Greenland Turbot
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Pleuronectidae, Poecilopsettidae, Achiridae, Cynoglossidae
1536 Glyptocephalus cynoglossus (Linnaeus, 1758) Pleuronectidae Witch flounder Range: Both sides of North Atlantic Ocean; in the western North Atlantic from Strait of Belle Isle to Cape Hatteras Habitat: Moderately deep water (mostly 45–330 m), deepest in southern part of range; found on mud, muddy sand or clay substrates Spawning: May–Oct in Gulf of Maine; Apr–Oct on Georges Bank; Feb–Jul Meristic Characters in Middle Atlantic Bight Myomeres: 58–60 Vertebrae: 11–12+45–47=56–59 Eggs: – Pelagic, spherical Early eggs similar in size Dorsal fin rays: 97–117 – Diameter: 1.2–1.6 mm to those of Gadus morhua Anal fin rays: 86–102 – Chorion: smooth and Melanogrammus aeglefinus Pectoral fin rays: 9–13 – Yolk: homogeneous Pelvic fin rays: 6/6 – Oil globules: none Caudal fin rays: 20–24 (total) – Perivitelline space: narrow Larvae: – Hatching occurs at 4–6 mm; eyes unpigmented – Body long, thin and transparent; preanus length (<33% TL) shorter than in Hippoglossoides or Hippoglossus – Head length increases from 13% SL at 6 mm to 22% SL at 42 mm – Body depth increases from 9% SL at 6 mm to 30% SL at 42 mm – Preopercle spines: 3–4 occur on posterior edge, 5–6 on lateral ridge at about 16 mm, increase to 17–19 spines – Flexion occurs at 14–20 mm; transformation occurs at 22–35 mm (sometimes delayed to larger sizes) – Sequence of fin ray formation: C, D, A – P2 – P1 – Pigment intensifies with development: 6 bands on body and fins, 3 major, 3 minor (see table below) Glyptocephalus cynoglossus Hippoglossoides platessoides Total myomeres 58–60 44–47 Preanus length <33%TL >35%TL Postanal pigment bars 3 major, 3 minor 3 with light scattering between Finfold pigment Bars extend onto finfold None Flexion size 14–20 mm 9–19 mm Ventral pigment Scattering anterior to anus Line from anus to isthmus Early Juvenile: Occurs in nursery habitats on continental slope E. -
Aspects of the Life History of Hornyhead Turbot, Pleuronichthys Verticalis, Off Southern California
Aspects of the Life History of Hornyhead Turbot, Pleuronichthys verticalis, off Southern California he hornyhead turbot T(Pleuronichthys verticalis) is a common resident flatfish on the mainland shelf from Magdalena Bay, Baja Califor- nia, Mexico to Point Reyes, California (Miller and Lea 1972). They are randomly distributed over the bottom at a density of about one fish per 130 m2 and lie partially buried in the sediment (Luckinbill 1969). Hornyhead turbot feed primarily on sedentary, tube-dwelling polychaetes (Luckinbill 1969, Allen 1982, Cross et al. 1985). They pull the tubes from the sediment, Histological section of a fish ovary. extract the polychaete, and then eject the tube (Luckinbill 1969). Hornyhead turbot are Orange County, p,p’-DDE Despite the importance of batch spawners and may averaged 362 μg/kg wet the hornyhead turbot in local spawn year round (Goldberg weight in hornyhead turbot monitoring programs, its life 1982). Their planktonic eggs liver and 5 μg/kg dry weight in history has received little are 1.00-1.16 mm diameter the sediments (CSDOC 1992). attention. The long-term goal (Sumida et al. 1979). Their In the same year in Santa of our work is to determine larvae occur in the nearshore Monica Bay, p,p’-DDE aver- how a relatively low trophic plankton throughout the year aged 7.8 mg/kg wet weight in level fish like the hornyhead (Gruber et al. 1982, Barnett et liver and 81 μg/kg dry weight turbot accumulates tissue al. 1984, Moser et al. 1993). in the sediments (City of Los levels of chlorinated hydrocar- Several agencies in South- Angeles 1992). -
Northern Wolffish,Anarhichas Denticulatus
COSEWIC Assessment and Status Report on the Northern Wolffish Anarhichas denticulatus in Canada THREATENED 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Northern Wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 41 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm) Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 21 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R., and R.L. Haedrich. 2001. COSEWIC status report on the northern wolffish Anarhichas denticulatus in Canada, in COSEWIC assessment and status report on the northern wolffish Anarhichas denticulatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-21 pp. Production note: COSEWIC would like to acknowledge Red Méthot for writing the status report on the Northern Wolffish, Anarhichas denticulatus in Canada, prepared under contract with Environment Canada. The report was overseen and edited by John Reynolds, COSEWIC Marine Fishes Specialist Subcommittee Co-chair. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Loup à tête large (Anarhichas denticulatus) au Canada. -
Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/ -
Spotted Wolffish (Anarhichas Minor) in the Northwest Atlantic
COSEWIC Assessment and Status Report on the Spotted Wolffish Anarhichas minor in Canada THREATENED 2001 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION DES ENDANGERED WILDLIFE ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: Please note: Persons wishing to cite data in the report should refer to the report (and cite the author(s)); persons wishing to cite the COSEWIC status will refer to the assessment (and cite COSEWIC). A production note will be provided if additional information on the status report history is required. COSEWIC 2001. COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 22 pp. (www.sararegistry.gc.ca/status/status_e.cfm) O’Dea, N.R. and R.L. Haedrich. 2001. COSEWIC status report on the spotted wolffish Anarhichas minor in Canada, in COSEWIC assessment and status report on the spotted wolffish Anarhichas minor in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-22 pp. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Rapport du COSEPAC sur la situation du loup tacheté (Anarhichas minor) au Canada Cover illustration: Spotted Wolffish — from Scott and Scott, 1988. -
Preliminary Mass-Balance Food Web Model of the Eastern Chukchi Sea
NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse U.S. DEPARTMENT OF COMMERCE National Oceanic and Atmospheric Administration National Marine Fisheries Service Alaska Fisheries Science Center December 2013 NOAA Technical Memorandum NMFS The National Marine Fisheries Service's Alaska Fisheries Science Center uses the NOAA Technical Memorandum series to issue informal scientific and technical publications when complete formal review and editorial processing are not appropriate or feasible. Documents within this series reflect sound professional work and may be referenced in the formal scientific and technical literature. The NMFS-AFSC Technical Memorandum series of the Alaska Fisheries Science Center continues the NMFS-F/NWC series established in 1970 by the Northwest Fisheries Center. The NMFS-NWFSC series is currently used by the Northwest Fisheries Science Center. This document should be cited as follows: Whitehouse, G. A. 2013. A preliminary mass-balance food web model of the eastern Chukchi Sea. U.S. Dep. Commer., NOAA Tech. Memo. NMFS-AFSC-262, 162 p. Reference in this document to trade names does not imply endorsement by the National Marine Fisheries Service, NOAA. NOAA Technical Memorandum NMFS-AFSC-262 Preliminary Mass-balance Food Web Model of the Eastern Chukchi Sea by G. A. Whitehouse1,2 1Alaska Fisheries Science Center 7600 Sand Point Way N.E. Seattle WA 98115 2Joint Institute for the Study of the Atmosphere and Ocean University of Washington Box 354925 Seattle WA 98195 www.afsc.noaa.gov U.S. DEPARTMENT OF COMMERCE Penny. S. Pritzker, Secretary National Oceanic and Atmospheric Administration Kathryn D. -
Food Choice of Different Size Classes of Flounder (Platichthys Flesus ) In
Food choice of different size classes of flounder ( Platichthys flesus ) in the Baltic Sea Jennie Ljungberg Degree project in biology, Master of science (2 years), 2014 Examensarbete i biologi 30 hp till masterexamen, 2014 Biology Education Centre Supervisor: Bertil Widbom Table of Contents ABSTRACT ............................................................................................................................................ 3 INTRODUCTION ................................................................................................................................... 4 Flounders in the Baltic Sea .................................................................................................................. 5 The diet of flounders ........................................................................................................................... 6 Blue mussel (Mytilus edulis) ............................................................................................................... 7 Blue mussels in the Baltic Sea............................................................................................................. 8 The nutritive value of blue mussels ..................................................................................................... 9 The condition of flounders in the Baltic Sea ....................................................................................... 9 Aims ................................................................................................................................................. -
Identification of Larvae of Three Arctic Species of Limanda (Family Pleuronectidae)
Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) Morgan S. Busby, Deborah M. Blood & Ann C. Matarese Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2153-9 1 23 Your article is protected by copyright and all rights are held exclusively by 2017. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2153-9 ORIGINAL PAPER Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) 1 1 1 Morgan S. Busby • Deborah M. Blood • Ann C. Matarese Received: 28 September 2016 / Revised: 26 June 2017 / Accepted: 27 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Identification of fish larvae in Arctic marine for L. proboscidea in comparison to the other two species waters is problematic as descriptions of early-life-history provide additional evidence suggesting the genus Limanda stages exist for few species. Our goal in this study is to may be paraphyletic, as has been proposed in other studies. -
Greenland Turbot Assessment
6HFWLRQ STOCK ASSESSMENT OF GREENLAND TURBOT James N. Ianelli, Thomas K. Wilderbuer, and Terrance M. Sample 6XPPDU\ Changes to this year’s assessment in the past year include: 1. new summary estimates of retained and discarded Greenland turbot by different target fisheries, 2. update the estimated catch levels by gear type in recent years, and 3. new length frequency and biomass data from the 1998 NMFS eastern Bering Sea shelf survey. Conditions do not appear to have changed substantively over the past several years. For example, the abundance of Greenland turbot from the eastern Bering Sea (EBS) shelf-trawl survey has found only spotty quantities with very few small fish that were common in the late 1970s and early 1980s. The majority of the catch has shifted to longline gear in recent years. The assessment model analysis was similar to last year but with a slightly higher estimated overall abundance. We attribute this to a slightly improved fit to the longline survey data trend. The target stock size (B40%, female spawning biomass) is estimated at about 139,000 tons while the projected 1999 spawning biomass is about 110,000 tons. The adjusted yield projection from F40% computations is estimated at 20,000 tons for 1999, and increase of 5,000 from last year’s ABC. Given the continued downward abundance trend and no sign of recruitment to the EBS shelf, extra caution is warranted. We therefore recommend that the ABC be set to 15,000 tons (same value as last year). As additional survey information become available and signs of recruitment (perhaps from areas other than the shelf) are apparent, then we believe that the full ABC or increases in harvest may be appropriate for this species. -
Advisory Committee on Fisheries Management
Advisory Committee on Fishery Management ICES CM 2002/ACFM:16 Ref. G REPORT OF THE Working Group on the Biology and Assessment of Deep-Sea Fisheries Resources Horta, the Azores, Portugal 4–10 April 2002 This report is not to be quoted without prior consultation with the General Secretary. The document is a report of an expert group under the auspices of the International Council for the Exploration of the Sea and does not necessarily represent the views of the Council. International Council for the Exploration of the Sea Conseil International pour l’Exploration de la Mer Palægade 2–4 DK–1261 Copenhagen K Denmark TABLE OF CONTENTS Section Page 1 INTRODUCTION...................................................................................................................................................... 1 1.1 Terms of Reference......................................................................................................................................... 1 2 OVERVIEW .............................................................................................................................................................. 2 2.1 Background..................................................................................................................................................... 2 2.2 Data availability .............................................................................................................................................. 3 2.3 Ongoing or recently completed research projects/programmes, and activities -
Table of Contents
Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included -
Movements of a Deep-Water Fish: Establishing Marine Fisheries Management Boundaries in Coastal Arctic Waters
University of Windsor Scholarship at UWindsor Biological Sciences Publications Department of Biological Sciences 2017 Movements of a deep-water fish: Establishing marine fisheries management boundaries in coastal Arctic waters Nigel E. Hussey University of Windsor K. J. Hedges A. N. Barkley M. A. Treble I. Peklova See next page for additional authors Follow this and additional works at: https://scholar.uwindsor.ca/biologypub Part of the Biology Commons Recommended Citation Hussey, Nigel E.; Hedges, K. J.; Barkley, A. N.; Treble, M. A.; Peklova, I.; Webber, D. M.; Ferguson, S. H.; Yurkowski, D. J.; Kessel, S. T.; Bedard, J. M.; and Fisk, A. T., "Movements of a deep-water fish: Establishing marine fisheries management boundaries in coastal Arctic waters" (2017). Ecological Applications, 27, 3, 687-704. https://scholar.uwindsor.ca/biologypub/813 This Article is brought to you for free and open access by the Department of Biological Sciences at Scholarship at UWindsor. It has been accepted for inclusion in Biological Sciences Publications by an authorized administrator of Scholarship at UWindsor. For more information, please contact [email protected]. Authors Nigel E. Hussey, K. J. Hedges, A. N. Barkley, M. A. Treble, I. Peklova, D. M. Webber, S. H. Ferguson, D. J. Yurkowski, S. T. Kessel, J. M. Bedard, and A. T. Fisk This article is available at Scholarship at UWindsor: https://scholar.uwindsor.ca/biologypub/813 INVITED FEATURE Ecological Applications, 27(3), 2017, pp. 687–704 © 2016 by the Ecological Society of America Movements of a deep- water fish: establishing marine fisheries management boundaries in coastal Arctic waters NIGEL E.