The First Finding of Bryozoan Pectinatella Magnifica (Lophopodidae) in Lower Danube
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Plant Macrofossil Evidence for an Early Onset of the Holocene Summer Thermal Maximum in Northernmost Europe
ARTICLE Received 19 Aug 2014 | Accepted 27 Feb 2015 | Published 10 Apr 2015 DOI: 10.1038/ncomms7809 OPEN Plant macrofossil evidence for an early onset of the Holocene summer thermal maximum in northernmost Europe M. Va¨liranta1, J.S. Salonen2, M. Heikkila¨1, L. Amon3, K. Helmens4, A. Klimaschewski5, P. Kuhry4, S. Kultti2, A. Poska3,6, S. Shala4, S. Veski3 & H.H. Birks7 Holocene summer temperature reconstructions from northern Europe based on sedimentary pollen records suggest an onset of peak summer warmth around 9,000 years ago. However, pollen-based temperature reconstructions are largely driven by changes in the proportions of tree taxa, and thus the early-Holocene warming signal may be delayed due to the geographical disequilibrium between climate and tree populations. Here we show that quantitative summer-temperature estimates in northern Europe based on macrofossils of aquatic plants are in many cases ca.2°C warmer in the early Holocene (11,700–7,500 years ago) than reconstructions based on pollen data. When the lag in potential tree establishment becomes imperceptible in the mid-Holocene (7,500 years ago), the reconstructed temperatures converge at all study sites. We demonstrate that aquatic plant macrofossil records can provide additional and informative insights into early-Holocene temperature evolution in northernmost Europe and suggest further validation of early post-glacial climate development based on multi-proxy data syntheses. 1 Department of Environmental Sciences, ECRU, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland. 2 Department of Geosciences and Geography, University of Helsinki, P.O. Box 65, Helsinki FI-00014, Finland. -
World-Wide Distribution of the Bryozoan Pectinatella Magnifica (Leidy 1851)
96 European Journal of Environmental Sciences WORLD-WIDE DISTRIBUTION OF THE BRYOZOAN PECTINATELLA MAGNIFICA (LEIDY 1851) ZUZANA BALOUNOVÁ1, EVA PECHOUŠKOVÁ1, JOSEF RAJCHARD1,*, VÍT JOZA1, and JAN ŠINKO2 1 Faculty of Agriculture, University of South Bohemia, CZ 370 05, České Budějovice, Czech Republic 2 Faculty of Fisheries and Protection of Waters, University of South Bohemia, CZ 389 01, Vodňany, Czech Republic * Corresponding author: [email protected] ABSTRACT Pectinatella magnifica (Leidy 1851) is an invasive freshwater colonial animal belonging to the phylum Bryozoa. It is native to the area east of the Mississippi River, from Ontario to Florida. Currently it occurs throughout North America and the first record for it outside that continent was for Bille near Hamburg in 1883. Later, it was found in the Elbe (Havel by Spandau), in Tegeler See, a pond in Wroclaw and in Silesia and Brandenburg. In addition, floatoblasts of P. magnifica were found in the upper Elbe in Germany in the 1950s. Then, P. magnifica spread to the area of Spandau in Berlin and the Oder, and Wroclaw. It is also recorded in Romania and Turkey. In France, it was recorded occurring in the area called Franche-Comté in 1994. Its occurrence in the Netherlands was first reported in 2003 and then each following year. The newest discoveries are for the Rhine basin in the area between Luxembourg and Germany. Recently, it was also recorded in the Czech Republic and Austria. Besides Europe and North America, it is also recorded in Japan and Korea. The statoblasts of P. magnifica are spread by flowing water, zoochory and probably also by anthropochory. -
Taxonomic Study of Freshwater Bryozoans from Jeju Island, Korea
Journal of Species Research 6(Special Edition):129-134, 2017 Taxonomic study of freshwater bryozoans from Jeju Island, Korea Hyun Sook Chae1, Hyun Jong Kil2 and Ji Eun Seo3,* 1Department of Food-Biotechnology, Woosuk University, Jeonbuk 55338, Republic of Korea 2Animal Resources Division, National Institute of Biological Resources, Incheon 22689, Republic of Korea 3Department of Eco-Biological Science, Woosuk University, Chungbuk 27841, Republic of Korea *Correspondent: [email protected] This study aims to investigate the freshwater bryozoans of Jeju Island off the Korean Peninsula for the first time. To date, twelve species has been reported from the mainland of Korea. However, no study of freshwater bryozoans has ever been conducted on Korean islands including Jeju Island, which is the largest island in Korea. Five species in three genera Fredericella, Plumatella and Stephanella, from Jeju Island are described. Of which, three species, Fredericella indica, Plumatella mukaii and P. rugosa, are new records of Korean bryozoan fauna. As a result of this study, the number of identified Korean freshwater bryozoans is now 15 species, including 12 phylactolaemates and three gymnolaemates. Keywords: freshwater bryozoans, Fredericella, Jeju Island, Plumatella, Stephanella Ⓒ 2017 National Institute of Biological Resources DOI:10.12651/JSR.2017.6(S).129 INTRODUCTION from nine natural and artificial reservoirs and ponds on Jeju Island from 2015 to 2016 (Fig. 1). Colonies were The phylum Bryozoa consists of three classes, the collected from the substrata, such as water caltrop and Phylactolaemata, members of which are found in fresh- wood. Floatoblasts were collected by examining floating water, and the Stenolaemata and Gymnolaemata, which debris that had accumulated downwind or downstream are found mostly in marine habitat. -
Studies on Fresh-Water Byrozoa. XVII, Michigan Bryozoa
STUDIES ON FRESH-WATER BRYOZOA, XVII. MICHIGAN BRYOZOA MARY D. ROGICK, College of New Roche lie, New Rochelle, N. Y. AND HENRY VAN DER SCHALIE, University of Michigan, Ann Arbor, Mich. INTRODUCTION The purpose of the present study is to record the occurrence of several bryozoan species from localities new to Michigan and other regions; to compile a list of the bryozoa previously recorded from Michigan; and to correct or revise the identifica- tion of some of the species collected long ago. Records published by various writers from 1882 through 1949 have reported the following bryozoa from different Michigan localities, sometimes under synonyms or outmoded names: Class ECTOPROCTA Order GYMNOLAEMATA * Family Paludicellidae 1. Paludicella articulata (Ehrenberg) 1831 ORDER PHYLACTOLAEMATA Family Cristatellidae 2. Cristatella mucedo Cuvier 1798 Family Fredericellidae 3. Fredericella sultana (Blumenbach) 1779 Family Lophopodidae 4. Pectinatella magnifica Leidy 1851 Family PRimatellidae 5. Hyalinella punctata (Hancock) 1850 6. Plumatella casmiana Oka 1907 7. Plumatella or bis per ma Kellicott 1882 8. Plumatella repens (Linnaeus) 1758 9. Plumatella repens var. coralloides (Allman) 1850 10. Plumatella repens var. emarginata (Allman) 1844 11. Stolella indica Annandale 1909 The recorded localities for the above list of bryozoa are named in Table I. The sixteen references from which the Table was compiled are on file with both authors and are not here reproduced. To the above listed species the present study adds the following two new Michigan records: Class ECTOPROCTA Family Plumatellidae Plumatella repens var. jugalis (Allman) 1850 Class ENTOPROCTA Family Urnatellidae Urnatella gracilis Leidy 1851 In addition to the Urnatella gracilis and the Plumatella repens jugalis three other bryozoa (Paludicella articulata, Plumatella casmiana and Plumatella repens var. -
Natural Communities of Michigan: Classification and Description
Natural Communities of Michigan: Classification and Description Prepared by: Michael A. Kost, Dennis A. Albert, Joshua G. Cohen, Bradford S. Slaughter, Rebecca K. Schillo, Christopher R. Weber, and Kim A. Chapman Michigan Natural Features Inventory P.O. Box 13036 Lansing, MI 48901-3036 For: Michigan Department of Natural Resources Wildlife Division and Forest, Mineral and Fire Management Division September 30, 2007 Report Number 2007-21 Version 1.2 Last Updated: July 9, 2010 Suggested Citation: Kost, M.A., D.A. Albert, J.G. Cohen, B.S. Slaughter, R.K. Schillo, C.R. Weber, and K.A. Chapman. 2007. Natural Communities of Michigan: Classification and Description. Michigan Natural Features Inventory, Report Number 2007-21, Lansing, MI. 314 pp. Copyright 2007 Michigan State University Board of Trustees. Michigan State University Extension programs and materials are open to all without regard to race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, marital status or family status. Cover photos: Top left, Dry Sand Prairie at Indian Lake, Newaygo County (M. Kost); top right, Limestone Bedrock Lakeshore, Summer Island, Delta County (J. Cohen); lower left, Muskeg, Luce County (J. Cohen); and lower right, Mesic Northern Forest as a matrix natural community, Porcupine Mountains Wilderness State Park, Ontonagon County (M. Kost). Acknowledgements We thank the Michigan Department of Natural Resources Wildlife Division and Forest, Mineral, and Fire Management Division for funding this effort to classify and describe the natural communities of Michigan. This work relied heavily on data collected by many present and former Michigan Natural Features Inventory (MNFI) field scientists and collaborators, including members of the Michigan Natural Areas Council. -
Comparative Genomic Analysis of Cristatella Mucedo Provides Insights Into Bryozoan Evolution and Nervous System Function
bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Comparative genomic analysis of Cristatella mucedo provides insights into Bryozoan evolution and nervous system function Viktor V Starunov1,2†, Alexander V Predeus3†*, Yury A Barbitoff3, Vladimir A Kutiumov1, Arina L Maltseva1, Ekatherina A Vodiasova4, Andrea B Kohn5, Leonid L Moroz5*, Andrew N Ostrovsky1,6* 1 Department of Invertebrate Zoology, Faculty of Biology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia 2 Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, 199034, St. Petersburg, Russia 3 Bioinformatics Institute, Kantemirovskaya 2A, 197342, St. Petersburg, Russia 4 A.O. Kovalevsky Institute of Biology of the Southern Seas, Russian Academy of Sciences, Leninsky pr. 38/3, 119991, Moscow, Russia 5 The Whitney Laboratory for Marine Bioscience, University of Florida, 9505 Ocean Shore Blvd, St Augustine, FL 32080, USA 6 Department of Paleontology, Faculty of Earth Sciences, Geography and Astronomy, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria † These authors contributed equally to the study. * To whom correspondence should be addressed: [email protected], [email protected], [email protected] bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 14, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Comparative Genomic Analysis of Cristatella Mucedo Provides Insights Into Bryozoan
bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Comparative genomic analysis of Cristatella mucedo provides insights into Bryozoan evolution and nervous system function Viktor V Starunov1,2†, Alexander V Predeus3†*, Yury A Barbitoff3, Vladimir A Kutyumov1, Arina L Maltseva1, Ekatherina A Vodiasova4 Andrea B Kohn5, Leonid L Moroz4,5*, Andrew N Ostrovsky1,6* 1 Department of invertebrate zoology, Saint Petersburg State University, Universitetskaya nab. 7/9, 199034, St. Petersburg, Russia 2 Zoological Institute RAS, Universitetskaya nab. 1, 199034, St. Petersburg, Russia 3 Bioinformatics Institute, Kantemirovskaya 2A, 197342, St. Petersburg, Russia 4 A.O. Kovalevsky Institute of Biology of the Southern Seas RAS, Leninsky pr. 38/3, 119991, Moscow, Russia 5 The Whitney Laboratory for Marine Bioscience, University of Florida 6 University of Vienna † These authors contributed equally to the study. * To whom correspondence should be addressed: [email protected], [email protected], [email protected] bioRxiv preprint doi: https://doi.org/10.1101/869792; this version posted December 10, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Abstract The modular body organization is an enigmatic feature of different animal phyla scattered throughout the phylogenetic tree. -
AFLP Reveals Low Genetic Diversity of the Bryozoan Pectinatella Magnifica (Leidy, 1851) in the Czech Republic
This is a repository copy of AFLP reveals low genetic diversity of the bryozoan Pectinatella magnifica (Leidy, 1851) in the Czech Republic. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/129044/ Version: Published Version Article: Moravcová, Vendula, Moravcová, Jana, Čurn, Vladislav et al. (3 more authors) (2017) AFLP reveals low genetic diversity of the bryozoan Pectinatella magnifica (Leidy, 1851) in the Czech Republic. Journal of biological research (Thessalonike, Greece). 12. p. 6. ISSN 1790-045X https://doi.org/10.1186/s40709-017-0069-8 Reuse This article is distributed under the terms of the Creative Commons Attribution (CC BY) licence. This licence allows you to distribute, remix, tweak, and build upon the work, even commercially, as long as you credit the authors for the original work. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Moravcová et al. J of Biol Res-Thessaloniki (2017) 24:12 DOI 10.1186/s40709-017-0069-8 Journal of Biological Research-Thessaloniki SHORT REPORT Open Access AFLP reveals low genetic diversity of the bryozoan Pectinatella magnifica (Leidy, 1851) in the Czech Republic Vendula Moravcová1, Jana Moravcová1, Vladislav Čurn1, Zuzana Balounová1, Josef Rajchard1 and Lenka Havlíčková1,2* Abstract Background: Non-native species have aroused scientific interest because of their ability to successfully colonise areas to which they have been introduced, despite their sometimes limited genetic variation compared to their native range. -
Taxonomy, Distribution, and Ecology of the Freshwater Bryozoans (Ectoprocta) of Eastern Canada
Taxonomy, distribution, and ecology of the freshwater bryozoans (Ectoprocta) of eastern Canada ANTHONYRICC IARDI Department of Biology, McGill University, 1205 Doctor Penfield Avenue, Montre'al, PQ H3A 1B1, Canada AND HENRYM. REISWIG Redpath Museum and Department of Biology, McGill University, 859 Sherhrooke Street West, Montre'al, PQ H3A 2K6, Canada Received October 5, 1993 Accepted December 17, 1993 RICCIARDI,A., and REISWIG,H.M. 1994. Taxonomy, distribution, and ecology of the freshwater bryozoans (Ectoprocta) of eastern Canada. Can. J. Zool. 72: 339-3 5 9. The freshwater Bryozoa (Ectoprocta) are one of the most poorly known faunal groups in Canada. A recent survey of 80 freshwater habitats in eastern Canada (from Ontario to Newfoundland) revealed 14 species of bryozoans, representing 56% of described species in North America. The greatest numbers of species and specimens were found in alkaline waters (pH 7.0-9.8) near lake outflows, wherever hard substrates were present. Paludicella articulata, Cristatella mucedo, Fredericella indica, and Plumatella fungosa are among the most frequently encountered, widely distributed, and eurytopic species. Pottsiella erecta and Plumatella fruticosa are rare, and new to eastern Canada. Lophopodella carteri, an exotic Asian species discovered in Lake Erie in the early 1930s, has become firmly established in the lower Ottawa and upper St. Lawrence rivers. Detailed notes on taxonomy, morphology, distribution, and ecology are given for each bryozoan. New limits of tolerance to water temperature, pH, and calcium and magnesium hardness are established for several species. A taxonomic key to the freshwater bryozoans of eastern Canada, including a key to statoblast types, is presented for the first time. -
Mineralogical and Elemental Composition of Pectinatella Magnifica
minerals Article Mineralogical and Elemental Composition of Pectinatella magnifica and Its Statoblasts Kazue Tazaki 1,*, Atsuko Fukuyama 2, Fumie Tazaki 3, Masayuki Okuno 4, Yumiko Hashida 5, Shozo Hashida 5, Teruaki Takehara 6, Keiichi Nakamura 7 and Tomohiro Kato 8 1 Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan 2 Headquarters for Innovative Society Academia Cooperation, University of Fukui, 3-9-1 Bunkyo, Fukui 910-8507, Japan; [email protected] 3 Department of Occupational Therapy, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka Prefecture 597-0104, Japan; [email protected] 4 Department of Earth and Planetary Sciences, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan; [email protected] 5 Kahokugata Lake Institute, Na 9-9, Kitachujo, Tsubata, Kahokugun, Ishikawa 929-0342, Japan; [email protected] (Y.H.); [email protected] (S.H.) 6 Medical Research Institute, Kanazawa Medical University, 1-1 Daigaku, Uchinada, Kahokugun, Ishikawa 929-0342, Japan; [email protected] 7 Yamato Environment Analysis Co., Ltd, 273 Santanda, Kawakita, Nomi-gun, Ishikawa 923-1253, Japan; [email protected] 8 Graduate School of Natural Science and Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan; [email protected] * Correspondence: [email protected]; Tel./Fax: +81-76-223-6977 Received: 19 March 2018; Accepted: 31 May 2018; Published: 7 June 2018 Abstract: Several massive colonies of Pectinatella magnifica have been observed during the summer almost every year since 1974 in agricultural reservoir ponds and lakes with dirty freshwater environments in Ishikawa, Japan, which has posed serious environmental problems on the shores of Hokuriku District. -
Note to Users
Odors And Ornaments In Crested Auklets (Aethia Cristatella): Signals Of Mate Quality? Item Type Thesis Authors Douglas, Hector D., Iii Download date 24/09/2021 03:31:59 Link to Item http://hdl.handle.net/11122/8905 NOTE TO USERS Page(s) missing in number only; text follows. Page(s) were scanned as received. 61 , 62 , 201 This reproduction is the best copy available. ® UMI Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. ODORS AND ORNAMENTS IN CRESTED AUKLETS (AETHIA CRISTATELLA): SIGNALS OF MATE QUALITY ? A DISSERTATION Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY By Hector D. Douglas III, B.A., B.S., M.S., M.F.A. Fairbanks, Alaska August 2006 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3240323 Copyright 2007 by Douglas, Hector D., Ill All rights reserved. INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleed-through, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. ® UMI UMI Microform 3240323 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. -
The Relative Importance of Eutrophication and Connectivity in Structuring Biological Communities of the Upper Lough Erne System, Northern Ireland
THE RELATIVE IMPORTANCE OF EUTROPHICATION AND CONNECTIVITY IN STRUCTURING BIOLOGICAL COMMUNITIES OF THE UPPER LOUGH ERNE SYSTEM, NORTHERN IRELAND Thesis submitted for the degree of Doctor of Philosophy University College London by JORGE SALGADO Department of Geography University College London and Department of Zoology Natural History Museum December 2011 1 2 Abstract This study investigates the relative importance of eutrophication and connectivity (dispersal) in structuring macrophyte and invertebrate lake assemblages across spatial and temporal scales in the Upper Lough Erne (ULE) system, Northern Ireland. Riverine systems and their associated flood-plains and lakes comprise dynamic diverse landscapes in which water flow plays a key role in affecting connectivity. However, as for many other freshwater systems, their ecological integrity is threatened by eutrophication and hydrological alteration. Eutrophication results in a shift from primarily benthic to primarily pelagic primary production and reductions in species diversity, while flow regulation often reduces water level fluctuation and hydrological connectivity in linked riverine systems. Low water levels promote isolation between areas and increases the importance of local driving forces (e.g. eutrophication). Conversely, enhanced water flow and flooding events promote connectivity in systems thus potentially increasing local diversity and homogenising habitats through the exchange of species. Therefore, connectivity may help to override the local effects of eutrophication. Attempts at testing the above ideas are rare and typically involve the examination of current community patterns using space for time substitution. However, biological community responses to eutrophication and changes in hydrological connectivity may involve lags, historical contingency, and may be manifested over intergenerational timescales (10s -100s of years), rendering modern studies less than satisfactory for building an understanding of processes that drive community structure and effect change.