Metasurfaces for Biomedical Applications: Imaging and Sensing

Total Page:16

File Type:pdf, Size:1020Kb

Metasurfaces for Biomedical Applications: Imaging and Sensing Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective Shuyan Zhang, Chi Wong, Shuwen Zeng, Renzhe Bi, Kolvyn Tai, Kishan Dholakia, Malini Olivo To cite this version: Shuyan Zhang, Chi Wong, Shuwen Zeng, Renzhe Bi, Kolvyn Tai, et al.. Metasurfaces for biomedi- cal applications: imaging and sensing from a nanophotonics perspective. Nanophotonics, Walter de Gruyter, 2020, 10 (1), pp.259 - 293. 10.1515/nanoph-2020-0373. hal-03123677 HAL Id: hal-03123677 https://hal.archives-ouvertes.fr/hal-03123677 Submitted on 28 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Nanophotonics 2021; 10(1): 259–293 Review Shuyan Zhang, Chi Lok Wong, Shuwen Zeng, Renzhe Bi, Kolvyn Tai, Kishan Dholakia and Malini Olivo* Metasurfaces for biomedical applications: imaging and sensing from a nanophotonics perspective https://doi.org/10.1515/nanoph-2020-0373 introducing the metasurface concept to the biomedical Received July 4, 2020; accepted August 17, 2020; published online community; and secondly by assisting the metasurface September 7, 2020 community to understand the needs and realize the op- portunities in the medical fields. In addition, this article Abstract: Metasurface is a recently developed nano- provides two knowledge boxes describing the design pro- photonics concept to manipulate the properties of light by cess of a metasurface lens and the performance matrix of a replacing conventional bulky optical components with biosensor, which serve as a “crash-course” introduction to ultrathin (more than 104 times thinner) flat optical com- those new to both fields. ponents. Since the first demonstration of metasurfaces in 2011, they have attracted tremendous interest in the Keywords: bioimaging; biophotonics; biosensing; meta- consumer optics and electronics industries. Recently, surface; nanophotonics. metasurface-empowered novel bioimaging and biosensing tools have emerged and been reported. Given the recent advances in metasurfaces in biomedical engineering, this 1 Introduction review article covers the state of the art for this technology and provides a comprehensive interdisciplinary perspec- From auroras and rainbows to the human eye – light has tive on this field. The topics that we have covered include fascinated scientists for centuries. Today, optical technol- metasurfaces for chiral imaging, endoscopic optical ogies – from lasers to solar cells to cameras – harness light coherence tomography, fluorescent imaging, super- to advance physics and serve societal needs. The under- resolution imaging, magnetic resonance imaging, quanti- standing and use of the fundamental properties of light are tative phase imaging, sensing of antibodies, proteins, important parts of the progress of human history. Recently, DNAs, cells, and cancer biomarkers. Future directions are the development of photonic materials, circuitry, devices, discussed in twofold: application-specific biomedical and probes on the nanoscale has opened up new oppor- metasurfaces and bioinspired metasurface devices. Per- tunities for controlling light in the subwavelength regime. spectives on challenges and opportunities of metasurfaces, In 1968, Veselago theoretically predicted the generation biophotonics, and translational biomedical devices are of artificial materials [1] by engineering their permittivity also provided. The objective of this review article is to and permeability. This was eventually realized by the inform and stimulate interdisciplinary research: firstly, by studies of Pendry et al. [2] and Smith et al. [3] that helped realize Veselago’s prediction and have revolutionized our approach to electromagnetics. Such so-termed meta- *Corresponding author: Malini Olivo, Laboratory of Bio-Optical materials are artificial composite nanostructures that Imaging, Singapore Bioimaging Consortium, A*STAR, Singapore, possess unique properties for controlling light and demon- Singapore, E-mail: [email protected] Shuyan Zhang, Chi Lok Wong, Renzhe Bi and Kolvyn Tai, Laboratory of strate numerous exciting new optical effects and applica- Bio-Optical Imaging, Singapore Bioimaging Consortium, A*STAR, tions that cannot be achieved by natural materials [4–7]. Singapore, Singapore. https://orcid.org/0000-0002-1286-4856 Metasurfaces are structures that benefit from the reduced (S. Zhang). https://orcid.org/0000-0001-7173-064X (R. Bi) dimensionality of metamaterials. They are relatively easy to Shuwen Zeng, XLIM Research Institute, UMR CNRS, Paris, France. fabricate and possess a smaller footprint (thickness of less https://orcid.org/0000-0003-2188-7213 than a millimeter) than conventional optical components. Kishan Dholakia, SUPA, School of Physics & Astronomy, University of St Andrews, St Andrews, UK; and Department of Physics, Yonsei They consist of optical components (or meta-atoms) University, Seoul, South Korea patterned on a surface with subwavelength dimensions, Open Access. © 2020 Shuyan Zhang et al., published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License. 260 S. Zhang et al.: Metasurfaces for biomedical applications which shape the wavefront of light to introduce a desired metasurfaces and a comprehensive and detailed account of spatial profile of the optical phase. Since their discovery [8], both biomedical applications. The objective of this review their exceptional optical properties have led to the devel- is to stimulate interdisciplinary research by introducing the opment of ultrathin optical devices with various function- metasurface concept to the biomedical community and alities outperforming their conventional bulky counterparts informing the metasurface community about the needs and and also demonstrating new optical phenomena covering a opportunities in the biomedical research area. wide range of electromagnetic spectrum from the visible to Figure 1 gives an overview of the structure of this review the terahertz (THz) region. Such metasurface-based flat de- paper. Firstly, the general concepts of metasurfaces will be vices represent a new class of optical components that are introduced including the governing principles and fabrica- compact, flat, and lightweight. Numerous devices based on tion techniques. Secondly, recent advances in metasurfaces metasurfaces have been developed, including metasurface for various bioapplications will be reviewed. This includes lenses (metalenses) [9–19], waveplates [20–23], polarime- opticalchiralimaging,endoscopicopticalcoherenceto- ters [24–26], and holograms [27–29]. For metalenses, in mography (OCT), fluorescent imaging, super-resolution im- particular, numerical aperture (NA) as high as 0.97 was aging, magnetic resonance imaging (MRI), and quantitative demonstrated [15]. Metalenses with NA > 1 was realized by phase imaging (QPI). Thirdly, applications of metasurface in immersion metalenses [30]. There are review papers dedi- biosensing are discussed, including the detection of anti- cated to the fundamentals, progress, and applications of bodies and proteins, DNAs, cells, and cancer biomarkers. metasurfaces. Some representative examples can be found Lastly, future directions are described including various in the references [31–51]. metasurface functions demonstrated for non-biomedical Metasurfaces have generated tremendous interest in the applications that could be potentially useful for biomedical consumer optical and electronics industries. In addition, applications and the development of biomimetic metasur- metasurface-empowered novel bioimaging and biosensing face devices. We conclude with perspectives on present devices have also emerged and reported recently. For many challenges to make metasurface-based biomedical devices optically based bioimaging devices, their bulk footprint and toward commercialization and for translational research. heavy physical weight have limited their usage in clinical settings. One of the bottlenecks is the large footprint of conventional optical components, such as lens assemblies 2 Fundamentals of metasurfaces and spectrometers. There are also limitations in the perfor- mance of optical components, for example, spherical lenses In contrast to conventional optical components that achieve suffer from spherical aberrations which greatly impact the wavefront engineering by phase accumulation, meta- imaging quality and require often additional corrective op- surfaces control the wavefront of light using arrays of optical tics. Besides imaging, sensing is another important research resonators with subwavelength dimensions. By tailoring the field in biomedical engineering. There has been a crucial optical properties of each meta-atom, one can spatially need for a rapid and reliable sensing method for micro- control the phase, amplitude, and polarization of the light organisms such as bacteria and viruses. Current methods and consequently shape the wavefront. There has been an are tedious and time-consuming, as the growth of these increasing interest in the past decade in the field of meta- micro-organisms
Recommended publications
  • Chemical Engineering Education Graduate Education in Chemical Engineering
    I • N • D • E • X GRADUATE EDUCATION ADVERTISEMENTS Akron, Uni versity of. .......... , .... ... .................. 321 Iowa State Uni versity .................. ... ....... ....... 360 Pensylvania State Uni versity ........................ 395 Alabama, University of ................................ 322 Johns Hopkins University .... .... .. .... .... .......... 361 Pittsburgh, University of .............................. 396 Alabama, Huntsville; Uni versity of.. .... .. ..... 323 Kansas, University of ............................... .... 362 Polytechnic University .. .... ... .... ........... .. ..... .. 397 Alberta, Uni versity of .. ........ .... .. .... ... ..... ..... .. 324 Kansas State University ............... ... ...... ........ 363 Princeton University ....................... .......... .. .. 398 Arizona, University of ....... .. .... .. .... ... .. ... ....... 325 Kentucky, Uni versity of ........................ .. ..... 364 Purdue University .. ........... ... ... ....... ... .... .... ... 399 Arizona State University ..... .. ... ...... ..... ......... 326 Lamar University .. ... ..... ..... ......... ........... .. ..... 430 Rensselaer Polytechnic Institute .... ...... .... ... .. 400 Auburn Uni versity .. ..... .. ... ..... .. .............. .... ... 327 Laval Universite ...................... ........... ...... .. .. 365 Rhode Island, University of.. .... ..... .. ... ..... .. ... 435 Bri gham Young Uni versity .............. ... .. ..... ... 427 Lehigh University .................................. .... ... 366 Rice University
    [Show full text]
  • Quantum Optics with Giant Atoms – the First Five Years
    Quantum optics with giant atoms – the first five years Anton Frisk Kockum Abstract In quantum optics, it is common to assume that atoms can be approximated as point-like compared to the wavelength of the light they interact with. However, recent advances in experiments with artificial atoms built from superconducting circuits have shown that this assumption can be violated. Instead, these artificial atoms can couple to an electromagnetic field at multiple points, which are spaced wavelength distances apart. In this chapter, we present a survey of such systems, which we call giant atoms. The main novelty of giant atoms is that the multiple coupling points give rise to interference effects that are not present in quantum optics with ordinary, small atoms. We discuss both theoretical and experimental results for single and multiple giant atoms, and show how the interference effects can be used for interesting applications. We also give an outlook for this emerging field of quantum optics. Key words: Quantum optics, Giant atoms, Waveguide QED, Relaxation rate, Lamb shift, Superconducting qubits, Surface acoustic waves, Cold atoms 1 Introduction Natural atoms are so small (radius r ≈ 10−10 m) that they can be considered point- like when they interact with light at optical frequencies (wavelength λ ≈ 10−6 − 10−7 m)[1]. If the atoms are excited to high Rydberg states, they can reach larger sizes (r ≈ 10−8 − 10−7 m), but quantum-optics experiments with such atoms have them interact with microwave radiation, which has much longer wavelength (λ ≈ arXiv:1912.13012v1 [quant-ph] 30 Dec 2019 10−2 −10−1 m)[2].
    [Show full text]
  • Merging Photonics and Artificial Intelligence at the Nanoscale
    Intelligent Nanophotonics: Merging Photonics and Artificial Intelligence at the Nanoscale Kan Yao1,2, Rohit Unni2 and Yuebing Zheng1,2,* 1Department of Mechanical Engineering, The University of Texas at Austin, Austin, Texas 78712, USA 2Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, USA *Corresponding author: [email protected] Abstract: Nanophotonics has been an active research field over the past two decades, triggered by the rising interests in exploring new physics and technologies with light at the nanoscale. As the demands of performance and integration level keep increasing, the design and optimization of nanophotonic devices become computationally expensive and time-inefficient. Advanced computational methods and artificial intelligence, especially its subfield of machine learning, have led to revolutionary development in many applications, such as web searches, computer vision, and speech/image recognition. The complex models and algorithms help to exploit the enormous parameter space in a highly efficient way. In this review, we summarize the recent advances on the emerging field where nanophotonics and machine learning blend. We provide an overview of different computational methods, with the focus on deep learning, for the nanophotonic inverse design. The implementation of deep neural networks with photonic platforms is also discussed. This review aims at sketching an illustration of the nanophotonic design with machine learning and giving a perspective on the future tasks. Keywords: deep learning; (nano)photonic neural networks; inverse design; optimization. 1. Introduction Nanophotonics studies light and its interactions with matters at the nanoscale [1]. Over the past decades, it has received rapidly growing interest and become an active research field that involves both fundamental studies and numerous applications [2,3].
    [Show full text]
  • Up-And-Coming Physical Concepts of Wireless Power Transfer
    Up-And-Coming Physical Concepts of Wireless Power Transfer Mingzhao Song1,2 *, Prasad Jayathurathnage3, Esmaeel Zanganeh1, Mariia Krasikova1, Pavel Smirnov1, Pavel Belov1, Polina Kapitanova1, Constantin Simovski1,3, Sergei Tretyakov3, and Alex Krasnok4 * 1School of Physics and Engineering, ITMO University, 197101, Saint Petersburg, Russia 2College of Information and Communication Engineering, Harbin Engineering University, 150001 Harbin, China 3Department of Electronics and Nanoengineering, Aalto University, P.O. Box 15500, FI-00076 Aalto, Finland 4Photonics Initiative, Advanced Science Research Center, City University of New York, NY 10031, USA *e-mail: [email protected], [email protected] Abstract The rapid development of chargeable devices has caused a great deal of interest in efficient and stable wireless power transfer (WPT) solutions. Most conventional WPT technologies exploit outdated electromagnetic field control methods proposed in the 20th century, wherein some essential parameters are sacrificed in favour of the other ones (efficiency vs. stability), making available WPT systems far from the optimal ones. Over the last few years, the development of novel approaches to electromagnetic field manipulation has enabled many up-and-coming technologies holding great promises for advanced WPT. Examples include coherent perfect absorption, exceptional points in non-Hermitian systems, non-radiating states and anapoles, advanced artificial materials and metastructures. This work overviews the recent achievements in novel physical effects and materials for advanced WPT. We provide a consistent analysis of existing technologies, their pros and cons, and attempt to envision possible perspectives. 1 Wireless power transfer (WPT), i.e., the transmission of electromagnetic energy without physical connectors such as wires or waveguides, is a rapidly developing technology increasingly being introduced into modern life, motivated by the exponential growth in demand for fast and efficient wireless charging of battery-powered devices.
    [Show full text]
  • DIGITAL PLASMONICS: from the Concept to Microscopy
    UvA-DARE (Digital Academic Repository) Digital plasmonics: from concept to microscopy Gjonaj, B. Publication date 2012 Link to publication Citation for published version (APA): Gjonaj, B. (2012). Digital plasmonics: from concept to microscopy. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:02 Oct 2021 CHAPTER 6 OUTLOOK AND VALORIZATION In this chapter we do not provide new experiments or theory. In this chapter we discuss possible application of the results already presented in the previous chapters. We will describe the potential for the plasmonic microscope along with some other potential applications. Part of the information in this chapter has been filed for a patent. 91 OUTLOOK AND VALORIZATION 6.1 Introduction In this chapter we describe ideas for applications based on amplitude and phase structured plasmonic waves.
    [Show full text]
  • High-Throughput Plasmonic Nanolithography
    High-Throughput Plasmonic Nanolithography by Liang Pan A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Engineering-Mechanical Engineering in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David B. Bogy, Co-Chair Professor Xiang Zhang, Co-Chair Professor Roberto Horowitz Professor Ming Wu Fall 2010 High-Throughput Plasmonic Nanolithography ©2010 by Liang Pan Abstract High-Throughput Plasmonic Nanolithography by Liang Pan Doctor of Philosophy in Engineering-Mechanical Engineering University of California, Berkeley Professor David B. Bogy, Co-Chair Professor Xiang Zhang, Co-Chair The conventional projection-type photolithography approach to nanoscale manufacturing is facing possibly insurmountable challenges, especially to invent novel technical solutions that remain economical for the next generation of semi-conductor integrated circuits. Although extreme ultra violet (EUV) lithography with the next generation photo-masks and 193-nm immersion lithography with double patterning are expected to deliver 22 nm and smaller nodes, it still cannot effectively address the reliability and cost issues required for mass production. Maskless nanolithography is a potentially agile and cost effective approach, but most of the current solutions have throughputs that are too low for manufacturing purposes. This dissertation reports a new low-cost high-throughput approach to maskless nanolithography that uses an array of plasmonic lenses (PL) that "fly" above the rotating surface to be patterned, concentrating short wavelength surface plasmons into sub-100 nm spots. However, these nanoscale spots are only formed in the near field (within a few nanometers of the surface), which makes it very difficult to scan the array above the surface at high speeds.
    [Show full text]
  • Reduction of Rocksalt Phase in Ag-Doped Ge2sb2te5: a Potential Material for Reversible Near-Infrared Window
    PHYSICAL REVIEW APPLIED 10, 054070 (2018) Reduction of Rocksalt Phase in Ag-Doped Ge2Sb2Te5: A Potential Material for Reversible Near-Infrared Window Palwinder Singh,1,2 A.P. Singh,3 Jeewan Sharma,4 Akshay Kumar,4 Monu Mishra,5 Govind Gupta,5 and Anup Thakur2,* 1 Department of Physics, Punjabi University, Patiala, Punjab 147002, India 2 Advanced Materials Research Lab, Department of Basic and Applied Sciences, Punjabi University, Patiala, Punjab 147002, India 3 Department of Physics, Dr. B. R. Ambedkar National Institute of Technology, Jalandhar 144011, India 4 Department of Nanotechnology, Sri Guru Granth Sahib World University, Fatehgarh Sahib, Punjab 140407, India 5 Advanced Materials and Devices Division, CSIR-National Physical Laboratory, New Delhi 110012, India (Received 15 July 2018; revised manuscript received 1 November 2018; published 30 November 2018) Phase-change materials are attracting much attention in the scientific and engineering communities owing to their applications and underlying basic phenomena. Ge2Sb2Te5 is reversible-phase-change mate- rial (amorphous to crystalline and vice versa) that is used for optical data storage and phase-change random-access memory and has recently been explored for use as a reversible near-infrared (NIR) win- dow [Singh et al., Appl. Phys. Lett. 111, 261102 (2017)]. For a reversible NIR window, large transmission contrast between two phases and low phase-transition temperature are required to reduce the power con- ( ) = sumption. In the present work, phase transition in thermally deposited Ge2Sb2Te5 100−xAgx (x 0, 1, 3, 5, and 10) thin films is achieved by vacuum thermal annealing. Transmission sharply decreases with phase transition in the NIR region.
    [Show full text]
  • Phase-Change Properties of Gesbte Thin Films Deposited by Plasma
    Song et al. Nanoscale Research Letters (2015) 10:89 DOI 10.1186/s11671-015-0815-5 NANO EXPRESS Open Access Phase-change properties of GeSbTe thin films deposited by plasma-enchanced atomic layer depositon Sannian Song1*, Dongning Yao1, Zhitang Song1, Lina Gao2, Zhonghua Zhang1,LeLi1, Lanlan Shen1, Liangcai Wu1, Bo Liu1, Yan Cheng1 and Songlin Feng1 Abstract Phase-change access memory (PCM) appears to be the strongest candidate for next-generation high-density nonvolatile memory. The fabrication of ultrahigh-density PCM depends heavily on the thin-film growth technique for the phase-changing chalcogenide material. In this study, Ge2Sb2Te5 (GST) and GeSb8Te thin films were deposited by plasma-enhanced atomic layer deposition (ALD) method using Ge [(CH3)2 N]4,Sb[(CH3)2 N]3,Te (C4H9)2 as precursors and plasma-activated H2 gas as reducing agent of the metallorganic precursors. Compared with GST-based device, GeSb8Te-based device exhibits a faster switching speed and reduced reset voltage, which is attributed to the growth-dominated crystallization mechanism of the Sb-rich GeSb8Te films. These results show that ALD is an attractive method for preparation of phase-change materials. Keywords: Phase-change memory; Atomic layer deposition; Microstructure; Electric properties Background of the limited on-current drive capability of the cell tran- Phase-change memory (PCM) has been regarded as one sistor [6]. It has been reported that a confined cell struc- of the most promising nonvolatile memories for the next ture where the phase-change material is formed inside a generation because of the advantages of high speed, low contact via is expected to be essential for the next- power, good endurance, high scalability, and fabrication generation PCM device because it requires lower switch- compatibility with complementary metal-oxide semicon- ing power [7,8].
    [Show full text]
  • DNA Nanotechnology Meets Nanophotonics
    DNA nanotechnology meets nanophotonics Na Liu 2nd Physics Institute, University of Stuttgart, Pfaffenwaldring 57, 70569 Stuttgart, Germany Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany Email: [email protected] Key words: DNA nanotechnology, nanophotonics, DNA origami, light matter interactions Call-out sentence: It will be very constructive, if more research funds become available to support young researchers with bold ideas and meanwhile allow for failures and contingent outcomes. The first time I heard the two terms ‘DNA nanotechnology’ and ‘nanophotonics’ mentioned together was from Paul Alivisatos, who delivered the Max Planck Lecture in Stuttgart, Germany, on a hot summer day in 2008. In his lecture, Paul showed how a plasmon ruler containing two metallic nanoparticles linked by a DNA strand could be used to monitor nanoscale distance changes and even the kinetics of single DNA hybridization events in real time, readily correlating nanoscale motion with optical feedback.1 Until this day, I still vividly remember my astonishment by the power and beauty of these two nanosciences, when rigorously combined together. In the past decades, DNA has been intensely studied and exploited in different research areas of nanoscience and nanotechnology. At first glance, DNA-based nanophotonics seems to deviate quite far from the original goal of Nadrian Seeman, the founder of DNA nanotechnology, who hoped to organize biological entities using DNA in high-resolution crystals. As a matter of fact, DNA-based nanophotonics does closely follow his central spirit. That is, apart from being a genetic material for inheritance, DNA is also an ideal material for building molecular devices.
    [Show full text]
  • Inverse Design for Silicon Photonics: from Iterative Optimization Algorithms to Deep Neural Networks
    applied sciences Review Inverse Design for Silicon Photonics: From Iterative Optimization Algorithms to Deep Neural Networks Simei Mao 1,2, Lirong Cheng 1,2 , Caiyue Zhao 1,2, Faisal Nadeem Khan 2, Qian Li 3 and H. Y. Fu 1,2,* 1 Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China; [email protected] (S.M.); [email protected] (L.C.); [email protected] (C.Z.) 2 Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China; [email protected] 3 School of Electronic and Computer Engineering, Peking University, Shenzhen 518055, China; [email protected] * Correspondence: [email protected]; Tel.: +86-755-3688-1498 Abstract: Silicon photonics is a low-cost and versatile platform for various applications. For design of silicon photonic devices, the light-material interaction within its complex subwavelength geometry is difficult to investigate analytically and therefore numerical simulations are majorly adopted. To make the design process more time-efficient and to improve the device performance to its physical limits, various methods have been proposed over the past few years to manipulate the geometries of silicon platform for specific applications. In this review paper, we summarize the design methodologies for silicon photonics including iterative optimization algorithms and deep neural networks. In case of iterative optimization methods, we discuss them in different scenarios in the sequence of increased degrees of freedom: empirical structure, QR-code like structure and irregular structure. We also review inverse design approaches assisted by deep neural networks, which generate multiple devices Citation: Mao, S.; Cheng, L.; Zhao, with similar structure much faster than iterative optimization methods and are thus suitable in C.; Khan, F.N.; Li, Q.; Fu, H.Y.
    [Show full text]
  • Underwater Transformer
    ALL ABOARD THE THE LAST A FORGOTTEN MICROGRIDS HYDROGEN TRAIN TRANSISTOR? REVOLUTION GO MOBILE Fuel cells go the Nanosheet devices and Why switching power A new and cleaner extra mile the end of Moore’s Law supplies triumphed way to power a ferry P. 06 P. 30 P. 36 P. 42 THIS UNTETHERED HALF HUMANOID WILL WORK ON OFFSHORE OIL RIGS AND GO DEEPER THAN FOR THE FOR THE TECHNOLOGY INSIDERTECHNOLOGY | 08.19 HUMAN DIVERS INSIDER P. 22 08.19 THE UNDERWATER TRANSFORMER Subscriber Address Box Zurich Instruments ∏ Arbitrary Waveform Generators ∏ Impedance Analyzers ∏ Lock-in Amplifiers ∏ Quantum Computing Control Systems experience LabOne LabOne® provides users with a platform independent instrument control including proven measurement methodo- logies. It's designed to offer a great amount of flexibility for instrument usage and assures quick and efficient ope- ration. The browser based user interface provides an outstanding toolset for time and frequency domain analysis as well as sophisticated support to set up control loops, making noise measure- ments or to interpret measurement data. Let's discuss your application Intl. +41 44 515 0410 USA 855-500-0056 (Toll Free) [email protected] www.zhinst.com CONTENTS_08.19 THE UNDER- WATER 30 THE LAST 36 THE QUIET 42 HAPPINESS IS 06 NEWS SILICON REMAKING OF A HYBRID-ELECTRIC 14 RESOURCES TRANSFORMER TRANSISTOR COMPUTER POWER FERRY 04 OPINION The next step in SUPPLIES The retrofitted 52 PAST FORWARD A startup founded by ex-NASA the evolution of the Here’s how the ship offers a clean, engineers wants to upend subsea transistor is the compact and efficient quiet ride for 4,500 nanosheet device.
    [Show full text]
  • Focusing and Scanning Microscopy with Propagating Surface Plasmons
    week ending PRL 110, 266804 (2013) PHYSICAL REVIEW LETTERS 28 JUNE 2013 Focusing and Scanning Microscopy with Propagating Surface Plasmons B. Gjonaj,1,* J. Aulbach,1 P. M. Johnson,1 A. P. Mosk,2 L. Kuipers,1 and A. Lagendijk1 1FOM-Institute for Atomic and Molecular Physics AMOLF, Science Park 104, 1098 XG Amsterdam, Netherlands 2Complex Photonic Systems, Faculty of Science and Technology, and MESA+ Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands (Received 18 March 2013; published 26 June 2013) Here we demonstrate a novel surface plasmon polariton (SPP) microscope which is capable of imaging below the optical diffraction limit. A plasmonic lens, generated through phase-structured illumination, focuses SPPs down to their diffraction limit and scans the focus with steps as small as 10 nm. This plasmonic lens is implemented on a metallic nanostructure consisting of alternating hole array gratings and bare metal arenas. We use subwavelength scattering holes placed within the bare metal arenas to determine the resolution of our microscope. The resolution depends on the size of the scanning SPP focus. This novel technique has the potential for biomedical imaging microscopy, surface biology, and functionalization chemistry. DOI: 10.1103/PhysRevLett.110.266804 PACS numbers: 73.20.Mf, 68.37.Àd, 87.64.MÀ In conventional microscopy, features smaller than about microscopy. Nevertheless, due to intrinsic problems of half a wavelength cannot be resolved due to the diffraction these techniques (the degree of complexity, resolution, limit of far-field optics. As the basic constituents of cells field of view, or speed), superresolution plasmonic micros- and nanotechnological devices are smaller than the wave- copy has yet to be implemented.
    [Show full text]