Potassium Bromate

Total Page:16

File Type:pdf, Size:1020Kb

Potassium Bromate POTASSIUM BROMATE VWR International, Pty Ltd Chemwatch: 1484 Issue Date: 25/01/2013 Version No: 6.1.1.1 Print Date: 10/12/2013 Safety Data Sheet according to WHS and ADG requirements S.GHS.AUS.EN SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING Product Identifier Product name POTASSIUM BROMATE Chemical Name potassium bromate Synonyms Br-K-O3, KBrO3, bromic acid potassium salt Proper shipping name POTASSIUM BROMATE Chemical formula BrHO3.K Other means of identification Not Available CAS number 7758-01-2 Relevant identified uses of the substance or mixture and uses advised against Used as laboratory reagent, oxidising agent, permanent wave compound, maturing agent in flour, dough conditioner and food additive. Bromate is Relevant identified uses converted to bromide in the baking or cooking process, but the levels are not in excess of the natural bromide content of many natural foods., Note: Food additive uses restricted as to proportions used., [~Intermediate ~] Details of the supplier of the safety data sheet Registered company name VWR International, Pty Ltd Unit 1/31 Archimedes Place 4172 QLD Address Australia Telephone 61 7 3009 4100 ; 1300 727 696 Fax 61 7 3009 4199 ; 1300 135 123 Website http://au.vwr.com Email [email protected] Emergency telephone number Association / Organisation Not Available Emergency telephone numbers 61 7 3009 4100 ; 1300 727 696 Other emergency telephone numbers 61 7 3009 4100 ; 1300 727 696 SECTION 2 HAZARDS IDENTIFICATION Classification of the substance or mixture HAZARDOUS CHEMICAL. DANGEROUS GOODS. According to the Model WHS Regulations and the ADG Code. CHEMWATCH HAZARD RATINGS Min Max Flammability 0 Toxicity 3 0 = Minimum Body Contact 2 1 = Low 2 = Moderate Reactivity 2 3 = High Chronic 3 4 = Extreme Poisons Schedule S6 GHS Classification[2] Oxidizing Solid Category 1, Oxidizing Solid Category 3, Acute Toxicity (Oral) Category 3, Carcinogen Category 1A Legend: 1. Classified by Chemwatch; 2. Classification drawn from HSIS ; 3. Classification drawn from EC Regolamento 1272/2008 - Annex VI Label elements GHS label elements Continued... Chemwatch: 1484 Page 2 of 7 Issue Date: 25/01/2013 Version No: 6.1.1.1 potassium bromate Print Date: 10/12/2013 SIGNAL WORD DANGER Hazard statement(s) H271 May cause fire or explosion; strong oxidizer H272 May intensify fire; oxidizer H301 Toxic if swallowed H350 May cause cancer Precautionary statement(s) Prevention P201 Obtain special instructions before use. P210 Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P221 Take any precaution to avoid mixing with combustibles/organic material P270 Do not eat, drink or smoke when using this product. P280 Wear protective gloves/protective clothing/eye protection/face protection. P220 Keep/Store away from clothing/organic material/combustible materials. P283 Wear fire/flame resistant/retardant clothing. Precautionary statement(s) Response P301+P310+P331 IF SWALLOWED: Immediately call a POISON CENTER/doctor/physician/first aider. Do NOT induce vomiting. P308+P313 IF exposed or concerned: Get medical advice/attention. P321 Specific treatment (see advice on this label). P330 Rinse mouth. P370+P378 In case of fire: Use… to extinguish. P371+P380+P375 In case of major fire and large quantities: Evacuate area. Fight fire remotely due to the risk of explosion. P306+P360 IF ON CLOTHING: Rinse immediately contaminated clothing and skin with plenty of water before removing clothes. Precautionary statement(s) Storage P405 Store locked up. Precautionary statement(s) Disposal P501 Dispose of contents/container to authorised chemical landfill or if organic to high temperature incineration SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS Substances CAS No %[weight] Name 7758-01-2 100 potassium bromate Mixtures See section above for composition of Substances SECTION 4 FIRST AID MEASURES Description of first aid measures If this product comes in contact with the eyes: Immediately hold eyelids apart and flush the eye continuously with running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and Eye Contact lower lids. Continue flushing until advised to stop by the Poisons Information Centre or a doctor, or for at least 15 minutes. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Skin Contact Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. If fumes, aerosols or combustion products are inhaled remove from contaminated area. Inhalation Other measures are usually unnecessary. Give a slurry of activated charcoal in water to drink. NEVER GIVE AN UNCONSCIOUS PATIENT WATER TO DRINK. At least 3 tablespoons in a glass of water should be given. Although induction of vomiting may be recommended (IN CONSCIOUS PERSONS ONLY), such a first aid measure is dissuaded due to the risk of aspiration of stomach contents. (i) It is better to take the patient to a doctor who can decide on the necessity and method of emptying Ingestion the stomach. (ii) Special circumstances may however exist; these include non-availability of charcoal and the ready availability of the doctor. NOTE: If vomiting is induced, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration. Continued... Chemwatch: 1484 Page 3 of 7 Issue Date: 25/01/2013 Version No: 6.1.1.1 potassium bromate Print Date: 10/12/2013 NOTE: Wear protective gloves when inducing vomiting. REFER FOR MEDICAL ATTENTION WITHOUT DELAY. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the MSDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the MSDS. (ICSC20305/20307) Indication of any immediate medical attention and special treatment needed For inorganic bromates Administer syrup of ipecac or gastric lavage with tap water or perhaps a 1% solution of sodium thiosulfate. Administer a demulcent and an analgesic like meperidine (Demerol). Avoid morphine. If readily available, the prompt use of haemodialysis or peritoneal lavage may serve to remove absorbed but unreacted bromate in significant amounts. Administer oxygen. If methaemoglobinaemia becomes severe a replacement transfusion with whole blood may become necessary. DO NOT attempt to correct methaemoglobinaemia with methylene blue as the dye may enhance the toxicity. Sodium thiosulfate solution (100 to 500 ml of 1%) by intravenous drip has been recommended by some authors. Correct dehydration by infusing intravenously a glucose solution (5% in water). Avoid electrolytes (except as above) unless acid-base imbalance or shock becomes severe. Supportive treatment of acute renal failure. [GOSSELIN et al, Clinical Toxicology of Commercial Products, Fifth Edition] SECTION 5 FIREFIGHTING MEASURES Extinguishing media FOR SMALL FIRE: USE FLOODING QUANTITIES OF WATER. DO NOT Special hazards arising from the substrate or mixture Avoid storage with reducing agents. Fire Incompatibility Avoid any contamination of this material as it is very reactive and any contamination is potentially hazardous Advice for firefighters Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Fire Fighting Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. Will not burn but increases intensity of fire. Heating may cause expansion or decomposition leading to violent rupture of containers. Fire/Explosion Hazard Heat affected containers remain hazardous. Contact with combustibles such as wood, paper, oil or finely divided metal may produce spontaneous combustion or violent decomposition. SECTION 6 ACCIDENTAL RELEASE MEASURES Personal precautions, protective equipment and emergency procedures Clean up all spills immediately. No smoking, naked lights, ignition sources. Minor Spills Avoid all contact with any organic matter including fuel, solvents, sawdust, paper or cloth and other incompatible materials, as ignition may result. Avoid breathing dust or vapours and all contact with skin and eyes. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Major Spills May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Personal Protective Equipment advice is contained in Section 8 of the MSDS. SECTION 7 HANDLING AND STORAGE Precautions for safe handling Avoid personal contact and inhalation of dust, mist or vapours. Provide adequate ventilation. Safe handling Always wear protective equipment and wash off any spillage from clothing. Keep material away from light, heat, flammables or combustibles. Store in original containers. Keep containers securely sealed as supplied. Other information Store in a cool, well ventilated area. Keep dry. Conditions for safe storage, including any incompatibilities
Recommended publications
  • Report of the Advisory Group to Recommend Priorities for the IARC Monographs During 2020–2024
    IARC Monographs on the Identification of Carcinogenic Hazards to Humans Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 Report of the Advisory Group to Recommend Priorities for the IARC Monographs during 2020–2024 CONTENTS Introduction ................................................................................................................................... 1 Acetaldehyde (CAS No. 75-07-0) ................................................................................................. 3 Acrolein (CAS No. 107-02-8) ....................................................................................................... 4 Acrylamide (CAS No. 79-06-1) .................................................................................................... 5 Acrylonitrile (CAS No. 107-13-1) ................................................................................................ 6 Aflatoxins (CAS No. 1402-68-2) .................................................................................................. 8 Air pollutants and underlying mechanisms for breast cancer ....................................................... 9 Airborne gram-negative bacterial endotoxins ............................................................................. 10 Alachlor (chloroacetanilide herbicide) (CAS No. 15972-60-8) .................................................. 10 Aluminium (CAS No. 7429-90-5) .............................................................................................. 11
    [Show full text]
  • Calcium Peroxide (CP) Azodicarbonamide (ADA)
    Enzymatic Solutions to replace chemicals in wheat flour treatments . Calcium Peroxide (CP) . Azodicarbonamide (ADA) Norman Loop Mühlenchemie GmbH & Co. KG Ahrensburg, Germany LP04012001 Agenda Muehlenchemie Chemical oxidants in flour milling industry Regulatory / Legal status How to replace them? Practical Examples . Calcium Peroxide (CP) Replacement . Azodicarbonamide (ADA) Replacement Conclusion Mühlenchemie: the Flour Company We are an innovative enterprise – present in the market for over 90 years: Mühlenchemie makes good flours even better. Established: 1923 Domicile: Ahrensburg / Hamburg Parent company: Stern-Wywiol Gruppe, Hamburg Specialization: . Flour improvers . Enzymes . Vitamin and mineral premixes . Applications consultancy . Analytical service . Training courses and seminars Mühlenchemie: the Flour Company Market position: World market leader in flour improvers Turnover: approx 150 mill. USD Sales: In more than 110 countries globally Production facilities: Germany, China, India, Mexico, Turkey,USA and Malaysia Our dedication to millers: The FlourWorld Museum: a collection of more than 3,000 flour sacks from the milling industry Chemical oxidants in flour milling industry “Would you eat your yoga mat?” Oxidizing Agents as Flour Improvers Azodicarbonamide (ADA) Calcium peroxide (CP) Chlorine & chlorine dioxide Benzoyl peroxide (BPO) Potassium Bromate 7 Calcium Peroxide (CP) Azodicarbonamide (ADA) Slow oxidizing effect Fast oxidizing effect Improves dough handling properties Improves dough stability (drying effect) Improves
    [Show full text]
  • Abstract Measurement and Analysis of Bromate Ion
    ABSTRACT MEASUREMENT AND ANALYSIS OF BROMATE ION REDUCTION IN SYNTHETIC GASTRIC JUICE by Jason Dimitrius Keith Bromate ion is a possible carcinogen that is regulated by the US EPA at a Maximum Contamination Level (MCL) of 10 µg/L in drinking water. In order to propose an improved scientifically appropriate bromate ion MCL, a more rigorous scientific methodology is needed for determining low level dose health risks. The objectives of this research project were to measure bromate ion with oxidizing and/or reducing agents typically ingested in foods and drinking water. The loss of bromate ion in HCl is too slow for significant reduction in the stomach. -5 Addition of 10 M H2S, a gastric juice component, decreases the half-life from 153 to 14 minutes. The ingested reducing agents iodide ion, nitrite ion, and iron(II) decrease the lifetime of bromate ion in the stomach. Chlorine, monochloramine, and iron(III) have little actual effect on the lifetime of bromate ion. The measured rates and chemical details of the reactions are discussed. MEASUREMENT AND ANALYSIS OF BROMATE ION REDUCTION IN SYNTHETIC GASTRIC JUICE A Thesis Submitted to the faculty of Miami University in partial fulfillment of the requirements for the degree of Master of Science Department of Chemistry by Jason Dimitrius Keith Miami University Oxford, Ohio 2005 Co-Advisor________________ (Dr. Gilbert Gordon) Co-Advisor________________ (Dr. Gilbert E. Pacey) Reader_________________ (Dr. Michael W. Crowder) Reader_________________ (Dr. Hongcai Zhou) TABLE OF CONTENTS TABLE OF CONTENTS ii LIST OF TABLES iii LIST OF FIGURES iv ACKNOWLEDGEMENTS v INTRODUCTION 1 Bromate Ion Chemistry and Human Toxicology 1 Prior Analytical Methodology 6 Objectives 7 METHOD DEVELOPMENT AND ESTABLISHMENT OF PROTOCOLS 7 Solution Preparation 7 Preparation and Measurement of Stock HOCl/ Cl2 and ClNH2 Solutions 11 Measurement of Iron(II) and Iron(III) in Solution 12 Instrumentation.
    [Show full text]
  • Bromate in Sodium Hypochlorite--Potable Water Treatment General
    THE CHLORINE INSTITUTE, INC. Bromate in Sodium Hypochlorite--Potable Water Treatment General On December 16, 2001,Stage I of the Disinfectants / Disinfection Byproducts Rule will require potable water plants to meet a bromate M.C.L. of 10 parts per billion (ppb) in their effluents. Plants that use ozone in their treatment process will be required to test monthly for bromate. Plants that do not use ozone, but use sodium hypochlorite solutions will not need to test, they will be protected by certification to ANSI / NSF Standard # 60 and/or the AWWA Standard for Hypochlorites. Industry is working with both organizations to develop specifications that easily meet this M.C.L. The sodium hypochlorite Industry wants to provide a realistic safety margin so that testing for bromate will not be required in potable water treated with this chemical. How did Bromates Get into Sodium Hypochlorite & Can they be Removed? Bromide ions are found in the salt used to make both chlorine and sodium hydroxide, the two raw materials reacted to form sodium hypochlorite. Virtually all of the bromine in chlorine and the bromide in the sodium hydroxide quickly becomes bromate at the pH of NaOCl . The concentration of bromide varies tremendously in different salt sources. It also partitions between the two chemicals (chlorine and sodium hydroxide) differently depending on the type of electrochemical cells used in the process. Some plants can change their source of salt, while others are located near salt mines and are limited to the salt they have available. Current technology cannot easily or economically remove bromate or its precursor from either the initial salt, the two reactants or the final sodium hypochlorite solution.
    [Show full text]
  • Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water
    PROJECT NO. 4992 Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Evaluating Analytical Methods for Detecting Unknown Chemicals in Recycled Water Prepared by: Keith A. Maruya Charles S. Wong Southern California Coastal Water Research Project Authority 2020 The Water Research Foundation (WRF) is a nonprofit (501c3) organization which provides a unified source for One Water research and a strong presence in relationships with partner organizations, government and regulatory agencies, and Congress. The foundation conducts research in all areas of drinking water, wastewater, stormwater, and water reuse. The Water Research Foundation’s research portfolio is valued at over $700 million. The Foundation plays an important role in the translation and dissemination of applied research, technology demonstration, and education, through creation of research‐based educational tools and technology exchange opportunities. WRF serves as a leader and model for collaboration across the water industry and its materials are used to inform policymakers and the public on the science, economic value, and environmental benefits of using and recovering resources found in water, as well as the feasibility of implementing new technologies. For more information, contact: The Water Research Foundation Alexandria, VA Office Denver, CO Office 1199 North Fairfax Street, Suite 900 6666 West Quincy Avenue Alexandria, VA 22314‐1445 Denver, Colorado 80235‐3098 Tel: 571.384.2100 Tel: 303.347.6100 www.waterrf.org [email protected] ©Copyright 2020 by The Water Research Foundation. All rights reserved. Permission to copy must be obtained from The Water Research Foundation. WRF ISBN: 978‐1‐60573‐503‐0 WRF Project Number: 4992 This report was prepared by the organization(s) named below as an account of work sponsored by The Water Research Foundation.
    [Show full text]
  • United States Patent (11) 3,617,305 72) Inventors Jacques R
    United States Patent (11) 3,617,305 72) Inventors Jacques R. Roland Longueil, Quebec; 56 References Cited John Holme, Preville, Quebec, both of UNITED STATES PATENTS Canada 3,304,183 2/1967 Johnston et al............... 99/90 (21) Appl. No. 880,123 Primary Examiner-Raymond N. Jones 22) Filed Nov. 26, 1969 Assistant Examiner-James R. Hoffman 45) Patented Nov. 2, 1971 Attorney-Christen & Sabol 73) Assignee The Ogilve Flour Mills Company, Limited Montreal, Quebec, Canada (32) Priority Nov. 28, 1968 33) Canada 31 03.6423 ABSTRACT: Flour-based, dry mixes for use in the home preparation of yeast-raised products include an additive com (54) FLOUR-BASED DRY MIXESFOR HOMEBAKING position containing defined amounts of an ascorbate com 13 Claims, 9 Drawing Figs. pound, an edible oxidizing agent, and an edible sulfhydryl containing reducing agent. The additive composition inclusion (52) U.S. Cli....................................................... 99/91, permits a substantial reduction in the time usually required for 99.194 the kneading and fermentation steps, and, in certain instances, 51 Int. Cl......................................................... A21d 2/28, either one of these two steps may be eliminated. The flour A21d 2/22, A21d 2/04 based, dry mixes facilitate the home preparation of yeast 50 Field of Search............................................ 99/91,90, raised products within much shorter periods of time and more 94;99/91, 90,94 conveniently than hitherto. PATENTED NOY2 ISI 3,617,305 SHEET 1 OF 4 FIG.1 940 900 860 780 7 l O 100 ppm AA/50ppm Bromate 50ppm AA/50ppm. Bromate. 3. 7 OO 660 620 50ppm AA/25 frn Bromote MIXING, TIME (mins) PATENTED EY2 Cl 3, 67,305 SHEET 2 OF 4 FIG.2.
    [Show full text]
  • Assessment of Combined Toxic Effects of Potassium Bromate and Sodium Nitrite in Some Key Renal Markers in Male Wistar Rats
    Combined toxic effects of potassium bromate and sodium nitrite Adewale et al. Assessment of combined toxic effects of potassium bromate and sodium nitrite in some key renal markers in male Wistar rats *Adewale O.O., Aremu K.H., Adeyemo A.T. Abstract Objective: Potential combined nephrotoxic effect following simultaneous administration of two food additives: potassium bromate (PBR) (20 mg/kg of body weight, twice weekly) and sodium nitrite (SNT) (60mg/kg of body weight as a single dose) orally was investigated. Methods: Nephrotoxicity was assessed by determining urea, creatinine and electrolyte concentrations in the serum. In addition, concentrations of nitric oxide, reduced glutathione, total thiol, malondialdehyde and activities of arginase, adenosine deaminase, catalase, superoxide dismutase, and glutathione perioxidase in the kidney were investigated. Results: The results revealed that individual exposure to PBR or SNT significantly induced nephrotoxicity and oxidative stress in rats however, this was enhanced by co-exposure as evidenced by significant alteration in these kidney markers when compared with the control. Conclusion: This study accentuates the risk of enhanced nephrotoxicity in food containing both additives. Key words: Potassium bromate, sodium nitrite, renal markers. *Corresponding Author Adewale O.O. http://orcid.org/0000-0003-0387-585X Email: [email protected]. Department of Biochemistry, Faculty of Basic and Applied Sciences, Osun State University, Osogbo, Nigeria Received: June 15, 2019 Accepted: October 16, 2019 Published: March 31, 2020 Research Journal of Health Sciences subscribed to terms and conditions of Open Access publication. Articles are distributed under the terms of Creative Commons Licence (CC BY-NC-ND 4.0). (http://creativecommons.org/licences/by-nc-nd/4.0).
    [Show full text]
  • Occurrence of Chlorite, Chlorate and Bromate in Disinfected Swimming Pool Water
    Polish J. of Environ. Stud. Vol. 16, No. 2 (2007), 237-241 Original Research Occurrence of Chlorite, Chlorate and Bromate in Disinfected Swimming Pool Water R. Michalski*, B. Mathews institute of environmental engineering of Polish Academy of science, 34 sklodowska-curie str., 41-819 zabrze, Poland Received: June 29, 2006 Accepted: November 10, 2006 Abstract Swimming pool water treatment in general includes flocculation, sand filtration and subsequent dis- infection. Chlorite, chlorate and bromate are disinfection by-products of swimming pool water treated by chlorine species or ozone. They are responsible for adverse effects on human health and their analyses in swimming pool water are necessary. The simply and fast suppressed ion chromatography simultaneous separation and conductivity deter- mination of chlorite, chlorate, bromate, fluoride, chloride, nitrate, bromide, phosphate and sulfate in dis- infected swimming pool water has been described. The separation was performed on an anion-exchange column with 1.0 mm na2CO3 + 3.2 mm naHco3 as eluent, and determination by suppressed conductivity detection. chlorite has been found in 5 analyzed samples, chlorate in all of them, and bromate in the 2 samples originated from ozonated swimming pool water. ions were analyzed in the wide concentrations range from 0.05 mg l-1 (bromate) up to 300 mg l-1 (chloride, sulfate). Linearity of disinfection by-products was checked up to 2.0 mg/l (chlorite), 30 mg l-1 (chlorate) and 0.5 mg l-1 (bromate) with a 50 µl injection loop (r2= 0.9966 – 0.9985), respectively. Fluoride, chloride, nitrate, bromide, phosphate, and sulfate did not interfere with target anions.
    [Show full text]
  • Spectrophotometeric Determination of Bromate in Bread by the Oxidation of Dyes *1OJEKA EO
    JASEM ISSN 1119-8362 Full-text Available Online at J. Appl. Sci. Environ. Mgt. September 2006 All rights reserved www.bioline.org.br/ja Vol. 10 (3) 43 - 46 Spectrophotometeric Determination of Bromate in Bread by the Oxidation of Dyes *1OJEKA E O; 2OBIDIAKU MC; 1ENUKORAH, C 1Department of Applied Science, C.S.T, Kaduna Polytechnic P.M.B 20, Kaduna, Nigeria 2K.aduna Refinrery and Petrochemical Company Limited, Kaduna, Nigeria ABSTRACT: A spectrophotometric method for the determination of bromate based on the oxidation of congo red and crystal violet dyes in a hydrochloric acid medium is described. The bromate level in bread samples determined range from 3.70 μg g-1 to 12.10 μg g-1; with limits of quantification of 0.45 – 0.78 μg g-1. Results show the presence of detectable residue levels of potassium bromate in all the bread samples analysed and the results compare favourably with established AOAC method. .@JASEM Bread is food baked from mixed yeast leavened obtained on applying the method of Medina – dough obtained from flour and bromated or Escriche et al (1985) to bread samples. The aim of phosphate flour or their combination in the presence the present study is to modify and highlight the use of Sacharomyces cerevisae yeast and 1% bread bean of dyestuffs in the detremination of bromate in bread flour. The bean flour activates the whitening of the samples as a viable routine method based on the dough, improves the quality of the bread, and work of Medina – Escriche et al (1985). The increases lipoxygenase, which produces described method involves a simple and readily hydroperoxide, an oxidising agent.
    [Show full text]
  • POTASSIUM BROMATE/IODATE in BREAD and BAKERY PRODUCTS CSE Study Results and Recommendations
    A CSE POLICY BRIEF POTASSIUM BROMATE/IODATE IN BREAD AND BAKERY PRODUCTS CSE study results and recommendations INTRODUCTION Use of chemical food additives is a common practice in packaged and processed foods. Not all of them are safe. One such additive is potassium bromate (KBrO3) which, until over two decades ago, was routinely used in most parts of the world to treat flour for bread and bakery products. KBrO3 helped give the product a high rise and uniform finish. Its use as a flour treatment agent was allowed based on the assumption that no residues of bromate would be found in the final product. But following studies demonstrating detectable residues and linking bromate to cancer, global scientific expert committees – during the 1980s and early 1990s – first suggested reducing the allowed limit of use; subsequently, it was recommended that potassium bromate should not be used as a flour treatment agent. Countries across the world started to ban it – but India did not. Use of potassium bromate continues to be allowed to treat flour in our country. In the light of this, Centre for Science and Environment (CSE) decided to check for levels of potassium bromate in breads and bakery products produced in India. Tests conducted by CSE’s Pollution Monitoring Laboratory (PML) found residues of potassium bromate/ iodate in over 84 per cent of bread and bakery samples sourced from Delhi. CSE also got few samples tested by an external third-party laboratory, which confirmed the presence of bromate residues. CSE’s consultations and discussions with industry and scientific experts indicate that potassium bromate is widely used by this sector as it gives high quality results and is permitted by the law.
    [Show full text]
  • MATERIAL SAFETY DATA SHEET According to the Hazard Communication Standard (29 CFR 1910.1200)
    MATERIAL SAFETY DATA SHEET according to the Hazard Communication Standard (29 CFR 1910.1200) Revision Date 08/02/2012 Version 1.1 SECTION 1. Identification Product identifier Product number 109925 Product name Potassium bromate solution for 1000 ml, c(KBrO₃) = 1/₆₀ mol/l (0.1 N) Titrisol® Relevant identified uses of the substance or mixture and uses advised against Identified uses Reagent for analysis Details of the supplier of the safety data sheet Company EMD Millipore Corporation | 290 Concord Road, Billerica, MA 01821, United States of America | SDS Phone Support: +1-978-715-1335 | General Inquiries: +1-978-751-4321 | Monday to Friday, 9:00 AM to 4:00 PM Eastern Time (GMT-5) e-mail: [email protected] Emergency telephone 800-424-9300 CHEMTREC (USA) +1-703-527-3887 CHEMTREC (International) 24 Hours/day; 7 Days/week SECTION 2. Hazards identification GHS Classification Carcinogenicity, Category 1B, H350 For the full text of the H-Statements mentioned in this Section, see Section 16. GHS-Labeling Hazard pictograms Signal Word Danger Hazard Statements H350 May cause cancer. Precautionary Statements Page 1 of 8 MATERIAL SAFETY DATA SHEET according to the Hazard Communication Standard (29 CFR 1910.1200) Product number 109925 Version 1.1 Product name Potassium bromate solution for 1000 ml, c(KBrO₃) = 1/₆₀ mol/l (0.1 N) Titrisol® P201 Obtain special instructions before use. P308 + P313 IF exposed or concerned: Get medical advice/ attention. Restricted to professional users. OSHA Hazards This material is considered hazardous by the OSHA Hazard Communication Standard (29 CFR 1910.1200). Other hazards None known.
    [Show full text]
  • Sodium Bromate (Cas No
    NTP REPORT ON THE TOXICOLOGY STUDIES OF SODIUM BROMATE (CAS NO. 7789-38-0) IN GENETICALLY MODIFIED (FVB Tg.AC HEMIZYGOUS) MICE (DERMAL AND DRINKING WATER STUDIES) AND CARCINOGENICITY STUDIES OF SODIUM BROMATE IN GENETICALLY MODIFIED [B6.129-Trp53tm1Brd (N5) HAPLOINSUFFICIENT] MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 2007 NTP GMM 6 NIH Publication No. 07-4423 National Institutes of Health Public Health Service U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES FOREWORD The National Toxicology Program (NTP) is an interagency program within the Public Health Service (PHS) of the Department of Health and Human Services (HHS) and is headquartered at the National Institute of Environmental Health Sciences of the National Institutes of Health (NIEHS/NIH). Three agencies contribute resources to the program: NIEHS/NIH, the National Institute for Occupational Safety and Health of the Centers for Disease Control and Prevention (NIOSH/CDC), and the National Center for Toxicological Research of the Food and Drug Administration (NCTR/FDA). Established in 1978, the NTP is charged with coordinating toxicological testing activities, strengthening the science base in toxicology, developing and validating improved testing methods, and providing information about potentially toxic substances to health regulatory and research agencies, scientific and medical communities, and the public. The Genetically Modified Model (GMM) Report series began in 2005 with studies conducted by the NTP. The studies described in the GMM Report series are designed and conducted to characterize and evaluate the toxicologic potential, including carcinogenic activity, of selected agents in laboratory animals that have been genetically modified.
    [Show full text]