From Bivariate to Multivariate Analysis of Cytometric Data: Overview of Computational Methods and Their Application in Vaccination Studies
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Cytof Workflow: Differential Discovery in High- Throughput High-Dimensional Cytometry Datasets [Version 4; Peer Review: 2 Approved]
F1000Research 2019, 6:748 Last updated: 04 AUG 2021 METHOD ARTICLE CyTOF workflow: differential discovery in high- throughput high-dimensional cytometry datasets [version 4; peer review: 2 approved] Malgorzata Nowicka1,2, Carsten Krieg3, Helena L. Crowell 1,2, Lukas M. Weber 1,2, Felix J. Hartmann 3, Silvia Guglietta4, Burkhard Becher3, Mitchell P. Levesque5, Mark D. Robinson 1,2 1Institute for Molecular Life Sciences, University of Zurich, Zurich, 8057, Switzerland 2SIB Swiss Institute of Bioinformatics, University of Zurich, Zurich, 8057, Switzerland 3Institute of Experimental Immunology, University of Zurich, Zurich, 8057, Switzerland 4Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, Milan, I-20139, Italy 5Department of Dermatology, University Hospital Zurich, Zurich, CH-8091, Switzerland v4 First published: 26 May 2017, 6:748 Open Peer Review https://doi.org/10.12688/f1000research.11622.1 Second version: 14 Nov 2017, 6:748 https://doi.org/10.12688/f1000research.11622.2 Reviewer Status Third version: 24 May 2019, 6:748 https://doi.org/10.12688/f1000research.11622.3 Invited Reviewers Latest published: 17 Dec 2019, 6:748 https://doi.org/10.12688/f1000research.11622.4 1 2 version 4 Abstract (revision) High-dimensional mass and flow cytometry (HDCyto) experiments 17 Dec 2019 have become a method of choice for high-throughput interrogation and characterization of cell populations. Here, we present an updated version 3 R-based pipeline for differential analyses of HDCyto data, largely (revision) based on Bioconductor packages. We computationally define cell 24 May 2019 populations using FlowSOM clustering, and facilitate an optional but reproducible strategy for manual merging of algorithm-generated version 2 clusters. -
A Cluster Specific Latent Dirichlet Allocation Model for Trajectory Clustering in Crowded Videos
A CLUSTER SPECIFIC LATENT DIRICHLET ALLOCATION MODEL FOR TRAJECTORY CLUSTERING IN CROWDED VIDEOS ∗ Jialing Zou, Yanting Cui, Fang Wan, Qixiang Ye, Jianbin Jiao University of Chinese Academy of Sciences, Beijing 101408, China. ∗ [email protected] ABSTRACT Trajectory analysis in crowded video scenes is challeng- ing as trajectories obtained by existing tracking algorithms are often fragmented. In this paper, we propose a new approach to do trajectory inference and clustering on fragmented tra- jectories, by exploring a cluster specif c Latent Dirichlet Al- location(CLDA) model. LDA models are widely used to learn middle level trajectory features and perform trajectory infer- ence. However, they often require scene priors in the learn- ing or inference process. Our cluster specif c LDA model ad- dresses this issue by using manifold based clustering as ini- tialization and iterative statistical inference as optimization. The output middle level features of CLDA are input to a clus- (a) (b) tering algorithm to obtain trajectory clusters. Experiments on Fig. 1. (a) Illustration of the LDA based topic extraction in a public dataset show the effectiveness of our approach. original feature space (up) and a manifold embedding space Index Terms— Latent Dirichlet Allocation, Manifold, (down). (b) Illustration of correspondence between trajectory Trajectory clustering clusters and the manifold embedding. 1. INTRODUCTION [6], Wang et al. propose two Euclidean similarity measures, and perform trajectories with the def ned measures. In [7], Trajectory clustering is a video analysis task whose goal is Hu et al. introduce a dimensional spectral clustering method. to assign individual trajectories with common cluster labels, Trajectories are projected to a lower space through eigenvalue with applications in activity surveillance, traff c f ow estima- factorization, and are clustered in the lower sub-space with a tion and emergency response [1], [2]. -
Alignment of Time-Course Single-Cell RNA-Seq Data with CAPITAL
bioRxiv preprint doi: https://doi.org/10.1101/859751; this version posted November 29, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Alignment of time-course single-cell RNA-seq data with CAPITAL Reiichi Sugihara1, Yuki Kato1;,∗ Tomoya Mori2 and Yukio Kawahara1 1 Department of RNA Biology and Neuroscience, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan 2 Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan Abstract Recent techniques on single-cell RNA sequencing have boosted transcriptome-wide observa- tion of gene expression dynamics of time-course data at a single-cell scale. Typical examples of such analysis include inference of a pseudotime cell trajectory, and comparison of pseudotime trajectories between different experimental conditions will tell us how feature genes regulate a dy- namic cellular process. Existing methods for comparing pseudotime trajectories, however, force users to select trajectories to be compared because they can deal only with simple linear trajec- tories, leading to the possibility of making a biased interpretation. Here we present CAPITAL, a method for comparing pseudotime trajectories with tree alignment whereby trajectories including branching can be compared without any knowledge of paths to be compared. Computational tests on time-series public data indicate that CAPITAL can align non-linear pseudotime trajectories and reveal gene expression dynamics. 1 Introduction Single-cell RNA-sequencing (scRNA-seq) has enabled us to scrutinize gene expression of dynamic cellular processes such as differentiation, reprogramming and cell death. -
A Deep Profiler's Guide to Cytometry
TREIMM-937; No. of Pages 10 Review A deep profiler’s guide to cytometry 1 1 2 2 Sean C. Bendall , Garry P. Nolan , Mario Roederer and Pratip K. Chattopadhyay 1 Baxter Laboratory in Stem Cell Biology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA 2 ImmunoTechnology Section, Vaccine Research Center, NIAID, NIH, Bethesda, MD, USA In recent years, advances in technology have provided us and data analysis, and have led to state-of-the-art 20-pa- with tools to quantify the expression of multiple genes in rameter flow cytometers. Concomitant with this develop- individual cells. The ability to measure simultaneously ment, our understanding of immunology and stem cell multiple genes in the same cell is necessary to resolve biology has matured tremendously with the discovery of the great diversity of cell subsets, as well as to define scores of functionally diverse cell populations. Here, we their function in the host. Fluorescence-based flow cyto- review the development and highlight applications of poly- metry is the benchmark for this; with it, we can quantify chromatic flow cytometry (PFC, 6+ colors). In addition, we 18 proteins per cell, at >10 000 cells/s. Mass cytometry is review recent advances in a next-generation, ‘post-fluores- a new technology that promises to extend these capa- cence’ single-cell technology termed mass cytometry, which bilities significantly. Immunophenotyping by mass spec- is theoretically capable of measuring 70–100 parameters. trometry provides the ability to measure >36 proteins at Both fluorescence and mass cytometry have unique and a rate of 1000 cells/s. -
Mass Cytometry Analysis of the Tumour-Immune Landscape: the Role of Axl Receptor Kinase
A thesis submitted in partial fulfilment of the requirements for the degree of Master of Science Mass cytometry analysis of the tumour-immune landscape: The role of Axl receptor kinase Sturla Magnus Grøndal Supervisor: Prof. James Bradley Lorens, Dept. of Biomedicine Co-supervisor: Assoc. Prof. Niels Aarsæther, Dept. of Biomedicine Bergen, November, 2018 I Abstract Cancer is one of the leading causes of death in Norway (2016) and worldwide. Despite the advent of new immunotherapies, malignant cancer demonstrates an intrinsic plasticity and is able to evade, adapt and suppress the immune system. An important driver for this malignant phenotype is the epithelial-to-mesenchymal transition (EMT) program, characteristic of stem cells. Previous research showed a link between the AXL receptor tyrosine kinase (Axl) and EMT. The Axl receptor is further involved in immune suppression and could therefore serve as a potential target in immunotherapy and in combination with other cancer treatments. Chemotherapeutic treatment also shows evidence of immune involvement, and the immune system plays a vital role in all forms of cancer treatment. In this study, we evaluated current immunotherapy in combination the Axl kinase inhibitor, bemcentinib. Using single cell mass cytometry we conducted 30 parameter mapping of the immune system in an experimental murine tumour model. The data was analysed using dimensionality reduction and unsupervised clustering. By studying how the immune landscape changes during tumour development and immunotherapy treatment, important insights into how the immune system responds to tumour development and treatment was measured and a new treatment regime was evaluated. II Acknowledgements I would like to thank my family and friends for supporting me through my year of academic research and else in life and for allowing me to have a place outside of the university I can retreat to. -
Automated Cell Classification of Mass Cytometry Data by Deep
bioRxiv preprint doi: https://doi.org/10.1101/054411; this version posted May 31, 2016. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. DeepCyTOF: Automated Cell Classification of Mass Cytometry Data by Deep Learning and Domain Adaptation Huamin Li 1∗, Uri Shaham 2∗, Yi Yao 3, Ruth Montgomery 3, and Yuval Kluger 1;4;5y 1Applied Mathematics Program, Yale University, 51 Prospect St., New Haven, CT 06511, USA 2Department of Statistics, Yale University, 24 Hillhouse Ave., New Haven, CT 06511, USA 3Department of Internal Medicine, Yale School of Medicine, 333 Cedar St., New Haven, CT 06520, USA 4Department of Pathology and Yale Cancer Center, Yale University School of Medicine, New Haven, CT, USA 5Interdepartmental Program in Computational Biology and Bioinformatics,Yale University, New Haven, CT, USA Abstract Mass cytometry or CyTOF is an emerging technology for high-dimensional multiparameter sin- gle cell analysis that overcomes many limitations of fluorescence-based flow cytometry. New methods for analyzing CyTOF data attempt to improve automation, scalability, performance, and interpretation of data generated in large studies. However, most current tools are less suitable for routine use where analysis must be standardized, reproducible, interpretable, and comparable. Assigning individual cells into discrete groups of cell types (gating) involves time-consuming se- quential manual steps untenable for larger studies. The subjectivity of manual gating introduces variability into the data and impacts reproducibility and comparability of results, particularly in multi-center studies. The FlowCAP consortium was formed to address these issues and it aims to boost user confidence in the viability of automated gating methods. -
Trajectory Inference Across Multiple Conditions with Condiments
bioRxiv preprint doi: https://doi.org/10.1101/2021.03.09.433671; this version posted March 10, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 Trajectory inference across multiple conditions with condiments: 2 differential topology, progression, differentiation, and expression 1;2 3;4 3 Hector Roux de B´ezieux , Koen Van den Berge , Kelly Street5;6;7;8, Sandrine Dudoit1;2;3;7;8 1 Division of Biostatistics, School of Public Health, University of California, Berkeley, CA, USA 2 Center for Computational Biology, University of California, Berkeley, CA, USA 3 Department of Statistics, University of California, Berkeley, CA, USA 4 Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium 5 Department of Data Sciences, Dana-Farber Cancer Institute, Boston, MA, USA 6 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA 7 These authors contributed equally. 8 To whom correspondence should be addressed: [email protected], [email protected] 4 March 9, 2021 5 Abstract 6 In single-cell RNA-sequencing (scRNA-seq), gene expression is assessed individually for each cell, 7 allowing the investigation of developmental processes, such as embryogenesis and cellular differenti- 8 ation and regeneration, at unprecedented resolutions. In such dynamic biological systems, grouping 9 cells into discrete groups is not reflective of the biology. Cellular states rather form a continuum, 10 e.g., for the differentiation of stem cells into mature cell types. -
Cytof Supports Efficient Detection of Immune Cell Subsets from Small
Journal of Immunological Methods 415 (2014) 1–5 Contents lists available at ScienceDirect Journal of Immunological Methods journal homepage: www.elsevier.com/locate/jim CyTOF supports efficient detection of immune cell subsets from small samples Yi Yao a, Rebecca Liu b, Min Sun Shin a,MarkTrentalangea,HeatherAllorea, Ala Nassar a, Insoo Kang a, Jordan S. Pober a,b,c, Ruth R. Montgomery a,c,⁎ a Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, United States b Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States c Human and Translational Immunology Program, Yale University School of Medicine, New Haven, CT, United States article info abstract Article history: Analysis of immune cell states is paramount to our understanding of the pathogenesis of a broad Received 6 September 2014 range of human diseases. Immunologists rely on fluorescence cytometry for cellular analysis, and Received in revised form 21 October 2014 while detection of 8 markers is now well established, the overlap of fluorescent signals limits Accepted 21 October 2014 efficiency. Mass cytometry or CyTOF (Cytometry by Time-Of-Flight) is a new technology for Available online 4 November 2014 multiparameter single cell analysis that overcomes many limitations of fluorescence-based flow cytometry and can routinely detect as many as 40 markers per sample. This technology provides Keywords: tremendous detail for cellular analysis of multiple cell populations simultaneously and is a powerful Mass cytometry technique for translational investigations. Here we present reproducible detection of immune cell Translational immunology subsets starting with as few as 10,000 cells. -
Inferring Cellular Trajectories from Scrna-Seq Using Pseudocell Tracer
bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.173179; this version posted June 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. TITLE Inferring cellular trajectories from scRNA-seq using Pseudocell Tracer AUTHORS Derek Reiman1#, Heping Xu2,3# , Andrew Sonin4, Dianyu Chen2,3, Harinder Singh5* and Aly A. Khan4* AFFILIATIONS 1University of Illinois at Chicago, Department of Bioengineering, Chicago, IL, 2Key Laboratory of Growth Regulation and Translation Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang Province, China, 3Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China, 4University of Chicago, Department of Pathology, Chicago, IL, 5University of Pittsburgh, Center for Systems Immunology, Departments of Immunology and Computational and Systems Biology, Pittsburgh, PA #These authors contributed equally *Correspondence: [email protected]; [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.06.26.173179; this version posted June 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. ABSTRACT Single cell RNA sequencing (scRNA-seq) can be used to infer a temporal ordering of dynamic cellular states. Current methods for the inference of cellular trajectories rely on unbiased dimensionality reduction techniques. However, such biologically agnostic ordering can prove difficult for modeling complex developmental or differentiation processes. -
Cellrank for Directed Single-Cell Fate Mapping
CellRank for directed single-cell fate mapping Fabian Theis ( [email protected] ) Helmholtz Zentrum München https://orcid.org/0000-0002-2419-1943 Marius Lange Institute of Computational Biology, Helmholtz Center Munich https://orcid.org/0000-0002-4846-1266 Volker Bergen Institute of Computational Biology, Helmholtz Center Munich Michal Klein Institute of Computational Biology, Helmholtz Center Munich Manu Setty Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center Bernhard Reuter Department of Computer Science, University of Tübingen Mostafa Bakhti Institute of Diabetes and Regeneration Research, Helmholtz Center Munich, Heiko Lickert Helmholtz Zentrum München https://orcid.org/0000-0002-4597-8825 Meshal Ansari Institute of Computational Biology, Helmholtz Center Munich Janine Schniering Institute of Lung Biology and Disease (ILBD), Helmholtz Zentrum München Herbert Schiller Helmholtz Zentrum München, Institute of Lung Biology and Disease, Group Systems Medicine of Chronic Lung Disease, Member of the German Center for Lung Research (DZL), CPC-M bioArchive,Munich https://orcid.org/0000-0001-9498-7034 Dana Pe'er Memorial Sloan Kettering Cancer Center https://orcid.org/0000-0002-9259-8817 Article Keywords: CellRank, directed, single-cell fate mapping Posted Date: October 29th, 2020 DOI: https://doi.org/10.21203/rs.3.rs-94819/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License October 19, 2020 CellRank - Online Methods Marius Lange1,2, Volker Bergen1,2, Michal Klein1, Manu Setty3, Bernhard Reuter4,5, Mostafa Bakhti6,7, Heiko Lickert6,7, Meshal Ansari1,8, Janine Schniering8, Herbert B. Schiller8, Dana Pe’er3*, Fabian J. Theis1,2,9* 1 Institute of Computational Biology, Helmholtz Center Munich, Germany. -
Uniquely Cytof: Single-Tube Cytometry for Vaccine Development
Uniquely CyTOF: Single-Tube Cytometry for Vaccine Development CyTOF® technology, which powers mass cytometry and Imaging Mass Cytometry™, is being used by research groups around the world to investigate multiple aspects of vaccine development and testing. The high-parameter data from CyTOF captures the complexity of the immune system, revealing often-unanticipated immune cell interactions. These results define the immune response and disease immunopathology to help refine development of treatments and vaccines for better disease management. CyTOF: Simple yet Powerful CyTOF Advantage for Vaccine Hallmarks of eective Development and Testing immune response The world’s most advanced single-cell cytometric • Define disease immunopathology and technology, CyTOF offers immune response with high-parameter phenotype and functional single-cell analysis. deep profiling of cell • Identify and phenotype antigen-specific phenotype and functional T cells using hundreds of metal-tagged state, all in a single tube. tetramers loaded with epitopes of interest. Mass cytometry is enabling • Perform preclinical vaccination and challenge Single-tube immune studies for information on immunogens, breakthrough discoveries profiling adjuvants and efficacy. with CyTOF in a wide range of immune- • Obtain detailed longitudinal immune profiles mediated diseases including during clinical research trials in order to Clinical Identification research trials, of optimal cancer, autoimmunity, assess efficacy and further refine dose, Phases I and II viral epitopes infectious -
Single-Cell Trajectories Reconstruction, Exploration and Mapping of Omics Data with STREAM
ARTICLE https://doi.org/10.1038/s41467-019-09670-4 OPEN Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM Huidong Chen 1,2,3,4, Luca Albergante 5,6,7, Jonathan Y. Hsu1,8, Caleb A. Lareau 1,9, Giosuè Lo Bosco 10,11, Jihong Guan4, Shuigeng Zhou12, Alexander N. Gorban 13,14, Daniel E. Bauer9,15, Martin J. Aryee 1,3,9, David M. Langenau1,16, Andrei Zinovyev 5,6,7,14, Jason D. Buenrostro 9,17, Guo-Cheng Yuan 2,3,16 & Luca Pinello 1,9 1234567890():,; Single-cell transcriptomic assays have enabled the de novo reconstruction of lineage differ- entiation trajectories, along with the characterization of cellular heterogeneity and state transitions. Several methods have been developed for reconstructing developmental trajec- tories from single-cell transcriptomic data, but efforts on analyzing single-cell epigenomic data and on trajectory visualization remain limited. Here we present STREAM, an interactive pipeline capable of disentangling and visualizing complex branching trajectories from both single-cell transcriptomic and epigenomic data. We have tested STREAM on several syn- thetic and real datasets generated with different single-cell technologies. We further demonstrate its utility for understanding myoblast differentiation and disentangling known heterogeneity in hematopoiesis for different organisms. STREAM is an open-source software package. 1 Molecular Pathology Unit & Cancer Center, Massachusetts General Hospital Research Institute and Harvard Medical School, Boston, MA 02114, USA. 2 Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA. 3 Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02215, USA.