Educator's Reference Guide for Electrochemistry
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Design and Testing of a Computer-Controlled Square Wave Voltammetry Instrument
Rochester Institute of Technology RIT Scholar Works Theses 6-1-1987 Design and testing of a computer-controlled square wave voltammetry instrument Nancy L. Wengenack Follow this and additional works at: https://scholarworks.rit.edu/theses Recommended Citation Wengenack, Nancy L., "Design and testing of a computer-controlled square wave voltammetry instrument" (1987). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. DESIGN AND TESTING OF A COMPUTER-CONTROLLED SQUARE WAVE VOLTAMMETRY INSTRUMENT by Nancy L. Wengenack J une , 1987 THESI S SUBM ITTED IN PARTIA L FULFI LLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE APPROVED: Paul Rosenberg Project Advisor G. A. Jakson Department Head Gate A. Gate Library Rochester Institute of Te chnology Rochester, New York 14623 Department of Chemistry Title of Thesis Design and Testing of a Computer- Controlled Square Wave Voltammetry Instrument I Nancy L. Wengenack hereby grant permission to the Wallace Memorial Library, of R.I.T., to reproduce my thesis in whole or in part. Any reproduction will not be for commercial use or profit. Date %/H/n To Tom ACKNOWLEDGEMENTS I would like to express my thanks to my research advisor, Dr. L. Paul Rosenberg, for his assistance with this work. I would also like to thank my graduate committee: Dr. B. Edward Cain; Dr. Christian Reinhardt; and especially Dr. Joseph Hornak; for their help and guidance. -
07 Chapter2.Pdf
22 METHODOLOGY 2.1 INTRODUCTION TO ELECTROCHEMICAL TECHNIQUES Electrochemical techniques of analysis involve the measurement of voltage or current. Such methods are concerned with the interplay between solution/electrode interfaces. The methods involve the changes of current, potential and charge as a function of chemical reactions. One or more of the four parameters i.e. potential, current, charge and time can be measured in these techniques and by plotting the graphs of these different parameters in various ways, one can get the desired information. Sensitivity, short analysis time, wide range of temperature, simplicity, use of many solvents are some of the advantages of these methods over the others which makes them useful in kinetic and thermodynamic studies1-3. In general, three electrodes viz., working electrode, the reference electrode, and the counter or auxiliary electrode are used for the measurement in electrochemical techniques. Depending on the combinations of parameters and types of electrodes there are various electrochemical techniques. These include potentiometry, polarography, voltammetry, cyclic voltammetry, chronopotentiometry, linear sweep techniques, amperometry, pulsed techniques etc. These techniques are mainly classified into static and dynamic methods. Static methods are those in which no current passes through the electrode-solution interface and the concentration of analyte species remains constant as in potentiometry. In dynamic methods, a current flows across the electrode-solution interface and the concentration of species changes such as in voltammetry and coulometry4. 2.2 VOLTAMMETRY The field of voltammetry was developed from polarography, which was invented by the Czechoslovakian Chemist Jaroslav Heyrovsky in the early 1920s5. Voltammetry is an electrochemical technique of analysis which includes the measurement of current as a function of applied potential under the conditions that promote polarization of working electrode6. -
Convergent Paired Electrochemical Synthesis of New Aminonaphthol Derivatives
www.nature.com/scientificreports OPEN New insights into the electrochemical behavior of acid orange 7: Convergent paired Received: 24 August 2016 Accepted: 29 December 2016 electrochemical synthesis of new Published: 06 February 2017 aminonaphthol derivatives Shima Momeni & Davood Nematollahi Electrochemical behavior of acid orange 7 has been exhaustively studied in aqueous solutions with different pH values, using cyclic voltammetry and constant current coulometry. This study has provided new insights into the mechanistic details, pH dependence and intermediate structure of both electrochemical oxidation and reduction of acid orange 7. Surprisingly, the results indicate that a same redox couple (1-iminonaphthalen-2(1H)-one/1-aminonaphthalen-2-ol) is formed from both oxidation and reduction of acid orange 7. Also, an additional purpose of this work is electrochemical synthesis of three new derivatives of 1-amino-4-(phenylsulfonyl)naphthalen-2-ol (3a–3c) under constant current electrolysis via electrochemical oxidation (and reduction) of acid orange 7 in the presence of arylsulfinic acids as nucleophiles. The results indicate that the electrogenerated 1-iminonaphthalen-2(1 H)-one participates in Michael addition reaction with arylsulfinic acids to form the 1-amino-3-(phenylsulfonyl) naphthalen-2-ol derivatives. The synthesis was carried out in an undivided cell equipped with carbon rods as an anode and cathode. 2-Naphthol orange (acid orange 7), C16H11N2NaO4S, is a mono-azo water-soluble dye that extensively used for dyeing paper, leather and textiles1,2. The structure of acid orange 7 involves a hydroxyl group in the ortho-position to the azo group. This resulted an azo-hydrazone tautomerism, and the formation of two tautomers, which each show an acid− base equilibrium3–12. -
Chapter 3: Experimental
Chapter 3: Experimental CHAPTER 3: EXPERIMENTAL 3.1 Basic concepts of the experimental techniques In this part of the chapter, a short overview of some phrases and theoretical aspects of the experimental techniques used in this work are given. Cyclic voltammetry (CV) is the most common technique to obtain preliminary information about an electrochemical process. It is sensitive to the mechanism of deposition and therefore provides informations on structural transitions, as well as interactions between the surface and the adlayer. Chronoamperometry is very powerful method for the quantitative analysis of a nucleation process. The scanning tunneling microscopy (STM) is based on the exponential dependence of the tunneling current, flowing from one electrode onto another one, depending on the distance between electrodes. Combination of the STM with an electrochemical cell allows in-situ study of metal electrochemical phase formation. XPS is also a very powerfull technique to investigate the chemical states of adsorbates. Theoretical background of these techniques will be given in the following pages. At an electrode surface, two fundamental electrochemical processes can be distinguished: 3.1.1 Capacitive process Capacitive processes are caused by the (dis-)charge of the electrode surface as a result of a potential variation, or by an adsorption process. Capacitive current, also called "non-faradaic" or "double-layer" current, does not involve any chemical reactions (charge transfer), it only causes accumulation (or removal) of electrical charges on the electrode and in the electrolyte solution near the electrode. There is always some capacitive current flowing when the potential of an electrode is changing. In contrast to faradaic current, capacitive current can also flow at constant 28 Chapter 3: Experimental potential if the capacitance of the electrode is changing for some reason, e.g., change of electrode area, adsorption or temperature. -
Hydrodynamic Voltammetry As a Rapid and Simple Method for Evaluating Soil Enzyme Activities
Sensors 2015, 15, 5331-5343; doi:10.3390/s150305331 OPEN ACCESS sensors ISSN 1424-8220 www.mdpi.com/journal/sensors Article Hydrodynamic Voltammetry as a Rapid and Simple Method for Evaluating Soil Enzyme Activities Kazuto Sazawa 1,* and Hideki Kuramitz 2 1 Center for Far Eastern Studies, University of Toyama, Gofuku 3190, 930-8555 Toyama, Japan 2 Department of Environmental Biology and Chemistry, Graduate School of Science and Engineering for Research, University of Toyama, Gofuku 3190, 930-8555 Toyama, Japan; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel./Fax: +81-76-445-66-69. Academic Editor: Ki-Hyun Kim Received: 26 December 2014 / Accepted: 28 February 2015 / Published: 4 March 2015 Abstract: Soil enzymes play essential roles in catalyzing reactions necessary for nutrient cycling in the biosphere. They are also sensitive indicators of ecosystem stress, therefore their evaluation is very important in assessing soil health and quality. The standard soil enzyme assay method based on spectroscopic detection is a complicated operation that requires the removal of soil particles. The purpose of this study was to develop a new soil enzyme assay based on hydrodynamic electrochemical detection using a rotating disk electrode in a microliter droplet. The activities of enzymes were determined by measuring the electrochemical oxidation of p-aminophenol (PAP), following the enzymatic conversion of substrate-conjugated PAP. The calibration curves of β-galactosidase (β-gal), β-glucosidase (β-glu) and acid phosphatase (AcP) showed good linear correlation after being spiked in soils using chronoamperometry. -
Square Wave Voltammetry
Application Note S-7 Subject: Square Wave Voltammetry INTRODUCTION reverse pulse of the square wave occurs half way through the staircase step. The primary advantage of the pulse voltammetric techniques, such as normal pulse or differential pulse voltammetry, is their ability to discriminate against charging (capacitance) current. As a result, the pulse techniques are more sensitive to oxidation or reduction currents (faradaic currents) than conventional dc PLUS voltammetry. Differential pulse voltammetry yields peaks for faradaic currents rather than the sigmoidal waveform obtained with dc or normal pulse techniques. This results in improved resolution for multiple analyte systems and more convenient quantitation. Square wave voltammetry has received growing attention as a voltammetric technique for routine quantitative analyses. Although square wave voltammetry was E reported as long ago as 1957 by Barker1, the utility of the EQUALS technique was limited by electronic technology. Recent advances in both analog and digital electronics have made it feasible to incorporate square wave voltammetry into the PAR Model 394 Polarographic Analyzer. Square wave voltammetry can be used to perform an experiment much faster than normal and differential pulse techniques, which typically run at scan rates of 1 to 10 mV/sec. Square wave voltammetry employs scan rates TIME up to 1 V/sec or faster, allowing much faster determinations. A typical experiment requiring three minutes by normal or differential pulse techniques can be performed in a matter of seconds by square wave voltammetry. FIGURE 1: Applied excitation in square wave voltammetry. THEORY The timing and applied potential parameters for square The waveform used for square wave voltammetry is wave voltammetry are depicted in Figure 2. -
Supplementary Information
Electronic Supplementary Material (ESI) for Journal of Materials Chemistry A This journal is © The Royal Society of Chemistry 2012 Supplementary Information 1. Synthesize the redox couples. The synthesis started commercially from available isothiocyanate which were transformed into the corresponding 1-ethyl-1H-tetrazole-5-thiol (ET) derivatives by cycloaddition reaction with sodium azide in refluxing ethanol according to the known procedures. Then the oxidized specie, bis(1-ethyltetrazol-5-yl) (BET) disulfides, was prepared by oxidation of the corresponding ET with hydrogen peroxide, and thiolate (ET-) form was obtained by deprotonation of the corresponding mercaptan (ET) with sodium bicarbonate. The structures of the above-mentioned redox couple was proved by the combination of 1HNMR spectroscopy, mass spectroscopy (ESI-MS) and elemental analyses. The NMR spectra were recorded at 298 K in CDCl3 at 300 MHz on a Varian Mercury-VX300 spectrometer. The chemical shifts were recorded in parts per million (ppm) with TMS as the internal reference. ESI mass spectra were determined using Finnigan LCQ Advantage mass spectrometer. Elemental analyses were performed with Thermo Quest Flash EA1112. The electrolyte consisted of 0.4 M of ET-, 0.05 M of BET, 0.4 M 18-crown-6 (18-C-6), 0.05 M LiClO4 and 0.5 M 4-tert-butylpyridine (TBP) in acetonitrile (ACN). 2. Preparation of electrodes. The NiS electrodes were electrodeposited onto a fluorine-doped tin oxide (FTO) glass substrate (13Ω/□) from an aqueous electrolyte consisting of 1M CH4N2S and 40mM NiCl2∙6H2O in a single-compartment glass cell with three-electrode configuration using electrochemical work station. -
Reaction Mechanism of Electrochemical Oxidation of Coo/Co(OH)2 William Prusinski Valparaiso University
Valparaiso University ValpoScholar Chemistry Honors Papers Department of Chemistry Spring 2016 Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2 William Prusinski Valparaiso University Follow this and additional works at: http://scholar.valpo.edu/chem_honors Part of the Physical Sciences and Mathematics Commons Recommended Citation Prusinski, William, "Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2" (2016). Chemistry Honors Papers. 1. http://scholar.valpo.edu/chem_honors/1 This Departmental Honors Paper/Project is brought to you for free and open access by the Department of Chemistry at ValpoScholar. It has been accepted for inclusion in Chemistry Honors Papers by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. William Prusinski Honors Candidacy in Chemistry: Final Report CHEM 498 Advised by Dr. Jonathan Schoer Solar Thermal Decoupled Electrolysis: Reaction Mechanism of Electrochemical Oxidation of CoO/Co(OH)2 College of Arts and Sciences Valparaiso University Spring 2016 Prusinski 1 Abstract A modified water electrolysis process has been developed to produce H2. The electrolysis cell oxidizes CoO to CoOOH and Co3O4 at the anode to decrease the amount of electric work needed to reduce water to H2. The reaction mechanism through which CoO becomes oxidized was investigated, and it was observed that the electron transfer occurred through both a species present in solution and a species adsorbed to the electrode surface. A preliminary mathematical model was established based only on the electron transfer to species in solution, and several kinetic parameters of the reaction were calculated. -
Linear Sweep Voltammetric Determination of Free Chlorine in Waters Using Graphite Working Electrodes
J.Natn.Sci.FoundationLinear sweep voltammetric Sri Lanka determination 2008 36 (1):of free 25-31 chlorine 25 RESEARCH ARTICLE Linear sweep voltammetric determination of free chlorine in waters using graphite working electrodes K.A.S. Pathiratne*, S.S. Skandaraja and E.M.C.M. Jayasena Department of Chemistry, Faculty of Science, University of Kelaniya, Kelaniya. Revised: 16 June 2007 ; Accepted: 23 July 2007 Abstract: Applicability of linear sweep voltammetry using and stored. During disinfecting processes, it is added graphite working electrodes for determination of free chlorine in to potable waters and it undergoes hydrolysis in water waters was demonstrated. Influence of the nature of supporting forming hypochlorous acid and hypochlorous ions. electrolyte, its concentrations, pH and rate of potential variation of working electrode on voltammetric responses corresponding - NaOCl + H O HOCl + NaOH (1) to the oxidation of ClO were examined. It was found that, any 2 of the salt solutions KNO , K SO or Na SO at the optimum 3 2 4 2 4 Kd concentration of 0.1 mol dm-3 could be used as a supporting HOCl ClO- + H+ (2) electrolyte for the above determination. The study also revealed (Dissociation Constant, K = 2.9 x 10-8 mol dm-3) that, any pH in the range of 8.5 to 11 could yield satisfactory d results. The anodic peak current at the working electrode potential of +1.030 V vs Ag/AgCl reference electrode was found As shown by equation (2), hypochlorous acid to linearly increase with concentration of free chlorine up to undergoes further dissociation and depending on the pH, 300 mg dm-3 (R2 = 0.9996). -
Physical and Analytical Electrochemistry: the Fundamental
Electrochemical Systems The simplest and traditional electrochemical process occurring at the boundary between an electronically conducting phase (the electrode) and an ionically conducting phase (the electrolyte solution), is the heterogeneous electro-transfer step between the electrode and the electroactive species of interest present in the solution. An example is the plating of nickel. Ni2+ + 2e- → Ni Physical and Analytical The interface is where the action occurs but connected to that central event are various processes that can Electrochemistry: occur in parallel or series. Figure 2 demonstrates a more complex interface; it represents a molecular scale snapshot The Fundamental Core of an interface that exists in a fuel cell with a solid polymer (capable of conducting H+) as an electrolyte. of Electrochemistry However, there is more to an electrochemical system than a single by Tom Zawodzinski, Shelley Minteer, interface. An entire circuit must be made and Gessie Brisard for measurable current to flow. This circuit consists of the electrochemical cell plus external wiring and circuitry The common event for all electrochemical processes is that (power sources, measuring devices, of electron transfer between chemical species; or between an etc). The cell consists of (at least) electrode and a chemical species situated in the vicinity of the two electrodes separated by (at least) one electrolyte solution. Figure 3 is electrode, usually a pure metal or an alloy. The location where a schematic of a simple circuit. Each the electron transfer reactions take place is of fundamental electrode has an interface with a importance in electrochemistry because it regulates the solution. Electrons flow in the external behavior of most electrochemical systems. -
Redox Potential Measurements M.J
Redox Potential Measurements M.J. Vepraskas NC State University December 2002 Redox potential is an electrical measurement that shows the tendency of a soil solution to transfer electrons to or from a reference electrode. From this measurement we can estimate whether the soil is aerobic, anaerobic, and whether chemical compounds such as Fe oxides or nitrate have been chemically reduced or are present in their oxidized forms. Making these measurements requires three basic pieces of equipment: 1. Platinum electrode 2. Voltmeter 3. Reference electrode The basic set-up is shown below: Voltmeter 456 mv Soil surface Reference Pt wire electrode Fig. 1. The Pt wire is buried into the soil to be in contact with the soil solution. The reference electrode must also be in contact with the soil solution. It has a ceramic tip, which can be placed in the soil, or the electrode can be placed in a salt bridge, which is itself placed in the soil. Wires from both the Pt electrode and reference electrode are connected to the voltmeter. Pt Electrodes Platinum electrodes consist of a small piece of platinum wire that is soldered or fused to wire made another metal. Platinum conducts electrons from the soil solution to the wire to which it is attached. Platinum is used because it is assumed to be an inert metal. This means it does not give up its own electrons (does not oxidize) to the wire or soil solution. Iron containing materials such as steel will oxidize themselves and send their own electrons to the voltmeter. As a result the voltage we measure will not result solely from electrons being transferred to or from the soil. -
Using Chronoamperometry to Rapidly Measure and Quantitatively Analyse Rate- Performance in Battery Electrodes
Using chronoamperometry to rapidly measure and quantitatively analyse rate- performance in battery electrodes Ruiyuan Tian,1,2 Paul J. King,3 Joao Coelho,2,4 Sang-Hoon Park,2,4 Dominik V Horvath,1,2 Valeria Nicolosi,2,4 Colm O’Dwyer,2,5 Jonathan N Coleman1,2* 1School of Physics, Trinity College Dublin, Dublin 2, Ireland 2AMBER Research Center, Trinity College Dublin, Dublin 2, Ireland 3Efficient Energy Transfer Department, Bell Labs Research, Nokia, Blanchardstown Business & Technology Park, Snugborough Road, Fingal, Dublin 15, Ireland 4School of Chemistry, Trinity College Dublin, Dublin 2, Ireland 5 School of Chemistry, University College Cork, Tyndall National Institute, and Environmental Research Institute, Cork T12 YN60, Ireland *[email protected] (Jonathan N. Coleman); Tel: +353 (0) 1 8963859. ABSTRACT: For battery electrodes, measured capacity decays as charge/discharge current is increased. Such rate-performance is important from a practical perspective and is usually characterised via galvanostatic charge-discharge measurements. However, such measurements are very slow, limiting the number of rate experiments which are practical in a given project. This is a particular problem during mechanistic studies where many rate measurements are needed. Here, building on work by Heubner at al., we demonstrate chronoamperometry (CA) as a relatively fast method for measuring capacity-rate curves with hundreds of data points down to C-rates below 0.01C. While Heubner et al. reported equations to convert current transients to capacity vs. C-rate curves, we modify these equations to give capacity as a function of charge/discharge rate, R. We show that such expressions can be combined with a basic model to obtain simple equations which can fit data for both capacity vs.