in Ozonated Indian

Total Page:16

File Type:pdf, Size:1020Kb

Health Risk Assessment for Bromate (Bro3–) Traces in Ozonated Indian Journal of Environmental Protection, 2011, 2, 571-580 doi:10.4236/jep.2011.25066Published Online July 2011 (http://www.scirp.org/journal/jep) – Health Risk Assessment for Bromate (BrO3 ) Traces in Ozonated Indian Bottled Water Ajay Kumar1*, Sabyasachi Rout1, Rakesh Kumar Singhal2 1Health Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India; 2Analytical Chemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, India. Email: [email protected] Received May 19th, 2011; revised June 14th, accepted July 11th, 2011. ABSTRACT For this study, bromide and bromate ions in various commercial brands of Indian bottled water samples were estimated using ion chromatography. The measured mean concentration of bromide and bromate ions in water samples was found to be 28.13 µg/L and 11.17 µg/L respectively. The average level of bromate in Indian bottled water was found to be slightly higher (~ 12%) than the acceptable limits (10 µg/L) recommended by USEPA (US Environmental Protection Agency). Though, kinetically, it is predicted that 62.5% (6.25 µg/L) of bromide in bottled water is needed to convert into bromate upon ozonation to exceed the minimum acceptable limits, but the average formation of bromate deter- mined to be only 26.77% of the predicted concentration. Bromate concentration in bottled water showed a strong cor- relation with bromide suggesting that its formation in water is very much influenced and controlled by bromide content. – The objective of the present study was to determine the BrO3 content in commercially available different brands of bottled drinking water in India and to estimate the health risks to population due to ingestion. Results of estimated ex- cess cancer risk and chemical toxicity risk to Indian population due to ingestion of bottled water were presented and discussed. Keywords: Bromide, Bromate, Excess Cancer Risk, Chemical Toxicity Risk, Bottled Water 1. Introduction chemical characteristics of bromide compounds are low concentration in most rock-forming minerals and gene- 1.1. Genesis rally low bioconcentrations in aqueous systems. Because During the 1970’s, it was realized that the chlorination of of these characteristics, it behaves as conservative spe- drinking water produced carcinogenic disinfection by cies and widely used as tracers in hydrological systems. products (DBPs) such as trihalomethane. Since then, al- During the evaporite deposits, bromine shows some ad- ternative disinfection methods that minimize the produc- sorption characteristics particularly at low pH, on Kao- tion of toxic by-products have been investigated. Ozona- linite and iron oxide surface. tion has emerged as one of the most promising alterna- The sources of bottled water in India are mainly sur- tives to chlorination [1]. Although ozonation is already face and subsurface water like river water, lake water and an established method of water purification in the water ground water. The common technique for preparation of industry, it suffers from a major problem which is attra- bottled water is based on reverse osmosis, ultra filtration, cting increasing concern, namely the formation of bro- ozonisation, electrolytic methods etc. which are itself the mate ions due to oxidation of bromide ion. removal technique of bromide ion. In spite of applying the removal processes, trace quantities of bromide are 1.2. Bromine found in the bottled water. Bromine is an important precursor to bromate in drinking The bottled water is a highly regulated as a food pro- water. Bromine has both natural and anthropogenic duct by FDA (Food Development Authority) under the sources. Natural sources include seawater, subsurface Federal Food, Drug and Cosmetic Act (FFDCA), subject brines and evaporite deposits. Anthropogenic sources for to federal, state, and industry standards and includes in bromine include pesticides, medicines and industrial sol- smaller containers as well as larger containers distributed vents, gasoline additives and water purification. Hydro to the home and markets. Copyright © 2011 SciRes. JEP – 572 Health Risk Assessment for Bromate (BrO3 ) Traces in Ozonated Indian Bottled Water 1.3. Bromate in electrolytically generated hypochlorous acid solutions when bromide is present in the brine [10]. Since bromate Bromate is not normally found in water. Conversion of contains 62.5% (0.625) bromide only hence this fractions bromide to bromate upon ozonation may be affected by need to be converted to form bromate upon ozonation to physico-chemical parameters including natural organic exceed maximum acceptable concentration. The follow- matter, pH, temperature and some other factors. The rel- ing equations show the pathway by which bromide (Br–) ative increase of bromate depends on measures used for – is oxidized by ozone to bromate (BrO3 ) through the in- comparison (over time or as a function of concentration –) termediate formation of hypobromite (OBr . These of bromide (C) × retention time with the amount of equations also show that ozone does not oxidize hypo- ozone (T)). The use of CT has been suggested as a more bromous acid (HOBr) to bromate. Since increased acid useful indicator to describe the relative rate of bromate + (H3O ) will favor the formation of hypobromous acid, formation because it also gives a simultaneous descriptor this suggests that ozonation at a low pH will tend to for disinfection efficiency [2]. The rate of formation of minimize bromate formation [11]. bromate ion may also increase with temperature [3,4]. In – – Br + O3 + H2O —> HOBr + O2 + OH addition, many studies on the effect of alkalinity on the + – HOBr + H2O —> H3O + OBr formation of bromate during ozonation indicate that in- – – OBr + 2O3 —> BrO3 + 2O2 creased alkalinity increases bromate formation [5]. How- HOBr + O3 —> No Reaction ever, the rate of formation of bromate during ozonation is also affected by ozone characteristics. Thus, a smaller 1.4. Provisional Guideline Values CT may result because ozone becomes less stable with Bromate is mutagenic both in vitro and in vivo. [12,13] increasing temperature and/or alkalinity. All factors be- has classified potassium bromate in Group 2B (possibly ing equal, bromide concentration and ozone dose are the carcinogenic to humans), concluding that there is inade- best predictors of bromate formation during ozonation quate evidence of carcinogenicity in humans but suffi- [6]. It should be noted that some of the studies demon- cient evidence of carcinogenicity in experimental ani- strating high rates of conversion of bromide to bromate mals. [14] has classified bromate as a probable human are pure laboratory studies with very high bromide levels carcinogen by the oral route of exposure under the 1986 and thus may not be representative of conversion rates at EPA guidelines for Carcinogen Risk Assessment [15] on environmentally relevant doses. the basis of adequate evidence of carcinogenicity in male In the ozonised bottled water, naturally occurring and female rats. Under the 1999 EPA draft Guidelines bromide causes a catalytic disintegration of ozone and for Carcinogen Risk Assessment [16], bromate is likely – forms hypobromite (OBr ) as an intermediate product to be a human carcinogen by the oral route; the data on which is predominantly present at higher pH values, but the carcinogenicity of bromate via the inhalation route at lower pH, more hypobromous acid (HOBr) is formed. are inadequate for an assessment of its human carcino- Hypobromite reacts further with an excess of ozone to genic potential. [17] has classified bromate as probably form bromate. Hypobromous acid does not react further carcinogenic to humans (sufficient evidence in animals; with ozone; therefore, at low pH, no bromate is formed. no data in humans). At this time, there is not sufficient In the presence of organic matter, HOBr leads to the evidence to conclude the mode of carcinogenic action for formation of brominated organic compounds, such as potassium bromated [6,13,14,18]. Because of insufficient bromoform, mono- and dibromoacetic acid, dibromoace- information on the mode of carcinogenic action of bro- tonitrile, bromopicrin and especially cyanogen bromide. mate, IPCS (2000) developed both a carcinogenicity as- Under certain conditions, bromate may also be formed in sessment based on the linearized multistage model as concentrated hypochlorite solutions used to disinfect well as a TDI based on a non-linear approach for the car- drinking-water [6]. This reaction is due to the presence of cinogenicity of bromate. A TDI of 1 μg/kg of body weight bromide in the raw materials (chlorine and sodium hy- was calculated based on a no-effect level for the forma- droxide) used in the manufacture of sodium hypoch- lo- tion of renal cell tumours in rats at 1.3 mg/kg of body rite and to the high pH of the concentrated solution. weight per day in the [19] study and the use of an uncer- Bromide is not oxidized by chlorine dioxide, so the use tainty factor of 1000 (10 each for inter- and intraspecies of chlorine dioxide will not generate hypobromous acid, variation and 10 for possible carcinogenicity). The IPCS hypobromite ion or bromate [7]. Although bromate can (2000) value of 0.1 μg/kg of body weight per day for a be formed on simultaneous exposure to chlorine dioxide 10–5 excess lifetime cancer risk level was based on an and light, the reaction is thermodynamically unfavour- increased incidence of renal tumours in male rats given able and bromate is unlikely to be formed under water potassium bromate in drinking-water for 2 years using treatment conditions [8,9]. Bromate can also be formed the same study [19]. The upper-bound estimate of the Copyright © 2011 SciRes. JEP – Health Risk Assessment for Bromate (BrO3 ) Traces in Ozonated Indian Bottled Water 573 cancer potency for bromate is 0.19 per mg/kg of body tober, 2010. During collection of bottled water, ozona- weight per day. The concentrations in drinking water tion for purification as well as date of packing were taken associated with upper-bound excess lifetime cancer risks care of to avoid any discrepancies.
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Calcium Peroxide (CP) Azodicarbonamide (ADA)
    Enzymatic Solutions to replace chemicals in wheat flour treatments . Calcium Peroxide (CP) . Azodicarbonamide (ADA) Norman Loop Mühlenchemie GmbH & Co. KG Ahrensburg, Germany LP04012001 Agenda Muehlenchemie Chemical oxidants in flour milling industry Regulatory / Legal status How to replace them? Practical Examples . Calcium Peroxide (CP) Replacement . Azodicarbonamide (ADA) Replacement Conclusion Mühlenchemie: the Flour Company We are an innovative enterprise – present in the market for over 90 years: Mühlenchemie makes good flours even better. Established: 1923 Domicile: Ahrensburg / Hamburg Parent company: Stern-Wywiol Gruppe, Hamburg Specialization: . Flour improvers . Enzymes . Vitamin and mineral premixes . Applications consultancy . Analytical service . Training courses and seminars Mühlenchemie: the Flour Company Market position: World market leader in flour improvers Turnover: approx 150 mill. USD Sales: In more than 110 countries globally Production facilities: Germany, China, India, Mexico, Turkey,USA and Malaysia Our dedication to millers: The FlourWorld Museum: a collection of more than 3,000 flour sacks from the milling industry Chemical oxidants in flour milling industry “Would you eat your yoga mat?” Oxidizing Agents as Flour Improvers Azodicarbonamide (ADA) Calcium peroxide (CP) Chlorine & chlorine dioxide Benzoyl peroxide (BPO) Potassium Bromate 7 Calcium Peroxide (CP) Azodicarbonamide (ADA) Slow oxidizing effect Fast oxidizing effect Improves dough handling properties Improves dough stability (drying effect) Improves
    [Show full text]
  • Potassium Bromate
    POTASSIUM BROMATE VWR International, Pty Ltd Chemwatch: 1484 Issue Date: 25/01/2013 Version No: 6.1.1.1 Print Date: 10/12/2013 Safety Data Sheet according to WHS and ADG requirements S.GHS.AUS.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING Product Identifier Product name POTASSIUM BROMATE Chemical Name potassium bromate Synonyms Br-K-O3, KBrO3, bromic acid potassium salt Proper shipping name POTASSIUM BROMATE Chemical formula BrHO3.K Other means of identification Not Available CAS number 7758-01-2 Relevant identified uses of the substance or mixture and uses advised against Used as laboratory reagent, oxidising agent, permanent wave compound, maturing agent in flour, dough conditioner and food additive. Bromate is Relevant identified uses converted to bromide in the baking or cooking process, but the levels are not in excess of the natural bromide content of many natural foods., Note: Food additive uses restricted as to proportions used., [~Intermediate ~] Details of the supplier of the safety data sheet Registered company name VWR International, Pty Ltd Unit 1/31 Archimedes Place 4172 QLD Address Australia Telephone 61 7 3009 4100 ; 1300 727 696 Fax 61 7 3009 4199 ; 1300 135 123 Website http://au.vwr.com Email [email protected] Emergency telephone number Association / Organisation Not Available Emergency telephone numbers 61 7 3009 4100 ; 1300 727 696 Other emergency telephone numbers 61 7 3009 4100 ; 1300 727 696 SECTION 2 HAZARDS IDENTIFICATION Classification of the substance or mixture HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code.
    [Show full text]
  • Abstract Measurement and Analysis of Bromate Ion
    ABSTRACT MEASUREMENT AND ANALYSIS OF BROMATE ION REDUCTION IN SYNTHETIC GASTRIC JUICE by Jason Dimitrius Keith Bromate ion is a possible carcinogen that is regulated by the US EPA at a Maximum Contamination Level (MCL) of 10 µg/L in drinking water. In order to propose an improved scientifically appropriate bromate ion MCL, a more rigorous scientific methodology is needed for determining low level dose health risks. The objectives of this research project were to measure bromate ion with oxidizing and/or reducing agents typically ingested in foods and drinking water. The loss of bromate ion in HCl is too slow for significant reduction in the stomach. -5 Addition of 10 M H2S, a gastric juice component, decreases the half-life from 153 to 14 minutes. The ingested reducing agents iodide ion, nitrite ion, and iron(II) decrease the lifetime of bromate ion in the stomach. Chlorine, monochloramine, and iron(III) have little actual effect on the lifetime of bromate ion. The measured rates and chemical details of the reactions are discussed. MEASUREMENT AND ANALYSIS OF BROMATE ION REDUCTION IN SYNTHETIC GASTRIC JUICE A Thesis Submitted to the faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science Department of Chemistry by Jason Dimitrius Keith Miami University Oxford, Ohio 2005 Co-Advisor________________ (Dr. Gilbert Gordon) Co-Advisor________________ (Dr. Gilbert E. Pacey) Reader_________________ (Dr. Michael W. Crowder) Reader_________________ (Dr. Hongcai Zhou) TABLE OF CONTENTS TABLE OF CONTENTS ii LIST OF TABLES iii LIST OF FIGURES iv ACKNOWLEDGEMENTS v INTRODUCTION 1 Bromate Ion Chemistry and Human Toxicology 1 Prior Analytical Methodology 6 Objectives 7 METHOD DEVELOPMENT AND ESTABLISHMENT OF PROTOCOLS 7 Solution Preparation 7 Preparation and Measurement of Stock HOCl/ Cl2 and ClNH2 Solutions 11 Measurement of Iron(II) and Iron(III) in Solution 12 Instrumentation.
    [Show full text]
  • Bromate in Sodium Hypochlorite--Potable Water Treatment General
    THE CHLORINE INSTITUTE, INC. Bromate in Sodium Hypochlorite--Potable Water Treatment General On December 16, 2001,Stage I of the Disinfectants / Disinfection Byproducts Rule will require potable water plants to meet a bromate M.C.L. of 10 parts per billion (ppb) in their effluents. Plants that use ozone in their treatment process will be required to test monthly for bromate. Plants that do not use ozone, but use sodium hypochlorite solutions will not need to test, they will be protected by certification to ANSI / NSF Standard # 60 and/or the AWWA Standard for Hypochlorites. Industry is working with both organizations to develop specifications that easily meet this M.C.L. The sodium hypochlorite Industry wants to provide a realistic safety margin so that testing for bromate will not be required in potable water treated with this chemical. How did Bromates Get into Sodium Hypochlorite & Can they be Removed? Bromide ions are found in the salt used to make both chlorine and sodium hydroxide, the two raw materials reacted to form sodium hypochlorite. Virtually all of the bromine in chlorine and the bromide in the sodium hydroxide quickly becomes bromate at the pH of NaOCl . The concentration of bromide varies tremendously in different salt sources. It also partitions between the two chemicals (chlorine and sodium hydroxide) differently depending on the type of electrochemical cells used in the process. Some plants can change their source of salt, while others are located near salt mines and are limited to the salt they have available. Current technology cannot easily or economically remove bromate or its precursor from either the initial salt, the two reactants or the final sodium hypochlorite solution.
    [Show full text]
  • Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
    PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • United States Patent (11) 3,617,305 72) Inventors Jacques R
    United States Patent (11) 3,617,305 72) Inventors Jacques R. Roland Longueil, Quebec; 56 References Cited John Holme, Preville, Quebec, both of UNITED STATES PATENTS Canada 3,304,183 2/1967 Johnston et al............... 99/90 (21) Appl. No. 880,123 Primary Examiner-Raymond N. Jones 22) Filed Nov. 26, 1969 Assistant Examiner-James R. Hoffman 45) Patented Nov. 2, 1971 Attorney-Christen & Sabol 73) Assignee The Ogilve Flour Mills Company, Limited Montreal, Quebec, Canada (32) Priority Nov. 28, 1968 33) Canada 31 03.6423 ABSTRACT: Flour-based, dry mixes for use in the home preparation of yeast-raised products include an additive com (54) FLOUR-BASED DRY MIXESFOR HOMEBAKING position containing defined amounts of an ascorbate com 13 Claims, 9 Drawing Figs. pound, an edible oxidizing agent, and an edible sulfhydryl containing reducing agent. The additive composition inclusion (52) U.S. Cli....................................................... 99/91, permits a substantial reduction in the time usually required for 99.194 the kneading and fermentation steps, and, in certain instances, 51 Int. Cl......................................................... A21d 2/28, either one of these two steps may be eliminated. The flour A21d 2/22, A21d 2/04 based, dry mixes facilitate the home preparation of yeast 50 Field of Search............................................ 99/91,90, raised products within much shorter periods of time and more 94;99/91, 90,94 conveniently than hitherto. PATENTED NOY2 ISI 3,617,305 SHEET 1 OF 4 FIG.1 940 900 860 780 7 l O 100 ppm AA/50ppm Bromate 50ppm AA/50ppm. Bromate. 3. 7 OO 660 620 50ppm AA/25 frn Bromote MIXING, TIME (mins) PATENTED EY2 Cl 3, 67,305 SHEET 2 OF 4 FIG.2.
    [Show full text]
  • Assessment of Combined Toxic Effects of Potassium Bromate and Sodium Nitrite in Some Key Renal Markers in Male Wistar Rats
    Combined toxic effects of potassium bromate and sodium nitrite Adewale et al. Assessment of combined toxic effects of potassium bromate and sodium nitrite in some key renal markers in male Wistar rats *Adewale O.O., Aremu K.H., Adeyemo A.T. Abstract Objective: Potential combined nephrotoxic effect following simultaneous administration of two food additives: potassium bromate (PBR) (20 mg/kg of body weight, twice weekly) and sodium nitrite (SNT) (60mg/kg of body weight as a single dose) orally was investigated. Methods: Nephrotoxicity was assessed by determining urea, creatinine and electrolyte concentrations in the serum. In addition, concentrations of nitric oxide, reduced glutathione, total thiol, malondialdehyde and activities of arginase, adenosine deaminase, catalase, superoxide dismutase, and glutathione perioxidase in the kidney were investigated. Results: The results revealed that individual exposure to PBR or SNT significantly induced nephrotoxicity and oxidative stress in rats however, this was enhanced by co-exposure as evidenced by significant alteration in these kidney markers when compared with the control. Conclusion: This study accentuates the risk of enhanced nephrotoxicity in food containing both additives. Key words: Potassium bromate, sodium nitrite, renal markers. *Corresponding Author Adewale O.O. http://orcid.org/0000-0003-0387-585X Email: [email protected]. Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria Received: June 15, 2019 Accepted: October 16, 2019 Published: March 31, 2020 Research Journal of Health Sciences subscribed to terms and conditions of Open Access publication. Articles are distributed under the terms of Creative Commons Licence (CC BY-NC-ND 4.0). (http://creativecommons.org/licences/by-nc-nd/4.0).
    [Show full text]
  • Occurrence of Chlorite, Chlorate and Bromate in Disinfected Swimming Pool Water
    Polish J. of Environ. Stud. Vol. 16, No. 2 (2007), 237-241 Original Research Occurrence of Chlorite, Chlorate and Bromate in Disinfected Swimming Pool Water R. Michalski*, B. Mathews institute of environmental engineering of Polish Academy of science, 34 sklodowska-curie str., 41-819 zabrze, Poland Received: June 29, 2006 Accepted: November 10, 2006 Abstract Swimming pool water treatment in general includes flocculation, sand filtration and subsequent dis- infection. Chlorite, chlorate and bromate are disinfection by-products of swimming pool water treated by chlorine species or ozone. They are responsible for adverse effects on human health and their analyses in swimming pool water are necessary. The simply and fast suppressed ion chromatography simultaneous separation and conductivity deter- mination of chlorite, chlorate, bromate, fluoride, chloride, nitrate, bromide, phosphate and sulfate in dis- infected swimming pool water has been described. The separation was performed on an anion-exchange column with 1.0 mm na2CO3 + 3.2 mm naHco3 as eluent, and determination by suppressed conductivity detection. chlorite has been found in 5 analyzed samples, chlorate in all of them, and bromate in the 2 samples originated from ozonated swimming pool water. ions were analyzed in the wide concentrations range from 0.05 mg l-1 (bromate) up to 300 mg l-1 (chloride, sulfate). Linearity of disinfection by-products was checked up to 2.0 mg/l (chlorite), 30 mg l-1 (chlorate) and 0.5 mg l-1 (bromate) with a 50 µl injection loop (r2= 0.9966 – 0.9985), respectively. Fluoride, chloride, nitrate, bromide, phosphate, and sulfate did not interfere with target anions.
    [Show full text]
  • Spectrophotometeric Determination of Bromate in Bread by the Oxidation of Dyes *1OJEKA EO
    JASEM ISSN 1119-8362 Full-text Available Online at J. Appl. Sci. Environ. Mgt. September 2006 All rights reserved www.bioline.org.br/ja Vol. 10 (3) 43 - 46 Spectrophotometeric Determination of Bromate in Bread by the Oxidation of Dyes *1OJEKA E O; 2OBIDIAKU MC; 1ENUKORAH, C 1Department of Applied Science, C.S.T, Kaduna Polytechnic P.M.B 20, Kaduna, Nigeria 2K.aduna Refinrery and Petrochemical Company Limited, Kaduna, Nigeria ABSTRACT: A spectrophotometric method for the determination of bromate based on the oxidation of congo red and crystal violet dyes in a hydrochloric acid medium is described. The bromate level in bread samples determined range from 3.70 μg g-1 to 12.10 μg g-1; with limits of quantification of 0.45 – 0.78 μg g-1. Results show the presence of detectable residue levels of potassium bromate in all the bread samples analysed and the results compare favourably with established AOAC method. .@JASEM Bread is food baked from mixed yeast leavened obtained on applying the method of Medina – dough obtained from flour and bromated or Escriche et al (1985) to bread samples. The aim of phosphate flour or their combination in the presence the present study is to modify and highlight the use of Sacharomyces cerevisae yeast and 1% bread bean of dyestuffs in the detremination of bromate in bread flour. The bean flour activates the whitening of the samples as a viable routine method based on the dough, improves the quality of the bread, and work of Medina – Escriche et al (1985). The increases lipoxygenase, which produces described method involves a simple and readily hydroperoxide, an oxidising agent.
    [Show full text]
  • POTASSIUM BROMATE/IODATE in BREAD and BAKERY PRODUCTS CSE Study Results and Recommendations
    A CSE POLICY BRIEF POTASSIUM BROMATE/IODATE IN BREAD AND BAKERY PRODUCTS CSE study results and recommendations INTRODUCTION Use of chemical food additives is a common practice in packaged and processed foods. Not all of them are safe. One such additive is potassium bromate (KBrO3) which, until over two decades ago, was routinely used in most parts of the world to treat flour for bread and bakery products. KBrO3 helped give the product a high rise and uniform finish. Its use as a flour treatment agent was allowed based on the assumption that no residues of bromate would be found in the final product. But following studies demonstrating detectable residues and linking bromate to cancer, global scientific expert committees – during the 1980s and early 1990s – first suggested reducing the allowed limit of use; subsequently, it was recommended that potassium bromate should not be used as a flour treatment agent. Countries across the world started to ban it – but India did not. Use of potassium bromate continues to be allowed to treat flour in our country. In the light of this, Centre for Science and Environment (CSE) decided to check for levels of potassium bromate in breads and bakery products produced in India. Tests conducted by CSE’s Pollution Monitoring Laboratory (PML) found residues of potassium bromate/ iodate in over 84 per cent of bread and bakery samples sourced from Delhi. CSE also got few samples tested by an external third-party laboratory, which confirmed the presence of bromate residues. CSE’s consultations and discussions with industry and scientific experts indicate that potassium bromate is widely used by this sector as it gives high quality results and is permitted by the law.
    [Show full text]
  • MATERIAL SAFETY DATA SHEET According to the Hazard Communication Standard (29 CFR 1910.1200)
    MATERIAL SAFETY DATA SHEET according to the Hazard Communication Standard (29 CFR 1910.1200) Revision Date 08/02/2012 Version 1.1 SECTION 1. Identification Product identifier Product number 109925 Product name Potassium bromate solution for 1000 ml, c(KBrO₃) = 1/₆₀ mol/l (0.1 N) Titrisol® Relevant identified uses of the substance or mixture and uses advised against Identified uses Reagent for analysis Details of the supplier of the safety data sheet Company EMD Millipore Corporation | 290 Concord Road, Billerica, MA 01821, United States of America | SDS Phone Support: +1-978-715-1335 | General Inquiries: +1-978-751-4321 | Monday to Friday, 9:00 AM to 4:00 PM Eastern Time (GMT-5) e-mail: [email protected] Emergency telephone 800-424-9300 CHEMTREC (USA) +1-703-527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2. Hazards identification GHS Classification Carcinogenicity, Category 1B, H350 For the full text of the H-Statements mentioned in this Section, see Section 16. GHS-Labeling Hazard pictograms Signal Word Danger Hazard Statements H350 May cause cancer. Precautionary Statements Page 1 of 8 MATERIAL SAFETY DATA SHEET according to the Hazard Communication Standard (29 CFR 1910.1200) Product number 109925 Version 1.1 Product name Potassium bromate solution for 1000 ml, c(KBrO₃) = 1/₆₀ mol/l (0.1 N) Titrisol® P201 Obtain special instructions before use. P308 + P313 IF exposed or concerned: Get medical advice/ attention. Restricted to professional users. OSHA Hazards This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Other hazards None known.
    [Show full text]