bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.328567; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Exploring the effects of genetic variation on gene regulation in cancer in the context of 3D genome structure by Noha Osman 1,2 and Michal Brylinski 1,3,* 1 Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA 2 Department of Cell Biology, National Research Centre, 12622 Giza, Egypt 3 Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803, USA * Corresponding author:
[email protected] Phone: (225) 578-2791 Fax: (225) 578-2597 Keywords: 3D genome structure, genetic variation, single-nucleotide polymorphism, gene regulation, chromosome conformation capture, genome-wide association study, topologically associating domains, transcription factors, enhancers, breast cancer, prostate cancer 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.10.06.328567; this version posted November 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Numerous genome-wide association studies (GWAS) conducted to date revealed genetic variants associated with various diseases, including breast and prostate cancers. Despite the availability of these large-scale data, relatively few variants have been functionally characterized, mainly because the majority of single-nucleotide polymorphisms (SNPs) map to the non-coding regions of the human genome.