Draft Comprehensive Environmental Evaluation for Continuation and Modernization of Mcmurdo Station Area Activities

Total Page:16

File Type:pdf, Size:1020Kb

Draft Comprehensive Environmental Evaluation for Continuation and Modernization of Mcmurdo Station Area Activities DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION FOR CONTINUATION AND MODERNIZATION OF MCMURDO STATION AREA ACTIVITIES February 2019 Comments on the Comprehensive Environmental Evaluation should be addressed to: Dr. Polly A. Penhale, Senior Advisor, Environment National Science Foundation, Office of Polar Programs 2415 Eisenhower Avenue Alexandria, Virginia 22314 E-mail: [email protected] National Science Foundation 2415 Eisenhower Avenue Alexandria, Virginia 22314 This page intentionally left blank. DRAFT COMPREHENSIVE ENVIRONMENTAL EVALUATION FOR CONTINUATION AND MODERNIZATION OF MCMURDO STATION AREA ACTIVITIES TABLE OF CONTENTS Non-Technical Summary ..................................................................................................................... NS-1 1. Introduction, Purpose and Need ................................................................................................ 1-1 1.1 National Science Foundation and United States Antarctic Program Background ........... 1-1 1.1.1 History of Program and Development at McMurdo ........................................... 1-1 1.1.2 Scientific Goals of the USAP at McMurdo and Field Locations Supported by the Station ..................................................................................... 1-1 1.2 Purpose and Need for the Proposed Activity ................................................................... 1-2 1.3 Scope of the Comprehensive Environmental Evaluation ................................................ 1-3 1.3.1 Scoping Process .................................................................................................. 1-3 1.3.2 International and Domestic Obligations ............................................................. 1-3 1.3.3 Organization of Document .................................................................................. 1-3 2. Operational Developments in the USAP During the Past Three Decades in the McMurdo Area ........................................................................................................................... 2-1 2.1 Introduction ...................................................................................................................... 2-1 2.2 McMurdo Station Developments ..................................................................................... 2-1 2.2.1 Initial Station Layout and Operation................................................................... 2-2 2.2.2 Improvements to McMurdo Area ....................................................................... 2-4 2.2.3 Current Layout of McMurdo Station and Supported Facilities .......................... 2-7 2.3 International Collaborations........................................................................................... 2-10 3. Proposed Activity and Alternatives ........................................................................................... 3-1 3.1 Introduction ...................................................................................................................... 3-1 3.2 Implement AIMS Projects under the McMurdo Master Plan .......................................... 3-1 3.2.1 Summary Description of AIMS Projects ............................................................ 3-3 3.2.2 General Aspects of AIMS Construction and Operation Phases .......................... 3-5 3.3 Implement McMurdo Master Plan ................................................................................... 3-8 3.3.1 Summary Description of McMurdo Master Plan Projects .................................. 3-8 3.3.2 General Aspects of McMurdo Master Plan Project Construction and Operation .......................................................................................................... 3-10 3.4 Continued Operation of McMurdo Area Activities and Facilities ................................. 3-11 3.4.1 McMurdo Station Facilities and Operations (Baseline Conditions) ................. 3-11 3.4.2 McMurdo Station Facilities and Operations (During Construction and Post-Construction) ............................................................................................ 3-12 3.5 Closure and Demolition of McMurdo Station Facilities ................................................ 3-16 3.6 Alternatives Considered ................................................................................................. 3-16 3.6.1 Alternative B: No Action/Maintain Current Level of Activity ......................... 3-16 3.6.2 Alternatives Considered but Not Carried Forward ........................................... 3-16 i 4. Initial Environmental Reference/Affected Environment ........................................................ 4-1 4.1 Introduction ...................................................................................................................... 4-1 4.2 McMurdo Station and Ross Island ................................................................................... 4-1 4.2.1 Environmental Resources ................................................................................... 4-1 4.2.2 Ecological Resources .......................................................................................... 4-2 4.3 McMurdo Dry Valleys (MDV) ........................................................................................ 4-3 4.3.1 Environmental Resources ................................................................................... 4-3 4.3.2 Ecological Resources .......................................................................................... 4-3 4.4 Deep Field Sites ............................................................................................................... 4-3 4.4.1 Environmental Resources ................................................................................... 4-4 4.4.2 Ecological Resources .......................................................................................... 4-4 4.5 McMurdo Sound and the Ross Sea .................................................................................. 4-4 4.5.1 Environmental Resources ................................................................................... 4-4 4.5.2 Ecological Resources .......................................................................................... 4-5 4.6 Protected Areas and Other Sites of International Significance ........................................ 4-9 4.7 Prediction of Future Environmental Reference in the Absence of Proposed Activity .......................................................................................................................... 4-12 5. Identification and Prediction of Impacts .................................................................................. 5-1 5.1 Introduction ...................................................................................................................... 5-1 5.2 Methodology and Data Sources ....................................................................................... 5-1 5.3 Impacts from McMurdo Station Modernization .............................................................. 5-2 5.3.1 Building Demolition and Construction ............................................................... 5-2 5.3.2 Site Preparation, Fill, and Fines .......................................................................... 5-3 5.3.3 Drainage Improvements ...................................................................................... 5-3 5.3.4 Blasting and Explosives Use ............................................................................... 5-3 5.3.5 Import of Material ............................................................................................... 5-4 5.3.6 Vehicle Use ......................................................................................................... 5-4 5.4 Impacts from Continuing Existing McMurdo Area Activities and Operating Existing Facilities ............................................................................................................ 5-4 5.4.1 Building Use ....................................................................................................... 5-4 5.4.2 Helicopter and Fixed Wing Operations .............................................................. 5-5 5.4.3 Traverse Operations ............................................................................................ 5-5 5.4.4 Vessel and Ice Pier Operations ........................................................................... 5-5 5.4.5 Support Facility Operations ................................................................................ 5-5 5.4.6 Field Camp Operations ....................................................................................... 5-5 5.4.7 Water and Wastewater Operations...................................................................... 5-6 5.4.8 Power Operations ................................................................................................ 5-6 5.4.9 Solid Waste Operations ...................................................................................... 5-6 5.4.10 Hazardous Waste Operations .............................................................................. 5-7 5.4.11 Fuel Use and Storage .......................................................................................... 5-7 5.4.12 Hazardous Material Storage and Use .................................................................. 5-7 ii 5.4.13 Explosives Use ...................................................................................................
Recommended publications
  • The Antarctic Treaty System And
    The Antarctic Treaty System and Law During the first half of the 20th century a series of territorial claims were made to parts of Antarctica, including New Zealand's claim to the Ross Dependency in 1923. These claims created significant international political tension over Antarctica which was compounded by military activities in the region by several nations during the Second World War. These tensions were eased by the International Geophysical Year (IGY) of 1957-58, the first substantial multi-national programme of scientific research in Antarctica. The IGY was pivotal not only in recognising the scientific value of Antarctica, but also in promoting co- operation among nations active in the region. The outstanding success of the IGY led to a series of negotiations to find a solution to the political disputes surrounding the continent. The outcome to these negotiations was the Antarctic Treaty. The Antarctic Treaty The Antarctic Treaty was signed in Washington on 1 December 1959 by the twelve nations that had been active during the IGY (Argentina, Australia, Belgium, Chile, France, Japan, New Zealand, Norway, South Africa, United Kingdom, United States and USSR). It entered into force on 23 June 1961. The Treaty, which applies to all land and ice-shelves south of 60° South latitude, is remarkably short for an international agreement – just 14 articles long. The twelve nations that adopted the Treaty in 1959 recognised that "it is in the interests of all mankind that Antarctica shall continue forever to be used exclusively for peaceful purposes and shall not become the scene or object of international discord".
    [Show full text]
  • Osl Dating of High-Elevation Alluvial Sediments: Mcmurdo Dry
    OSL DATING OF HIGH-ELEVATION ALLUVIAL SEDIMENTS: MCMURDO DRY VALLEYS, ANTARCTICA A Thesis Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Meridith Ann Ramsey In Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE Major Program: Environmental and Conservation Science November 2014 Fargo, North Dakota North Dakota State University Graduate School Title OSL DATING OF HIGH-ELEVATION ALLUVIAL SEDIMENTS: MCMURDO DRY VALLEYS, ANTARCTICA By Meridith Ann Ramsey The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of MASTER OF SCIENCE SUPERVISORY COMMITTEE: Kenneth Lepper Chair Adam Lewis Lisa Montplaisir Approved: 04/16/2015 Eakalak Khan Date Department Chair ABSTRACT High-elevation alluvial fans in the McMurdo Dry Valleys are a record of short-term, occasional melting events along the margins of the East Antarctic Ice Sheet. Sediment samples were dated from five fans using Optically Stimulated Luminescence (OSL) dating. OSL dates the time since quartz grains were last exposed to sunlight; all sample preparation takes place in a dark room. Thirteen samples were dated for this thesis, the ages were stratigraphically consistent and ranged from 1.1 ka to 105.9 ka. Clusters of fan activity occurred between 1.1 and 3.1 ka and 8.1 and 11.1 ka. The melting events appear to be linked to insolation, with periods of fan activity occurring usually at times of increased mean annual insolation. The alluvial fans show promise as a possible archive for climate proxies in this region of Antarctica.
    [Show full text]
  • Asynchronous Antarctic and Greenland Ice-Volume Contributions to the Last Interglacial Sea-Level Highstand
    ARTICLE https://doi.org/10.1038/s41467-019-12874-3 OPEN Asynchronous Antarctic and Greenland ice-volume contributions to the last interglacial sea-level highstand Eelco J. Rohling 1,2,7*, Fiona D. Hibbert 1,7*, Katharine M. Grant1, Eirik V. Galaasen 3, Nil Irvalı 3, Helga F. Kleiven 3, Gianluca Marino1,4, Ulysses Ninnemann3, Andrew P. Roberts1, Yair Rosenthal5, Hartmut Schulz6, Felicity H. Williams 1 & Jimin Yu 1 1234567890():,; The last interglacial (LIG; ~130 to ~118 thousand years ago, ka) was the last time global sea level rose well above the present level. Greenland Ice Sheet (GrIS) contributions were insufficient to explain the highstand, so that substantial Antarctic Ice Sheet (AIS) reduction is implied. However, the nature and drivers of GrIS and AIS reductions remain enigmatic, even though they may be critical for understanding future sea-level rise. Here we complement existing records with new data, and reveal that the LIG contained an AIS-derived highstand from ~129.5 to ~125 ka, a lowstand centred on 125–124 ka, and joint AIS + GrIS contributions from ~123.5 to ~118 ka. Moreover, a dual substructure within the first highstand suggests temporal variability in the AIS contributions. Implied rates of sea-level rise are high (up to several meters per century; m c−1), and lend credibility to high rates inferred by ice modelling under certain ice-shelf instability parameterisations. 1 Research School of Earth Sciences, The Australian National University, Canberra, ACT 2601, Australia. 2 Ocean and Earth Science, University of Southampton, National Oceanography Centre, Southampton SO14 3ZH, UK. 3 Department of Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Allegaten 41, 5007 Bergen, Norway.
    [Show full text]
  • The Commonwealth Trans-Antarctic Expedition 1955-1958
    THE COMMONWEALTH TRANS-ANTARCTIC EXPEDITION 1955-1958 HOW THE CROSSING OF ANTARCTICA MOVED NEW ZEALAND TO RECOGNISE ITS ANTARCTIC HERITAGE AND TAKE AN EQUAL PLACE AMONG ANTARCTIC NATIONS A thesis submitted in fulfilment of the requirements for the Degree PhD - Doctor of Philosophy (Antarctic Studies – History) University of Canterbury Gateway Antarctica Stephen Walter Hicks 2015 Statement of Authority & Originality I certify that the work in this thesis has not been previously submitted for a degree nor has it been submitted as part of requirements for a degree except as fully acknowledged within the text. I also certify that the thesis has been written by me. Any help that I have received in my research and the preparation of the thesis itself has been acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. Elements of material covered in Chapter 4 and 5 have been published in: Electronic version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume00,(0), pp.1-12, (2011), Cambridge University Press, 2011. Print version: Stephen Hicks, Bryan Storey, Philippa Mein-Smith, ‘Against All Odds: the birth of the Commonwealth Trans-Antarctic Expedition, 1955-1958’, Polar Record, Volume 49, Issue 1, pp. 50-61, Cambridge University Press, 2013 Signature of Candidate ________________________________ Table of Contents Foreword ..................................................................................................................................
    [Show full text]
  • Microbial Dispersal Limitation to Isolated Soil Habitats in the Mcmurdo Dry Valleys
    bioRxiv preprint doi: https://doi.org/10.1101/493411; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Microbial dispersal limitation to isolated soil habitats in the McMurdo Dry Valleys 2 of Antarctica 3 4 Stephen D.J. Archer1,2, Kevin C. Lee2, Tancredi Caruso3, Teruya Maki4, Charles K. Lee5, 5 Don A. Cowan6, Fernando T. Maestre7, Stephen B. Pointing1,8 6 7 1 Yale-NUS College, National University of Singapore, Singapore 138527 8 2 Institute for Applied Ecology New Zealand, Auckland University of Technology, Auckland 9 1142, New Zealand 10 3 School of Biological Sciences and Global Institute for Food Security, Queen's University 11 Belfast, Belfast BT9 7BL, Northern Ireland, UK 12 4 Department of Chemical Engineering, Kanazawa University, Kanazawa 920-1192, Japan 13 5 International Centre for Terrestrial Antarctic Research, University of Waikato, Hamilton 14 3240, New Zealand 15 6 Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria 0002, South 16 Africa 17 7 Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de 18 Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, C/ Tulipán s/n, 28933 19 Móstoles, Spain 20 8 Department of Biological Sciences, National University of Singapore, Singapore 117558 21 1 bioRxiv preprint doi: https://doi.org/10.1101/493411; this version posted December 13, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved.
    [Show full text]
  • Species Status Assessment Emperor Penguin (Aptenodytes Fosteri)
    SPECIES STATUS ASSESSMENT EMPEROR PENGUIN (APTENODYTES FOSTERI) Emperor penguin chicks being socialized by male parents at Auster Rookery, 2008. Photo Credit: Gary Miller, Australian Antarctic Program. Version 1.0 December 2020 U.S. Fish and Wildlife Service, Ecological Services Program Branch of Delisting and Foreign Species Falls Church, Virginia Acknowledgements: EXECUTIVE SUMMARY Penguins are flightless birds that are highly adapted for the marine environment. The emperor penguin (Aptenodytes forsteri) is the tallest and heaviest of all living penguin species. Emperors are near the top of the Southern Ocean’s food chain and primarily consume Antarctic silverfish, Antarctic krill, and squid. They are excellent swimmers and can dive to great depths. The average life span of emperor penguin in the wild is 15 to 20 years. Emperor penguins currently breed at 61 colonies located around Antarctica, with the largest colonies in the Ross Sea and Weddell Sea. The total population size is estimated at approximately 270,000–280,000 breeding pairs or 625,000–650,000 total birds. Emperor penguin depends upon stable fast ice throughout their 8–9 month breeding season to complete the rearing of its single chick. They are the only warm-blooded Antarctic species that breeds during the austral winter and therefore uniquely adapted to its environment. Breeding colonies mainly occur on fast ice, close to the coast or closely offshore, and amongst closely packed grounded icebergs that prevent ice breaking out during the breeding season and provide shelter from the wind. Sea ice extent in the Southern Ocean has undergone considerable inter-annual variability over the last 40 years, although with much greater inter-annual variability in the five sectors than for the Southern Ocean as a whole.
    [Show full text]
  • Development Pressures on the Antarctic Wilderness
    XXVIII ATCM – IP May 2004 Original: English Agenda Items 3 (Operation of the CEP) and 4a (General Matters) DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS Submitted to the XXVIII ATCM by the Antarctic and Southern Ocean Coalition DEVELOPMENT PRESSURES ON THE ANTARCTIC WILDERNESS 1. Introduction In 2004 the Antarctic and Southern Ocean Coalition (ASOC) tabled information paper ATCM XXVII IP 094 “Are new stations justified?”. The paper highlighted proposals for the construction of no less than five new Antarctic stations in the context of at least 73 established stations (whether full year or summer only), maintained by 26 States already operating in the Antarctic Treaty Area. The paper considered what was driving the new station activity in Antarctica, whether or not it was necessary or desirable, and what alternatives there might be to building yet more stations. Whilst IP 094 focused on new station proposals, it noted that there were other significant infrastructure projects underway in Antarctica, which included substantial upgrades of existing national stations, the development of air links to various locations in Antarctica and related runways, and an ice road to the South Pole. Since then, ASOC has become aware of additional proposals for infrastructure projects. This paper updates ASOC’s ATCM XXVII IP 094 to include most infrastructure projects planned or currently underway in Antarctica as of April 2005, and discusses their contribution to cumulative impacts. The criteria used to select these projects are: 1. The project’s environmental impact is potentially “more than minor or transitory”; 2. The project results in a development of infrastructure that is significant in the Antarctic context; 3.
    [Show full text]
  • Antarctic Primer
    Antarctic Primer By Nigel Sitwell, Tom Ritchie & Gary Miller By Nigel Sitwell, Tom Ritchie & Gary Miller Designed by: Olivia Young, Aurora Expeditions October 2018 Cover image © I.Tortosa Morgan Suite 12, Level 2 35 Buckingham Street Surry Hills, Sydney NSW 2010, Australia To anyone who goes to the Antarctic, there is a tremendous appeal, an unparalleled combination of grandeur, beauty, vastness, loneliness, and malevolence —all of which sound terribly melodramatic — but which truly convey the actual feeling of Antarctica. Where else in the world are all of these descriptions really true? —Captain T.L.M. Sunter, ‘The Antarctic Century Newsletter ANTARCTIC PRIMER 2018 | 3 CONTENTS I. CONSERVING ANTARCTICA Guidance for Visitors to the Antarctic Antarctica’s Historic Heritage South Georgia Biosecurity II. THE PHYSICAL ENVIRONMENT Antarctica The Southern Ocean The Continent Climate Atmospheric Phenomena The Ozone Hole Climate Change Sea Ice The Antarctic Ice Cap Icebergs A Short Glossary of Ice Terms III. THE BIOLOGICAL ENVIRONMENT Life in Antarctica Adapting to the Cold The Kingdom of Krill IV. THE WILDLIFE Antarctic Squids Antarctic Fishes Antarctic Birds Antarctic Seals Antarctic Whales 4 AURORA EXPEDITIONS | Pioneering expedition travel to the heart of nature. CONTENTS V. EXPLORERS AND SCIENTISTS The Exploration of Antarctica The Antarctic Treaty VI. PLACES YOU MAY VISIT South Shetland Islands Antarctic Peninsula Weddell Sea South Orkney Islands South Georgia The Falkland Islands South Sandwich Islands The Historic Ross Sea Sector Commonwealth Bay VII. FURTHER READING VIII. WILDLIFE CHECKLISTS ANTARCTIC PRIMER 2018 | 5 Adélie penguins in the Antarctic Peninsula I. CONSERVING ANTARCTICA Antarctica is the largest wilderness area on earth, a place that must be preserved in its present, virtually pristine state.
    [Show full text]
  • Management Plan for Antarctic Specially Protected Area No. 116 NEW COLLEGE VALLEY, CAUGHLEY BEACH, CAPE BIRD, ROSS ISLAND
    Management Plan For Antarctic Specially Protected Area No. 116 NEW COLLEGE VALLEY, CAUGHLEY BEACH, CAPE BIRD, ROSS ISLAND 1. Description of values to be protected In 1985, two areas at Cape Bird, Ross Island were designated as SSSI No. 10, Caughley Beach (Recommendation XIII-8 (1985)) and SPA No. 20, New College Valley (Recommendation XIII-12 (1985)), following proposals by New Zealand that these areas should be protected because they contained some of the richest stands of moss and associated microflora and fauna in the Ross Sea region of Antarctica. This is the only area on Ross Island where protection is specifically given to plant assemblages and associated ecosystems. At that time, SPA No. 20 was enclosed within SSSI No. 10, in order to provide more stringent access conditions to that part of the Area. In 2000, SSSI No. 10 was incorporated with SPA No. 20 by Measure 1 (2000), with the former area covered by SPA No. 20 becoming a Restricted Zone within the revised SPA No. 20. The boundaries of the Area were revised from the boundaries in the original recommendations, in view of improved mapping and to follow more closely the ridges enclosing the catchment of New College Valley. Caughley Beach itself was adjacent to, but never a part of, the original Area, and for this reason the entire Area was renamed as New College Valley, which was within both of the original sites. The Area was redesignated by Decision 1 (2002) as Antarctic Specially Protected Area (ASPA) No. 116 and a revised Management Plan was adopted through Measure 1 (2006).
    [Show full text]
  • Joint Conference of the History EG and Humanities and Social Sciences
    Joint conference of the History EG and Humanities and Social Sciences EG "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" Colorado State University, Fort Collins (USA), 20 - 23 May 2015 A joint conference of the History Expert Group and the Humanities and Social Sciences Expert Group on "Antarctic Wilderness: Perspectives from History, the Humanities and the Social Sciences" was held at Colorado State University in Fort Collins (USA) on 20-23 May 2015. On Wednesday (20 May) we started with an excursion to the Rocky Mountain National Park close to Estes. A hike of two hours took us along a former golf course that had been remodelled as a natural plain, and served as a fitting site for a discussion with park staff on “comparative wilderness” given the different connotations of that term in isolated Antarctica and comparatively accessible Colorado. After our return to Fort Collins we met a group of members of APECS (Association of Polar Early Career Scientists), with whom we had a tour through the New Belgium Brewery. The evening concluded with a screening of the film “Nightfall on Gaia” by the anthropologist Juan Francisco Salazar (Australia), which provides an insight into current social interactions on King George Island and connections to the natural and political complexities of the sixth continent. The conference itself was opened by on Thursday (21 May) by Diana Wall, head of the School of Global Environmental Sustainability at the Colorado State University (CSU). Andres Zarankin (Brazil) opened the first session on narratives and counter narratives from Antarctica with his talk on sealers, marginality, and official narratives in Antarctic history.
    [Show full text]
  • Federal Register/Vol. 84, No. 78/Tuesday, April 23, 2019/Rules
    Federal Register / Vol. 84, No. 78 / Tuesday, April 23, 2019 / Rules and Regulations 16791 U.S.C. 3501 et seq., nor does it require Agricultural commodities, Pesticides SUPPLEMENTARY INFORMATION: The any special considerations under and pests, Reporting and recordkeeping Antarctic Conservation Act of 1978, as Executive Order 12898, entitled requirements. amended (‘‘ACA’’) (16 U.S.C. 2401, et ‘‘Federal Actions to Address Dated: April 12, 2019. seq.) implements the Protocol on Environmental Justice in Minority Environmental Protection to the Richard P. Keigwin, Jr., Populations and Low-Income Antarctic Treaty (‘‘the Protocol’’). Populations’’ (59 FR 7629, February 16, Director, Office of Pesticide Programs. Annex V contains provisions for the 1994). Therefore, 40 CFR chapter I is protection of specially designated areas Since tolerances and exemptions that amended as follows: specially managed areas and historic are established on the basis of a petition sites and monuments. Section 2405 of under FFDCA section 408(d), such as PART 180—[AMENDED] title 16 of the ACA directs the Director the tolerance exemption in this action, of the National Science Foundation to ■ do not require the issuance of a 1. The authority citation for part 180 issue such regulations as are necessary proposed rule, the requirements of the continues to read as follows: and appropriate to implement Annex V Regulatory Flexibility Act (5 U.S.C. 601 Authority: 21 U.S.C. 321(q), 346a and 371. to the Protocol. et seq.) do not apply. ■ 2. Add § 180.1365 to subpart D to read The Antarctic Treaty Parties, which This action directly regulates growers, as follows: includes the United States, periodically food processors, food handlers, and food adopt measures to establish, consolidate retailers, not States or tribes.
    [Show full text]
  • CAPE EVANS, ROSS ISLAND (Including Historic Site and Monument Nos
    Measure 8 (2010) Annex Management Plan For Antarctic Specially Protected Area No. 155 CAPE EVANS, ROSS ISLAND (including Historic Site and Monument Nos. 16 and 17, the historic Terra Nova hut of Captain Robert Falcon Scott and its precincts and the Cross on Wind Vane Hill) 1. Description of Values to be Protected The significant historic value of this Area was formally recognised when it was listed as Historic Site and Monument Nos. 16 and 17 in Recommendation 9 (1972). An area containing both sites was designated as Specially Protected Area No. 25 in Measure 2 (1997) and redesignated as Antarctic Specially Protected Area 155 in Decision 1 (2002). The Terra Nova hut (Historic Site and Monument No. 16) is the largest of the historic huts in the Ross Sea region. It was built in January 1911 by the British Antarctic Terra Nova Expedition of 1910-1913, led by Captain Robert Falcon Scott, RN. It was subsequently used as a base by the Ross Sea party of Sir Ernest Shackleton’s Imperial Trans-Antarctic Expedition of 1914-1917. Historic Site and Monument No. 17 consists of the Cross on Wind Vane Hill, erected in the memory of three members of Shackleton’s Ross Sea party who died in 1916. In addition to this, two anchors from the ship Aurora of the Imperial Trans-Antarctic Expedition, two instrument shelters (one on Wind Vane Hill and the other near the Terra Nova hut), several supply dumps and numerous artefacts are distributed around the site. Cape Evans is one of the principal sites of early human activity in Antarctica.
    [Show full text]