Solar Wind and Kinetic Heliophysics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamentals of Impulsive Energy Release in the Corona Heliophysics 2050 Workshop White Paper A
Heliophysics 2050 White Papers (2021) 4093.pdf Fundamentals of impulsive energy release in the corona Heliophysics 2050 Workshop white paper A. Y. Shih (NASA Goddard Space Flight Center), L. Glesener (UMN), S. Krucker (UCB), S. Guidoni (Amer. Univ.), S. Christe (GSFC), K. Reeves (SAO), S. Gburek (PAS), A. Caspi (SwRI), M. Alaoui (GSFC/CUA), J. Allred (GSFC), M. Battaglia (FHNW), W. Baumgartner (MSFC), B. Dennis (GSFC), J. Drake (UMD), K. Goetz (UMN), L. Golub (SAO), I. Hannah (Univ. of Glasgow), L. Hayes (GSFC/USRA), G. Holman (GSFC/Emeritus), A. Inglis (GSFC/CUA), J. Ireland (GSFC), G. Kerr (GSFC/CUA), J. Klimchuk (GSFC), D. McKenzie (MSFC), C. Moore (SAO), S. Musset (Univ. of Glasgow), J. Reep (NRL), D. Ryan (GSFC/AU), P. Saint-Hilaire (UCB), S. Savage (MSFC), R. Schwartz (GSFC/AU), D. Seaton (NOAA), M. Stęślicki (PAS), T. Woods (LASP) Introduction Solar eruptive events are the most energetic and geo-effective space-weather drivers. They originate in the corona near the Sun’s surface as a combination of solar flares (impulsive bursts of radiation across the entire electromagnetic spectrum) and coronal mass ejections (CMEs; expulsions of magnetized plasma into interplanetary space). The radiation and energetic particles they produce can damage satellites, disrupt telecommunications and GPS navigation, and endanger astronauts in space. Many of the processes involved in triggering, driving, and sustaining solar eruptive events–including magnetic reconnection, particle acceleration, plasma heating, and energy transport in magnetized plasmas–also play important roles in phenomena throughout the Universe, such as in magnetospheric substorms, gamma-ray bursts, and accretion disks. The Sun is a unique laboratory to better understand these fundamental physical processes. -
On the Solar Chromosphere Observed at the Limb with Hinode
The Astrophysical Journal, 719:469–473, 2010 August 10 doi:10.1088/0004-637X/719/1/469 C 2010. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ON THE SOLAR CHROMOSPHERE OBSERVED AT THE LIMB WITH HINODE Philip G. Judge1 and Mats Carlsson2 1 High Altitude Observatory, National Center for Atmospheric Research, P.O. Box 3000, Boulder, CO 80307-3000, USA 2 Institute of Theoretical Astrophysics, P.O. Box 1029, Blindern, N-0315 Oslo, Norway Received 2010 March 8; accepted 2010 April 8; published 2010 July 21 ABSTRACT Broadband images in the Ca ii H line, from the Broadband Filter Imager (BFI) instrument on the Hinode spacecraft, show emission from spicules emerging from and visible right down to the observed limb. Surprisingly, little absorption of spicule light is seen along their lengths. We present formal solutions to the transfer equation for given (ad hoc) source functions, including a stratified chromosphere from which spicules emanate. The model parameters are broadly compatible with earlier studies of spicules. The visibility of Ca ii spicules down to the limb in Hinode data seems to require that spicule emission be Doppler shifted relative to the stratified atmosphere, either by supersonic turbulent or organized spicular motion. The non-spicule component of the chromosphere is almost invisible in the broadband BFI data, but we predict that it will be clearly visible in high spectral resolution data. Broadband Ca ii H limb images give the false impression that the chromosphere is dominated by spicules. Our analysis serves as a reminder that the absence of a signature can be as significant as its presence. -
A Deep Learning Framework for Solar Phenomena Prediction
FlareNet: A Deep Learning Framework for Solar Phenomena Prediction FDL 2017 Solar Storm Team: Sean McGregor1, Dattaraj Dhuri1,2, Anamaria Berea1,3, and Andrés Muñoz-Jaramillo1,4 1NASA’s 2017 Frontier Development Laboratory 2Tata Institute of Fundamental Research (TIFR), Mumbai, India 3Center for Complexity in Business, University of Maryland, College Park, MD, USA 4SouthWest Research Institute, Boulder, CO, USA Abstract Solar activity can interfere with the normal operation of GPS satellites, the power grid, and space operations, but inadequate predictive models mean we have little warning for the arrival of newly disruptive solar activity. Petabytes of data col- lected from satellite instruments aboard the Solar Dynamics Observatory (SDO) provide a high-cadence, high-resolution, and many-channeled dataset of solar phenomena. Several challenging deep learning problems may be derived from the data, including space weather forecasting (i.e., solar flares, solar energetic particles, and coronal mass ejections). This work introduces a software framework, FlareNet, for experimentation within these problems. FlareNet includes compo- nents for the downloading and management of SDO data, visualization, and rapid experimentation. The system architecture is built to enable collaboration between heliophysicists and machine learning researchers on the topics of image regres- sion, image classification, and image segmentation. We specifically highlight the problem of solar flare prediction and offer insights from preliminary experiments. 1 Introduction The violent release of solar magnetic energy – collectively referred to as “space weather" – is responsible for a variety of phenomena that can disrupt technological assets. In particular, solar flares (sudden brightenings of the solar corona) and coronal mass ejections (CMEs; the violent release of solar plasma) can disrupt long-distance communications, reduce Global Positioning System (GPS) accuracy, degrade satellites, and disrupt the power grid [5]. -
Solar and Space Physics: a Science for a Technological Society
Solar and Space Physics: A Science for a Technological Society The 2013-2022 Decadal Survey in Solar and Space Physics Space Studies Board ∙ Division on Engineering & Physical Sciences ∙ August 2012 From the interior of the Sun, to the upper atmosphere and near-space environment of Earth, and outwards to a region far beyond Pluto where the Sun’s influence wanes, advances during the past decade in space physics and solar physics have yielded spectacular insights into the phenomena that affect our home in space. This report, the final product of a study requested by NASA and the National Science Foundation, presents a prioritized program of basic and applied research for 2013-2022 that will advance scientific understanding of the Sun, Sun- Earth connections and the origins of “space weather,” and the Sun’s interactions with other bodies in the solar system. The report includes recommendations directed for action by the study sponsors and by other federal agencies—especially NOAA, which is responsible for the day-to-day (“operational”) forecast of space weather. Recent Progress: Significant Advances significant progress in understanding the origin from the Past Decade and evolution of the solar wind; striking advances The disciplines of solar and space physics have made in understanding of both explosive solar flares remarkable advances over the last decade—many and the coronal mass ejections that drive space of which have come from the implementation weather; new imaging methods that permit direct of the program recommended in 2003 Solar observations of the space weather-driven changes and Space Physics Decadal Survey. For example, in the particles and magnetic fields surrounding enabled by advances in scientific understanding Earth; new understanding of the ways that space as well as fruitful interagency partnerships, the storms are fueled by oxygen originating from capabilities of models that predict space weather Earth’s own atmosphere; and the surprising impacts on Earth have made rapid gains over discovery that conditions in near-Earth space the past decade. -
Digital Society
B56133 The Science Magazine of the Max Planck Society 4.2018 Digital Society POLITICAL SCIENCE ASTRONOMY BIOMEDICINE LEARNING PSYCHOLOGY Democracy in The oddballs of A grain The nature of decline in Africa the solar system of brain children’s curiosity SCHLESWIG- Research Establishments HOLSTEIN Rostock Plön Greifswald MECKLENBURG- WESTERN POMERANIA Institute / research center Hamburg Sub-institute / external branch Other research establishments Associated research organizations Bremen BRANDENBURG LOWER SAXONY The Netherlands Nijmegen Berlin Italy Hanover Potsdam Rome Florence Magdeburg USA Münster SAXONY-ANHALT Jupiter, Florida NORTH RHINE-WESTPHALIA Brazil Dortmund Halle Manaus Mülheim Göttingen Leipzig Luxembourg Düsseldorf Luxembourg Cologne SAXONY DanielDaniel Hincapié, Hincapié, Bonn Jena Dresden ResearchResearch Engineer Engineer at at Marburg THURINGIA FraunhoferFraunhofer Institute, Institute, Bad Münstereifel HESSE MunichMunich RHINELAND Bad Nauheim PALATINATE Mainz Frankfurt Kaiserslautern SAARLAND Erlangen “Germany,“Germany, AustriaAustria andand SwitzerlandSwitzerland areare knownknown Saarbrücken Heidelberg BAVARIA Stuttgart Tübingen Garching forfor theirtheir outstandingoutstanding researchresearch opportunities.opportunities. BADEN- Munich WÜRTTEMBERG Martinsried Freiburg Seewiesen AndAnd academics.comacademics.com isis mymy go-togo-to portalportal forfor jobjob Radolfzell postings.”postings.” Publisher‘s Information MaxPlanckResearch is published by the Science Translation MaxPlanckResearch seeks to keep partners and -
Exploring the Sun with ALMA
Astronomical Science DOI: 10.18727/0722-6691/5065 Exploring the Sun with ALMA Timothy S. Bastian1 18 Space Vehicles Directorate, Air Force and to gain an understanding of how Miroslav Bárta2 Research Laboratory, Albuquerque, mechanical and radiative energy are Roman Brajša3 USA transferred through that atmospheric Bin Chen4 19 National Astronomical Observatories, layer. Bart De Pontieu5, 6 Chinese Academy of Sciences, Beijing, Dale E. Gary4 China Much of what is currently known about Gregory D. Fleishman4 the chromosphere has relied on spectro- Antonio S. Hales1, 7 scopic observations at optical and ultra- Kazumasa Iwai8 The Atacama Large Millimeter/submilli- violet wavelengths using both ground- Hugh Hudson9, 10 meter Array (ALMA) Observatory opens and space-based instrumentation. While Sujin Kim11, 12 a new window onto the Universe. The a lot of progress has been made, the Adam Kobelski13 ability to perform continuum imaging interpretation of such observations is Maria Loukitcheva4, 14, 15 and spectroscopy of astrophysical phe- complex because optical and ultraviolet Masumi Shimojo16, 17 nomena at millimetre and submillimetre lines in the chromosphere form under Ivica Skokić2, 3 wavelengths with unprecedented sen- conditions of non-local thermodynamic Sven Wedemeyer6 sitivity opens up new avenues for the equilibrium. In contrast, emission from Stephen M. White18 study of cosmology and the evolution the Sun’s chromosphere at millimetre Yihua Yan19 of galaxies, the formation of stars and and submillimetre wavelengths is more planets, and astrochemistry. ALMA also straightforward to interpret as the emis- allows fundamentally new observations sion forms under conditions of local 1 National Radio Astronomy Observatory, to be made of objects much closer to thermodynamic equilibrium and the Charlottesville, USA home, including the Sun. -
Mechanisms of Chromospheric and Coronal Heating a NIXT Solar X-Ray Photo in the Fe XVI Line at 63.5 a Taken on a Rocket Flight on 11 Sept
Mechanisms of Chromospheric and Coronal Heating A NIXT solar X-ray photo in the Fe XVI line at 63.5 A taken on a rocket flight on 11 Sept. 1989 by Leon Golub (see the article on p. 115 of this book) P. Ultnschneider E. R. Priest R. Rosner (Eds.) Mechanisms of Chromospheric and Coronal Heating Proceedings of the International Conference, Heidelberg, 5-8 lune 1990 With 260 Figures Springer-Verlag Berlin Heidelberg GmbH Professor Dr. Peter Ulmschneider Institut für Theoretische Astrophysik. Im Neuenheimer Feld 561. D-69oo Heidelberg. Fed. Rep. ofGermany Professor Dr. Eric R. Priest University of St. Andrews. The Mathematical Institute North Haugh. St. Andrews KY16 9SS. Great Britain Professor Dr. Robert Rosner E. Fermi Institute and Dept. of Astronomy and Astrophysics. 5640 S Ellis Ave .• Chicago. IL 60637. USA Cover picture: In this scenario by Chitre and Davila (see the article on p.402 of this book) acoustic waves shake coronal magnetic loops and get resonantly absorbed in the loop. ISBN 978-3-642-87457-4 ISBN 978-3-642-87455-0 (eBook) DOI 10.I007/978-3-642-87455-0 This work is subject to copyright. All rights are reserved. whether the whole or part of the material is concerned. specifically the rights of translation. reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication ofthis publication or parts thereofis only per mitted underthe provisions ofthe German Copyright Law ofSeptember9, 1965. in its current version, and a copy right fee must always be paid. Violations fall under the prosecution act ofthe German Copyright Law. -
Cmes, Solar Wind and Sun-Earth Connections: Unresolved Issues
CMEs, solar wind and Sun-Earth connections: unresolved issues Rainer Schwenn Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany [email protected] In recent years, an unprecedented amount of high-quality data from various spaceprobes (Yohkoh, WIND, SOHO, ACE, TRACE, Ulysses) has been piled up that exhibit the enormous variety of CME properties and their effects on the whole heliosphere. Journals and books abound with new findings on this most exciting subject. However, major problems could still not be solved. In this Reporter Talk I will try to describe these unresolved issues in context with our present knowledge. My very personal Catalog of ignorance, Updated version (see SW8) IAGA Scientific Assembly in Toulouse, 18-29 July 2005 MPRS seminar on January 18, 2006 The definition of a CME "We define a coronal mass ejection (CME) to be an observable change in coronal structure that occurs on a time scale of a few minutes and several hours and involves the appearance (and outward motion, RS) of a new, discrete, bright, white-light feature in the coronagraph field of view." (Hundhausen et al., 1984, similar to the definition of "mass ejection events" by Munro et al., 1979). CME: coronal -------- mass ejection, not: coronal mass -------- ejection! In particular, a CME is NOT an Ejección de Masa Coronal (EMC), Ejectie de Maså Coronalå, Eiezione di Massa Coronale Éjection de Masse Coronale The community has chosen to keep the name “CME”, although the more precise term “solar mass ejection” appears to be more appropriate. An ICME is the interplanetry counterpart of a CME 1 1. -
Coronal Holes
Living Rev. Solar Phys., 6, (2009), 3 LIVING REVIEWS http://www.livingreviews.org/lrsp-2009-3 in solar physics Coronal Holes Steven R. Cranmer Harvard-Smithsonian Center for Astrophysics 60 Garden Street, Mail Stop 50 Cambridge, MA 02138, U.S.A. email: [email protected] http://www.cfa.harvard.edu/~scranmer/ Accepted on 15 September 2009 Published on 29 September 2009 Abstract Coronal holes are the darkest and least active regions of the Sun, as observed both on the solar disk and above the solar limb. Coronal holes are associated with rapidly expanding open magnetic fields and the acceleration of the high-speed solar wind. This paper reviews measurements of the plasma properties in coronal holes and how these measurements are used to reveal details about the physical processes that heat the solar corona and accelerate the solar wind. It is still unknown to what extent the solar wind is fed by flux tubes that remain open (and are energized by footpoint-driven wave-like fluctuations), and to what extent much of the mass and energy is input intermittently from closed loops into the open-field regions. Evidence for both paradigms is summarized in this paper. Special emphasis is also given to spectroscopic and coronagraphic measurements that allow the highly dynamic non-equilibrium evolution of the plasma to be followed as the asymptotic conditions in interplanetary space are established in the extended corona. For example, the importance of kinetic plasma physics and turbulence in coronal holes has been affirmed by surprising measurements from the UVCS instrument on SOHO that heavy ions are heated to hundreds of times the temperatures of protons and electrons. -
The Solar Optical Telescope
NASATM109240 The Solar Optical Telescope (NAS.A- TM- 109240) TELESCOPE (NASA) NASA The Solar Optical Telescope is shown in the Sun-pointed configuration, mounted on an Instrument Pointing System which is attached to a Spacelab Pallet riding in the Shuttle Orbiter's Cargo Bay. The Solar Optical Telescope - will study the physics of the Sun on the scale at which many of the important physical processes occur - will attain a resolution of 73km on the Sun or 0.1 arc seconds of angular resolution 1 SOT-I GENERAL CONFIGURATION ARTICULATED VIEWPOINT DOOR PRIMARY MIRROR op IPS SENSORS WAVEFRONT SENSOR - / i— VENT LIGHT TUNNEL-7' ,—FINAL I 7 I FOCUS IPS INTERFACE E-BOX SHELF GREGORIAN POD---' U (1 of 4) HEAT REJECTION MIRROR-S 1285'i Why is the Solar Optical Telescope Needed? There may be no single object in nature that mankind For exrmple, the hedii nq and expns on of the solar wind U 2 is more dependent upon than the Sun, unless it is the bathes the Earth in solar plasma is ultimately attributable to small- Earth itself. Without the Sun's radiant energy, there scale processes that occur close to the solar surface. Only by would be no life on Earth as we know it. Even our prim- observing the underlying processes on the small scale afforded ary source of energy today, fossil fuels, is available be- by the Solar Optical Telescope can we hope to gain a profound cause of solar energy millions of years ago; and when understanding of how the Sun transfers its radiant and particle mankind succeeds in taming the nuclear reaction that energy through the different atmospheric regions and ultimately converts hydrogen into helium for our future energy to our Earth. -
What Causes the High Apparent Speeds in Chromospheric and Transition Region Spicules on the Sun?
The Astrophysical Journal Letters, 849:L7 (7pp), 2017 November 1 https://doi.org/10.3847/2041-8213/aa9272 © 2017. The American Astronomical Society. All rights reserved. What Causes the High Apparent Speeds in Chromospheric and Transition Region Spicules on the Sun? Bart De Pontieu1,2 , Juan Martínez-Sykora1,3 , and Georgios Chintzoglou1,4 1 Lockheed Martin Solar and Astrophysics Laboratory, Palo Alto, CA 94304, USA; [email protected] 2 Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, NO-0315 Oslo, Norway 3 Bay Area Environmental Research Institute, Petaluma, CA 94952, USA 4 University Corporation for Atmospheric Research, Boulder, CO 80307-3000, USA Received 2017 June 22; revised 2017 October 5; accepted 2017 October 9; published 2017 October 23 Abstract Spicules are the most ubuiquitous type of jets in the solar atmosphere. The advent of high-resolution imaging and spectroscopy from the Interface Region Imaging Spectrograph (IRIS) and ground-based observatories has revealed the presence of very high apparent motions of order 100–300 km s−1 in spicules, as measured in the plane of the sky. However, line of sight measurements of such high speeds have been difficult to obtain, with values deduced from Doppler shifts in spectral lines typically of order 30–70 km s−1. In this work, we resolve this long-standing discrepancy using recent 2.5D radiative MHD simulations. This simulation has revealed a novel driving mechanism for spicules in which ambipolar diffusion resulting from ion-neutral interactions plays a key role. In our simulation, we often see that the upward propagation of magnetic waves and electrical currents from the low chromosphere into already existing spicules can lead to rapid heating when the currents are rapidly dissipated by ambipolar diffusion. -
Heliophysics Division Space Weather Strategy HPAC, June 30 – July 1, 2020
Heliophysics Division Space Weather Strategy HPAC, June 30 – July 1, 2020 1 Heliophysics Space Weather Strategy This strategy outlines the goals and objectives of NASA Heliophysics Division with respect to space weather. It is consistent with the goals and agency responsibilities articulated in the 2019 National Space Weather Strategy and Action Plan, as well as the Agency’s efforts in human and robotic exploration. Context • Understanding space weather is the domain of Heliophysics. Space weather is the applied expression of Heliophysics. In Priority 1 of the 2020 NASA Science Plan, Strategy 1.4 pertains directly to space weather: Develop a Directorate-wide, target-user focused approach to applied programs, including Earth Science Applications, Space Weather, Planetary Defense, and ⁻ Space Situational Awareness. 2 Space Weather Strategy Vision • Advance the science of space weather to empower a technological society safely thriving on Earth and expanding into space. Mission • Establish a preeminent space weather capability that supports robotic and human space exploration and meets national, international, and societal needs by advancing measurement and analysis techniques, and by expanding knowledge and understanding for transitioning into improved operational space weather forecasts and nowcasts. 3 1. Observe • Advance observation techniques, technology, Goals and capability 2. Analyze • NASA plays a vital role in space • Advance research, analysis and modeling weather research by providing capability unique, significant, and exploratory 3. Predict observations and data streams for • Improve space weather forecast and nowcast theory, modeling, and data analysis capabilities research, and for operations. 4. Transition • NASA’s contributions to observing • Transition capabilities to operational and understanding space weather environments are critical for the success of the National and International space 5.