Complex Multiplication and Lifting Problems

Total Page:16

File Type:pdf, Size:1020Kb

Complex Multiplication and Lifting Problems Mathematical Surveys and Monographs Volume 195 Complex Multiplication and Lifting Problems Ching-Li Chai "RIAN#ONRAD Frans Oort American Mathematical Society http://dx.doi.org/10.1090/surv/195 Complex Multiplication and Lifting Problems http://dx.doi.org/10.1090/surv/195 Mathematical Surveys and Monographs Volume 195 Complex Multiplication and Lifting Problems Ching-Li Chai Brian Conrad Frans Oort American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Ralph L. Cohen, Chair Benjamin Sudakov Robert Guralnick MichaelI.Weinstein MichaelA.Singer 2010 Mathematics Subject Classification. Primary 11G15, 14K02, 14L05, 14K15, 14D15. For additional information and updates on this book, visit www.ams.org/bookpages/surv-195 Library of Congress Cataloging-in-Publication Data Chai, Ching-Li, author. Complex multiplication and lifting problems / Ching-Li Chai, Brian Conrad, Frans Oort. pages cm — (Mathematical surveys and monographs ; volume 195) Includes bibliographical references and index. ISBN 978-1-4704-1014-8 (alk. paper) 1. Multiplication, Complex. 2. Abelian varieties. I. Conrad, Brian, 1970– author. II. Oort, Frans, 1935– author. III. Title. QA564.C44 2014 516.353—dc23 2013036892 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2014 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 191817161514 This book is dedicated to John Tate for what he taught us, and for inspiring us Contents Preface ix Introduction 1 References 8 Notation and terminology 9 Chapter 1. Algebraic theory of complex multiplication 13 1.1. Introduction 13 1.2. Simplicity, isotypicity, and endomorphism algebras 15 1.3. Complex multiplication 23 1.4. Dieudonn´etheory,p-divisible groups, and deformations 33 1.5. CM types 65 1.6. Abelian varieties over finite fields 70 1.7. A theorem of Grothendieck and a construction of Serre 76 1.8. CM lifting questions 86 Chapter 2. CM lifting over a discrete valuation ring 91 2.1. Introduction 91 2.2. Existence of CM lifting up to isogeny 102 2.3. CM lifting to a normal domain up to isogeny: counterexamples 109 2.4. Algebraic Hecke characters 117 2.5. Theory of complex multiplication 127 2.6. Local methods 130 Chapter 3. CM lifting of p-divisible groups 137 3.1. Motivation and background 137 3.2. Properties of a-numbers 143 3.3. Isogenies and duality 146 3.4. Some p-divisible groups with small a-number 156 3.5. Earlier non-liftability results and a new proof 161 3.6. A lower bound on the field of definition 164 3.7. Complex multiplication for p-divisible groups 166 3.8. An upper bound for a field of definition 182 3.9. Appendix: algebraic abelian p-adic representations of local fields 185 3.10. Appendix: questions and examples on extending isogenies 191 Chapter 4. CM lifting of abelian varieties up to isogeny 195 4.1. Introduction 195 4.2. Classification and Galois descent by Lie types 211 vii viii CONTENTS 4.3. Tensor construction for p-divisible groups 224 4.4. Self-duality and CM lifting 228 4.5. Striped and supersingular Lie types 233 4.6. Complex conjugation and CM lifting 240 Appendix A. Some arithmetic results for abelian varieties 249 A.1. The p-part of Tate’s work 249 A.2. The Main Theorem of Complex Multiplication 257 A.3. A converse to the Main Theorem of Complex Multiplication 292 A.4. Existence of algebraic Hecke characters 296 Appendix B. CM lifting via p-adic Hodge theory 321 B.1. A generalization of the toy model 321 B.2. Construct CM lifting by p-adic Hodge theory 333 B.3. Dieudonn´e theories over a perfect field of characteristic p 343 B.4. p-adic Hodge theory and a formula for the closed fiber 359 Notes on Quotes 371 Glossary of Notations 373 Bibliography 379 Index 385 Preface During the Workshop on Abelian Varieties in Amsterdam in May 2006, the three authors of this book formulated two refined versions of a problem concerning lifting into characteristic 0 for abelian varieties over a finite field. These problems address the phenomenon of CM lifting: the lift into characteristic 0 is required to be a CM abelian variety (in the sense defined in 1.3.8.1). The precise formulations appear at the end of Chapter 1 (see 1.8.5), as problems (I) and (IN). Abelian surface counterexamples to (IN) were found at that time; see 2.3.1–2.3.3, and see 4.1.2 for a more thorough analysis. To our surprise, the same counterexam- ples (typical among toy models as defined in 4.1.3) play a crucial role in the general solution to problems (I) and (IN). This book is the story of our adventure guided by CM lifting problems. Ching-Li Chai thanks Hsiao-Ling for her love and support during all these years. He also thanks Utrecht University for hospitality during many visits, including the May 2006 Spring School on Abelian Varieties which concluded with the workshop in Amsterdam. Support by NSF grants DMS 0400482, DMS 0901163, and DMS120027 is gratefully acknowledged. Brian Conrad thanks the many participants in the “CM seminar” at the Univer- sity of Michigan for their enthusiasm on the topic of complex multiplication, as well as Columbia University for its hospitality during a sabbatical visit, and grate- fully acknowledges support by NSF grants DMS 0093542, DMS 0917686, and DMS 1100784. Frans Oort thanks the University of Pennsylvania for hospitality and stimulating environment during several visits. We are also grateful to Burcu Baran, Bas Edixhoven, Ofer Gabber, Johan de Jong, Bill Messing, Ben Moonen, James Parson, Ren´e Schoof, and Jonathan Wise for insightful and memorable discussions. ix Notes on Quotes Sources of quotes at the beginning of each chapter. (0) The Zariski quote on page 1 is from the Preface of Oscar Zariski: Collected Papers, page xii of volumes I, II and page xiv of volumes III, IV. (1) The Hilbert quote on page 13 is from page 182 of Hilbert’s obituary by Olga Taussky in Nature,vol.152, pp. 182–183. Taussky, who heard Hilbert’s com- ment, recorded it as follows. It is interesting to recall that, in connexion with a lecture by Prof. R. Fueter at the 1932 Zurich Congress, Hilbert asserted that the theory of complex multiplication (of elliptic modular functions) which forms a powerful link between number theory and analysis, is not only the most beautiful part of mathematics but also of all science. (2) The Igusa quote on page 91 is from page 614 of Igusa’s article Arithmetic variety of moduli for genus two,AnnalsofMath.vol.72, 1960, pp. 612–649. (3) The Tate quote on page 137 is from page 158 of Tate’s original article [119] on p-divisible groups. (4) The Grothendieck quote on page 195 is in a letter from Grothendieck to Mum- ford dated September 4, 1968. The letter is included in David Mumford Se- lected Papers vol. II, Springer, 2010, pp. 735–737. The passage quoted is on page 736. (5) The Shimura quote on page 249 is from a footnote on p. 96 of Shimura’s book [113], the first page of Chapter 4. (6) The Mumford quote on page 321 is from the Preface of David Mumford Selected Papers, On the Classification of Varieties and Moduli Spaces, Springer, 2004. 371 Glossary of Notations Hom(A, B) K-rational homomorphisms for abelian varieties A, B over a field K, 1018 End(A)ringofK-rational endomorphisms for an abelian variety A over a field K, 10 0 Hom (A, B) Q ⊗Z Hom(A, B), 10 0 End (A) Q ⊗Z End(A), the endomorphism algebra of an abelian variety A, 10 At the dual of an abelian variety A, 10 A ∼ B abelian varieties A, B over K are isogenous over K, 10 AL the adele ring for a number field L, 10 A the adele ring for Q, 10 AL,f the ring of finite adeles for a number field L, 10 Af the ring of finite adeles for Q, 10 recL the reciprocity law map for a number field L, 10 recF the Artin map for F , F either a number field or a local field, 10 Br(K) the Brauer group of a field K, 18 Trd D/Z the reduced trace of a central simple algebra D over a field K, 18 inv ,inv the invariant of an element of the Brauer group over a local field K K Lv or Lv, 19 DK the Dieudonn´eringforaperfectfieldK ⊃ Fp,38 N D the Cartier dual of a commutative finite locally free group scheme, 34 NΦ the reflex norm of a CM type Φ, 94 ResL/Q(Gm) Weil’s restriction of scalars for L/Q applied to Gm/L, 95 hΦ the cocharacter of ResL/Q(Gm) attached to a CM type Φ for L, 95 A× → × alg the algebraic part of an algebraic Hecke character : F K , 118 Sm the Serre group with conductor m for a number field F , 119 Tm the connected Serre group with conductor m attached to a number field F , 119 ψ the abelian -adic representation attached to an algebraic Hecke character , 121 SF the connected Serre group attached to a number field F , 119, 299 SF the Serre group attached to a number field F , 120 Fp an algebraic closure of Fp, 137–248 Gλ asimplep-divisible group with slope λ over a perfect base field of characteristic p, 139 Mλ the contravariant Dieudonn´e module of Gλ, 139 X´et the maximal ´etale quotient of a p-divisible group X, 140 Xmult the largest p-divisible subgroup of multiplicative type for a p-divisible group X, 140 18A bold-faced page number indicates where a general notation is first defined or introduced.
Recommended publications
  • CHAPTER 0 PRELIMINARY MATERIAL Paul
    CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic preliminary notation, both mathematical and logistical. Sec- tion 2 describes what algebraic geometry is assumed of the reader, and gives a few conventions that will be assumed here. Section 3 gives a few more details on the field of definition of a variety. Section 4 does the same as Section 2 for number theory. The remaining sections of this chapter give slightly longer descriptions of some topics in algebraic geometry that will be needed: Kodaira’s lemma in Section 5, and descent in Section 6. x1. General notation The symbols Z , Q , R , and C stand for the ring of rational integers and the fields of rational numbers, real numbers, and complex numbers, respectively. The symbol N sig- nifies the natural numbers, which in this book start at zero: N = f0; 1; 2; 3;::: g . When it is necessary to refer to the positive integers, we use subscripts: Z>0 = f1; 2; 3;::: g . Similarly, R stands for the set of nonnegative real numbers, etc. ¸0 ` ` The set of extended real numbers is the set R := f¡1g R f1g . It carries the obvious ordering. ¯ ¯ If k is a field, then k denotes an algebraic closure of k . If ® 2 k , then Irr®;k(X) is the (unique) monic irreducible polynomial f 2 k[X] for which f(®) = 0 . Unless otherwise specified, the wording almost all will mean all but finitely many.
    [Show full text]
  • ON the FIELD of DEFINITION of P-TORSION POINTS on ELLIPTIC CURVES OVER the RATIONALS
    ON THE FIELD OF DEFINITION OF p-TORSION POINTS ON ELLIPTIC CURVES OVER THE RATIONALS ALVARO´ LOZANO-ROBLEDO Abstract. Let SQ(d) be the set of primes p for which there exists a number field K of degree ≤ d and an elliptic curve E=Q, such that the order of the torsion subgroup of E(K) is divisible by p. In this article we give bounds for the primes in the set SQ(d). In particular, we show that, if p ≥ 11, p 6= 13; 37, and p 2 SQ(d), then p ≤ 2d + 1. Moreover, we determine SQ(d) for all d ≤ 42, and give a conjectural formula for all d ≥ 1. If Serre’s uniformity problem is answered positively, then our conjectural formula is valid for all sufficiently large d. Under further assumptions on the non-cuspidal points on modular curves that parametrize those j-invariants associated to Cartan subgroups, the formula is valid for all d ≥ 1. 1. Introduction Let K be a number field of degree d ≥ 1 and let E=K be an elliptic curve. The Mordell-Weil theorem states that E(K), the set of K-rational points on E, can be given the structure of a finitely ∼ R generated abelian group. Thus, there is an integer R ≥ 0 such that E(K) = E(K)tors ⊕ Z and the torsion subgroup E(K)tors is finite. Here, we will focus on the order of E(K)tors. In particular, we are interested in the following question: if we fix d ≥ 1, what are the possible prime divisors of the order of E(K)tors, for E and K as above? Definition 1.1.
    [Show full text]
  • Class Numbers of CM Algebraic Tori, CM Abelian Varieties and Components of Unitary Shimura Varieties
    CLASS NUMBERS OF CM ALGEBRAIC TORI, CM ABELIAN VARIETIES AND COMPONENTS OF UNITARY SHIMURA VARIETIES JIA-WEI GUO, NAI-HENG SHEU, AND CHIA-FU YU Abstract. We give a formula for the class number of an arbitrary CM algebraic torus over Q. This is proved based on results of Ono and Shyr. As applications, we give formulas for numbers of polarized CM abelian varieties, of connected components of unitary Shimura varieties and of certain polarized abelian varieties over finite fields. We also give a second proof of our main result. 1. Introduction An algebraic torus T over a number field k is a connected linear algebraic group over k such d that T k k¯ isomorphic to (Gm) k k¯ over the algebraic closure k¯ of k for some integer d 1. The class⊗ number, h(T ), of T is by⊗ definition, the cardinality of T (k) T (A )/U , where A≥ \ k,f T k,f is the finite adele ring of k and UT is the maximal open compact subgroup of T (Ak,f ). Asa natural generalization for the class number of a number field, Takashi Ono [18, 19] studied the class numbers of algebraic tori. Let K/k be a finite extension and let RK/k denote the Weil restriction of scalars form K to k, then we have the following exact sequence of tori defined over k 1 R(1) (G ) R (G ) G 1, −→ K/k m,K −→ K/k m,K −→ m,k −→ where R(1) (G ) is the kernel of the norm map N : R (G ) G .
    [Show full text]
  • Graduate Texts in Mathematics
    Graduate Texts in Mathematics Editorial Board S. Axler F.W. Gehring K.A. Ribet BOOKS OF RELATED INTEREST BY SERGE LANG Math Talks for Undergraduates 1999, ISBN 0-387-98749-5 Linear Algebra, Third Edition 1987, ISBN 0-387-96412-6 Undergraduate Algebra, Second Edition 1990, ISBN 0-387-97279-X Undergraduate Analysis, Second Edition 1997, ISBN 0-387-94841-4 Complex Analysis, Third Edition 1993, ISBN 0-387-97886 Real and Functional Analysis, Third Edition 1993, ISBN 0-387-94001-4 Algebraic Number Theory, Second Edition 1994, ISBN 0-387-94225-4 OTHER BOOKS BY LANG PUBLISHED BY SPRINGER-VERLAG Introduction to Arakelov Theory • Riemann-Roch Algebra (with William Fulton) • Complex Multiplication • Introduction to Modular Forms • Modular Units (with Daniel Kubert) • Fundamentals of Diophantine Geometry • Elliptic Functions • Number Theory III • Survey of Diophantine Geometry • Fundamentals of Differential Geometry • Cyclotomic Fields I and II • SL2(R) • Abelian Varieties • Introduction to Algebraic and Abelian Functions • Introduction to Diophantine Approximations • Elliptic Curves: Diophantine Analysis • Introduction to Linear Algebra • Calculus of Several Variables • First Course in Calculus • Basic Mathematics • Geometry: A High School Course (with Gene Murrow) • Math! Encounters with High School Students • The Beauty of Doing Mathematics • THE FILE • CHALLENGES Serge Lang Algebra Revised Third Edition Springer Serge Lang Department of Mathematics Yale University New Haven, CT 96520 USA Editorial Board S. Axler Mathematics Department F.W. Gehring K.A. Ribet San Francisco State Mathematics Department Mathematics Department University East Hall University of California, San Francisco, CA 94132 University of Michigan Berkeley USA Ann Arbor, MI 48109 Berkeley, CA 94720-3840 [email protected] USA USA [email protected].
    [Show full text]
  • Interview with Mathmedia
    i “Taiwan-I-12-transcript2” — 2013/11/7 — 15:23 — page 1 — #1 i i i Interview with MathMedia Interviewee: Frans Oort Interviewer: Ching-Li Chai Venue: Institute of Mathematics Academia Sinica Date: December 3rd, 2012 Ching-Li Chai(CHAI): Good morning, Frans. Doing this interview is a pleasure. I didn’t expect this. Frans Oort (OORT): The pleasure is mine. It’s a surprise for both of us. CHAI: There is a ritual that we first invite people to talk about their formative years which is always interesting because people’s backgrounds are all different. Would you like to say something about your formative years or when you are younger and decided to go to mathematics? Some people believe that mathematicians are born. The beginning1 OORT: Let me first say something about life as a mathematician, and later I will tell some stories about my personal life. For me it is a surprise you can be together with other people, with different cultural backgrounds, in history, in bringing up, with parents on the one hand, while on the other hand you can be so close to other people. With other mathematicians all of a sudden you understand each other on a much higher level than you ever thought possible. This is one of the most exciting things I have seen in my life. Certainly this is true with my collaborator here; with Ching-Li I have so much in common, and we understand each other. I think mathematically we have a deep contact and I am very grateful for that.
    [Show full text]
  • THE GALOIS ACTION on DESSIN D'enfants Contents 1. Introduction 1 2. Background: the Absolute Galois Group 4 3. Background
    THE GALOIS ACTION ON DESSIN D'ENFANTS CARSON COLLINS Abstract. We introduce the theory of dessin d'enfants, with emphasis on how it relates to the absolute Galois group of Q. We prove Belyi's Theorem and show how the resulting Galois action is faithful on dessins. We also discuss the action on categories equivalent to dessins and prove its most powerful invariants for classifying orbits of the action. Minimal background in Galois theory or algebraic geometry is assumed, and we review those concepts which are necessary to this task. Contents 1. Introduction 1 2. Background: The Absolute Galois Group 4 3. Background: Algebraic Curves 4 4. Belyi's Theorem 5 5. The Galois Action on Dessins 6 6. Computing the Belyi Map of a Spherical Dessin 7 7. Faithfulness of the Galois Action 9 8. Cartographic and Automorphism Groups of a Dessin 10 9. Regular Dessins: A Galois Correspondence 13 Acknowledgments 16 References 16 1. Introduction Definition 1.1. A bigraph is a connected bipartite graph with a fixed 2-coloring into nonempty sets of black and white vertices. We refer to the edges of a bigraph as its darts. Definition 1.2. A dessin is a bigraph with an embedding into a topological surface such that its complement in the surface is a disjoint union of open disks, called the faces of the dessin. Dessin d'enfant, often abbreviated to dessin, is French for "child's drawing." As the definition above demonstrates, these are simple combinatorial objects, yet they have subtle and deep connections to algebraic geometry and Galois theory.
    [Show full text]
  • Chapter 2 Affine Algebraic Geometry
    Chapter 2 Affine Algebraic Geometry 2.1 The Algebraic-Geometric Dictionary The correspondence between algebra and geometry is closest in affine algebraic geom- etry, where the basic objects are solutions to systems of polynomial equations. For many applications, it suffices to work over the real R, or the complex numbers C. Since important applications such as coding theory or symbolic computation require finite fields, Fq , or the rational numbers, Q, we shall develop algebraic geometry over an arbitrary field, F, and keep in mind the important cases of R and C. For algebraically closed fields, there is an exact and easily motivated correspondence be- tween algebraic and geometric concepts. When the field is not algebraically closed, this correspondence weakens considerably. When that occurs, we will use the case of algebraically closed fields as our guide and base our definitions on algebra. Similarly, the strongest and most elegant results in algebraic geometry hold only for algebraically closed fields. We will invoke the hypothesis that F is algebraically closed to obtain these results, and then discuss what holds for arbitrary fields, par- ticularly the real numbers. Since many important varieties have structures which are independent of the field of definition, we feel this approach is justified—and it keeps our presentation elementary and motivated. Lastly, for the most part it will suffice to let F be R or C; not only are these the most important cases, but they are also the sources of our geometric intuitions. n Let A denote affine n-space over F. This is the set of all n-tuples (t1,...,tn) of elements of F.
    [Show full text]
  • Current Trends and Open Problems in Arithmetic Dynamics
    BULLETIN (New Series) OF THE AMERICAN MATHEMATICAL SOCIETY Volume 56, Number 4, October 2019, Pages 611–685 https://doi.org/10.1090/bull/1665 Article electronically published on March 1, 2019 CURRENT TRENDS AND OPEN PROBLEMS IN ARITHMETIC DYNAMICS ROBERT BENEDETTO, PATRICK INGRAM, RAFE JONES, MICHELLE MANES, JOSEPH H. SILVERMAN, AND THOMAS J. TUCKER Abstract. Arithmetic dynamics is the study of number theoretic properties of dynamical systems. A relatively new field, it draws inspiration partly from dynamical analogues of theorems and conjectures in classical arithmetic geom- etry and partly from p-adic analogues of theorems and conjectures in classical complex dynamics. In this article we survey some of the motivating problems and some of the recent progress in the field of arithmetic dynamics. Contents 1. Introduction 612 2. Abstract dynamical systems 613 3. Background: Number theory and algebraic geometry 615 4. Uniform boundedness of (pre)periodic points 617 5. Arboreal representations 619 6. Dynatomic representations 622 7. Intersections of orbits and subvarieties 624 8. (Pre)periodic points on subvarieties 626 9. Dynamical (dynatomic) modular curves 627 10. Dynamical moduli spaces 630 11. Unlikely intersections in dynamics 634 12. Good reduction of maps and orbits 636 13. Dynamical degrees of rational maps 642 14. Arithmetic degrees of orbits 645 15. Canonical heights 649 16. Variation of the canonical height 653 17. p-adic and non-archimedean dynamics 656 18. Dynamics over finite fields 661 19. Irreducibilty and stability of iterates 665 20. Primes, prime divisors, and primitive divisors in orbits 668 21. Integral points in orbits 671 Received by the editors June 30, 2018.
    [Show full text]
  • Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves Athanasios Angelakis
    Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves Athanasios Angelakis To cite this version: Athanasios Angelakis. Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves. Group Theory [math.GR]. Université de Bordeaux; Universiteit Leiden (Leyde, Pays-Bas), 2015. English. NNT : 2015BORD0180. tel-01359692 HAL Id: tel-01359692 https://tel.archives-ouvertes.fr/tel-01359692 Submitted on 23 Sep 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Universal Adelic Groups for Imaginary Quadratic Number Fields and Elliptic Curves Proefschrift ter verkrijging van de graad van Doctor aan de Universiteit Leiden op gezag van Rector Magnificus prof. mr. C.J.J.M. Stolker, volgens besluit van het College voor Promoties te verdedigen op woensdag 2 september 2015 klokke 15:00 uur door Athanasios Angelakis geboren te Athene in 1979 Samenstelling van de promotiecommissie: Promotor: Prof. dr. Peter Stevenhagen (Universiteit Leiden) Promotor: Prof. dr. Karim Belabas (Universit´eBordeaux I) Overige leden: Prof.
    [Show full text]
  • LECTURES on HEIGHT ZETA FUNCTIONS of TORIC VARIETIES by Yuri Tschinkel
    S´eminaires & Congr`es 6, 2002, p. 227–247 LECTURES ON HEIGHT ZETA FUNCTIONS OF TORIC VARIETIES by Yuri Tschinkel Abstract.— We explain the main ideas and techniques involved in recent proofs of asymptotics of rational points of bounded height on toric varieties. 1. Introduction Toric varieties are an ideal testing ground for conjectures: their theory is sufficiently rich to reflect general phenomena and sufficiently rigid to allow explicit combinato- rial computations. In these notes I explain a conjecture in arithmetic geometry and describe its proof for toric varieties. Acknowledgments. — Iwould like to thank the organizers of the Summer School for the invitation. The results concerning toric varieties were obtained in collaboration with V. Batyrev. It has been a great pleasure and privilege to work with A. Chambert- Loir, B. Hassett and M. Strauch — Iam very much indebted to them. My research was partially supported by the NSA. 1.1. Counting problems Example 1.1.1.—LetX ⊂ Pn be a smooth hypersurface given as the zero set of a homogeneous form f of degree d (with coefficients in Z). Let N(X, B)=#{x | f(x)=0, max(|xj |) B} n+1 (where x =(x0,...,xn) ∈ Z /(±1) with gcd(xj) = 1) be the number of Q-rational points on X of “height” B. Heuristically, the probability that f represents 0 is about B−d and the number of “events” about Bn+1. Thus we expect that lim N(X, B) ∼ Bn+1−d. B→∞ 2000 Mathematics Subject Classification.—14G05, 11D45, 14M25, 11D57. Key words and phrases.—Rational points, heights, toric varieties, zeta functions.
    [Show full text]
  • Uva-DARE (Digital Academic Repository)
    UvA-DARE (Digital Academic Repository) Optimality properties of curves over finite fields Zaitsev, A.I. Publication date 2008 Link to publication Citation for published version (APA): Zaitsev, A. I. (2008). Optimality properties of curves over finite fields. Thomas Stieltjes Institute for Mathematics. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:27 Sep 2021 Bibliography [1] Aldo Andreotti. On a theorem of Torelli. Amer.J.Math., 80:801–828, 1958. [2] Juscelino Bezerra, Arnaldo Garcia, and Henning Stichtenoth. An explicit tower of function fields over cubic finite fields and Zink’s lower bound. J. Reine Angew. Math., 589:159–199, 2005. [3] Pierre Deligne. Vari´et´es ab´eliennes ordinaires sur un corps fini. Invent. Math., 8:238–243, 1969.
    [Show full text]
  • ADELIC ANALYSIS and FUNCTIONAL ANALYSIS on the FINITE ADELE RING Ilwoo
    Opuscula Math. 38, no. 2 (2018), 139–185 https://doi.org/10.7494/OpMath.2018.38.2.139 Opuscula Mathematica ADELIC ANALYSIS AND FUNCTIONAL ANALYSIS ON THE FINITE ADELE RING Ilwoo Cho Communicated by P.A. Cojuhari Abstract. In this paper, we study operator theory on the -algebra , consisting of all ∗ MP measurable functions on the finite Adele ring AQ, in extended free-probabilistic sense. Even though our -algebra is commutative, our Adelic-analytic data and properties on ∗ MP MP are understood as certain free-probabilistic results under enlarged sense of (noncommutative) free probability theory (well-covering commutative cases). From our free-probabilistic model on AQ, we construct the suitable Hilbert-space representation, and study a C∗-algebra M generated by under representation. In particular, we focus on operator-theoretic P MP properties of certain generating operators on M . P Keywords: representations, C∗-algebras, p-adic number fields, the Adele ring, the finite Adele ring. Mathematics Subject Classification: 05E15, 11G15, 11R47, 11R56, 46L10, 46L54, 47L30, 47L55. 1. INTRODUCTION The main purposes of this paper are: (i) to construct a free-probability model (under extended sense) of the -algebra ∗ consisting of all measurable functions on the finite Adele ring A , implying MP Q number-theoretic information from the Adelic analysis on AQ, (ii) to establish a suitable Hilbert-space representation of , reflecting our MP free-distributional data from (i) on , MP (iii) to construct-and-study a C∗-algebra M generated by under our representa- P MP tion of (ii), and (iv) to consider free distributions of the generating operators of M of (iii).
    [Show full text]