Use Case: Data Analysis Trends and Highlights

Total Page:16

File Type:pdf, Size:1020Kb

Use Case: Data Analysis Trends and Highlights When Should I Use Python vs. R? Python and R are both great programming languages for data science and analytics. Since they’re open-source, they’re free to download for everyone, unlike commercial tools like SAS and SPSS. Find out their strengths and weaknesses and fgure out which is beter for your specifc use cases. Purpose Either language is suitable for almost any data science task, from data manipulation and automation to ad-hoc analysis and exploring datasets. Users may leverage both languages for diferent purposes, e.g., conducting early- stage data analysis and exploration in R, then switching to Python when it’s time to ship some data products. Choosing Python vs. R It’s up to the individual data scientist or data analyst to choose the language that best fts their unique needs. The following questions may help with that decision. 1 Which language do your colleagues use? The benefts of being able to share code with your colleagues and maintaining a simpler sofware stack outweigh any benefts of one language over another. 2 What problems do you want to solve and what tasks do you need to accomplish? 3 What are the net costs of learning a language? It will take time to learn a new system that is beter aligned for the problem you want to solve, but staying with the system you know may not be a ft for that problem. 4 What are the commonly used tool(s) in your feld? Who It’s Used By Python is used by programmers that R has been used primarily in academics want to delve into data analysis or apply and research and is great for exploratory statistical techniques, and by developers data analysis. In recent years, enterprise and programmers that turn to data usage has rapidly expanded. science. Statisticians, engineers, and scientists Python is a production-ready language, without computer programming skills. It’s meaning it has the capacity to be a popular in academia, fnance, single tool that integrates with every pharmaceuticals, media, and marketing. part of your workfow! Usability People with a sofware engineering If you have no coding experience, then background may fnd Python comes R may be easier to learn. more naturally to them than R. Statistical models can be writen with Coding and debugging is easy because only a few lines. of the simple syntax. The same piece of functionality can be The indentation of code afects its writen in several ways with R. meaning. Any piece of functionality is always writen the same way with Python. Ecosystem Python has a robust ecosystem and is R has a rich ecosystem of cuting-edge commonly considered one of the easier interface packages available to programming languages to read and communicate between open-source learn. Its programming syntax is simple languages. and its commands mimic the English language. This allows users to string their E.g. print(“Hello world!”) workfows together, which is especially useful for data analysis. Python code is syntactically clear and elegant, easily interpretable, and easy Packages are available at: to type. Comprehensive R Archive Network (CRAN): “Task Views” page lists a It’s great for building data science wide range of tasks for which R pipelines and machine learning packages are available and users products integrated with web can easily contribute to. frameworks at scale. But watch out for dependencies and installing Python Bioconductor: Open source sofware libraries! for bioinformatics It’s great for building data science GitHub: Web-based Git repository pipelines and machine learning hosting service products integrated with web frameworks at scale. But watch out for Search through these sources easily dependencies and installing Python with Rdocumentation libraries! Packages are collections of R functions, The Python Package Index (PyPi) and data, and compiled code. They can be Anaconda are repositories of Python installed in R with one line. sofware with all libraries. Users can contribute to these repositories, but it’s a bit complicated in practice to do so. Flexibility Python is fexible for creating something It’s easy to use complex functions in R. All that has never been done before. kinds of statistical tests and models are Developers can also use it for scripting readily available and easily used. websites or other applications. Ease of Learning Python’s focus on readability and R is easier to learn when you start out, but simplicity means its learning curve is the intricacies of advanced functionalities relatively linear and smooth. makes it more difcult to develop expertise. Python is considered a good language for beginner programmers. R is not hard for experienced programmers to learn. Advantages General-purpose programming Widely considered the best tool for languages are useful beyond just data making beautiful graphs and analysis. visualizations. Has gained popularity for its code Has many functionalities for data readability, speed, and many analysis. functionalities. Great for statistical analysis. Great for mathematical computation Built around a command line, but the and learning how algorithms work. majority of R users work inside of Has high ease of deployment and RStudio, an environment that includes a reproducibility. data editor, debugging support, and a window to hold graphics as well. Disadvantages Python doesn’t have as many libraries For people with no sofware for data science as R. engineering experience, base R can be more difcult to learn because it was Python requires rigorous testing as developed by statisticians, not to make errors show up in runtime. coding easier. But R has a set of Visualizations are more convoluted in packages known as the Tidyverse, Python than in R, and results are not as which provides powerful yet easy-to- eye-pleasing or informative. learn tools for importing, manipulating, visualizing, and reporting on data. Python packages for data visualization: Finding the right packages to use in R seaborn: Library based on Matplotlib may be time consuming. Bokeh: Interactive visualization There are many dependencies between library R libraries. Pygal: Create dynamic dynamic svg charts R can be considered slow if code is writen poorly. Not as popular as Python for deep learning and NLP. Use Case: Data Analysis Usage Python is generally used when the data R is mainly used when the data analysis analysis tasks need to be integrated with tasks require standalone computing or web apps or if statistics code needs to be analysis on individual servers. incorporated into a production database. For exploratory work, R is easier for Since it’s a full-fedged programming beginners. Statistical models can be language, Python is a good tool to writen with a few lines of code. implement algorithms for use in production. Data Handling Capabilities Python requires users to install packages R is great for data analysis because of its for data analysis, and these packages huge number of packages, readily usable have greatly improved in recent years. tests, and the advantage of using formulas. NumPy and pandas, among others, are popular for data analysis. It can handle basic data analysis without needing to install packages. Big datasets require the use of packages such as data.table and dplyr. Geting Started IDE There are many Python IDEs to choose RStudio is the most popular R IDE. It’s from which drastically reduce the available in two formats: RStudio Desktop overhead of organizing code, output, and for running locally as a regular desktop notes fles. Jupyter Notebooks and Spyder application and RStudio Server for access are popular, and Jupyter Lab is gaining via web browser while running on a remote traction. Linux server. Tip: Also try Rodeo, the “data science IDE for Python.” Popular Libraries and Packages pandas to easily manipulate data dplyr, tidyr and data.table to easily manipulate data SciPy and NumPy for scientifc computing stringr to manipulate strings Scikit-learn for machine learning zoo to work with regular and irregular time series Matplotlib and seaborn to make graphics ggplot2 to visualize data statsmodels to explore data, estimate caret for machine learning statistical models, and perform statistical tests and unit tests “R is currently head-and-shoulders above Python for data analysis, but I remain convinced that Python can catch up, easily and quickly.” JAN GALKOWSKI, COMPUTATIONAL ENGINEER Support and Communities DataCamp Slack Community DataCamp Slack Community Stack Overfow Stack Overfow Reddit Python Reddit rstats PyLadies Rdocumentation pydata R-help pystatsmodels ROpenSci numpy-discussion and sci-py-user Jumping Rivers list of local R User Groups Trends and Highlights Popularity Rankings, Python vs. R Python R 2016 #3 #5 2017 #1 #6 2018 #1 #7 2019 #1 #5 Source: IEEE Spectrum, Sep 2019 Popularity on Stack Overfow, Python vs. R Python R 9.00% 8.00% 7.00% 6.00% 5.00% 4.00% 3.00% 2.00% 1.00% 0.00% % OF STACK OVERFLOW QUESTIONS THAT MONTH THAT QUESTIONS OVERFLOW % OF STACK 2009 2010 2011 2012 2013 2014 2015 2016 2017 YEAR Source: DZone Python, R or both or other platforms for data science Python R Both Other 70% 60% 50% 42% 41% 40% 34% 36% 30% 20% 16% 12% 11% 9% 10% 0% SHARE IN 2016 SHARE IN 2017 Source: DZone SAS, R or Python preference by years of experience SAS R Python 60% 50% 48% 47% 40% 38% 36% 33% 31% 30% 26% 27% 20% 14% 10% 0% 0-5 YRS 6-15 YRS 16+ Source: Butch Works SAS, R or Python preference by industry 50% SAS R Python 45% 43% 41% 40% 42% 39% 39% 40% 37% 36% 35% 35% 34% 33% 30% 29% 29% 28% 30% 30% 29% 27% 27% 26% 25% 25% 24% 20% 15% 10% 5% 0% TECH/ CONSULTING OTHER ADV/MARKETING FINANCIAL RETAIL/CPG HEALTHCARE/ TELECOM CORPORATIONS SERVICES SERVICES PHARMA Source: Butch Works User loyalty, Python vs.
Recommended publications
  • Introduction to IDL®
    Introduction to IDL® Revised for Print March, 2016 ©2016 Exelis Visual Information Solutions, Inc., a subsidiary of Harris Corporation. All rights reserved. ENVI and IDL are registered trademarks of Harris Corporation. All other marks are the property of their respective owners. This document is not subject to the controls of the International Traffic in Arms Regulations (ITAR) or the Export Administration Regulations (EAR). Contents 1 Introduction To IDL 5 1.1 Introduction . .5 1.1.1 What is ENVI? . .5 1.1.2 ENVI + IDL, ENVI, and IDL . .6 1.1.3 ENVI Resources . .6 1.1.4 Contacting Harris Geospatial Solutions . .6 1.1.5 Tutorials . .6 1.1.6 Training . .7 1.1.7 ENVI Support . .7 1.1.8 Contacting Technical Support . .7 1.1.9 Website . .7 1.1.10 IDL Newsgroup . .7 2 About This Course 9 2.1 Manual Organization . .9 2.1.1 Programming Style . .9 2.2 The Course Files . 11 2.2.1 Installing the Course Files . 11 2.3 Starting IDL . 11 2.3.1 Windows . 11 2.3.2 Max OS X . 11 2.3.3 Linux . 12 3 A Tour of IDL 13 3.1 Overview . 13 3.2 Scalars and Arrays . 13 3.3 Reading Data from Files . 15 3.4 Line Plots . 15 3.5 Surface Plots . 17 3.6 Contour Plots . 18 3.7 Displaying Images . 19 3.8 Exercises . 21 3.9 References . 21 4 IDL Basics 23 4.1 IDL Directory Structure . 23 4.2 The IDL Workbench . 24 4.3 Exploring the IDL Workbench .
    [Show full text]
  • A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya 1 Introduction
    A Comparative Evaluation of Matlab, Octave, R, and Julia on Maya Sai K. Popuri and Matthias K. Gobbert* Department of Mathematics and Statistics, University of Maryland, Baltimore County *Corresponding author: [email protected], www.umbc.edu/~gobbert Technical Report HPCF{2017{3, hpcf.umbc.edu > Publications Abstract Matlab is the most popular commercial package for numerical computations in mathematics, statistics, the sciences, engineering, and other fields. Octave is a freely available software used for numerical computing. R is a popular open source freely available software often used for statistical analysis and computing. Julia is a recent open source freely available high-level programming language with a sophisticated com- piler for high-performance numerical and statistical computing. They are all available to download on the Linux, Windows, and Mac OS X operating systems. We investigate whether the three freely available software are viable alternatives to Matlab for uses in research and teaching. We compare the results on part of the equipment of the cluster maya in the UMBC High Performance Computing Facility. The equipment has 72 nodes, each with two Intel E5-2650v2 Ivy Bridge (2.6 GHz, 20 MB cache) proces- sors with 8 cores per CPU, for a total of 16 cores per node. All nodes have 64 GB of main memory and are connected by a quad-data rate InfiniBand interconnect. The tests focused on usability lead us to conclude that Octave is the most compatible with Matlab, since it uses the same syntax and has the native capability of running m-files. R was hampered by somewhat different syntax or function names and some missing functions.
    [Show full text]
  • Sage 9.4 Reference Manual: Finite Rings Release 9.4
    Sage 9.4 Reference Manual: Finite Rings Release 9.4 The Sage Development Team Aug 24, 2021 CONTENTS 1 Finite Rings 1 1.1 Ring Z=nZ of integers modulo n ....................................1 1.2 Elements of Z=nZ ............................................ 15 2 Finite Fields 39 2.1 Finite Fields............................................... 39 2.2 Base Classes for Finite Fields...................................... 47 2.3 Base class for finite field elements.................................... 61 2.4 Homset for Finite Fields......................................... 69 2.5 Finite field morphisms.......................................... 71 3 Prime Fields 77 3.1 Finite Prime Fields............................................ 77 3.2 Finite field morphisms for prime fields................................. 79 4 Finite Fields Using Pari 81 4.1 Finite fields implemented via PARI’s FFELT type............................ 81 4.2 Finite field elements implemented via PARI’s FFELT type....................... 83 5 Finite Fields Using Givaro 89 5.1 Givaro Finite Field............................................ 89 5.2 Givaro Field Elements.......................................... 94 5.3 Finite field morphisms using Givaro................................... 102 6 Finite Fields of Characteristic 2 Using NTL 105 6.1 Finite Fields of Characteristic 2..................................... 105 6.2 Finite Fields of characteristic 2...................................... 107 7 Miscellaneous 113 7.1 Finite residue fields...........................................
    [Show full text]
  • A Fast Dynamic Language for Technical Computing
    Julia A Fast Dynamic Language for Technical Computing Created by: Jeff Bezanson, Stefan Karpinski, Viral B. Shah & Alan Edelman A Fractured Community Technical work gets done in many different languages ‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ... Different optimal choices for different tasks ‣ statistics ➞ R ‣ linear algebra ➞ Matlab ‣ string processing ➞ Perl ‣ general programming ➞ Python, Java ‣ performance, control ➞ C, C++, Fortran Larger projects commonly use a mixture of 2, 3, 4, ... One Language We are not trying to replace any of these ‣ C, C++, R, Matlab, Python, Java, Perl, Fortran, ... What we are trying to do: ‣ allow developing complete technical projects in a single language without sacrificing productivity or performance This does not mean not using components in other languages! ‣ Julia uses C, C++ and Fortran libraries extensively “Because We Are Greedy.” “We want a language that’s open source, with a liberal license. We want the speed of C with the dynamism of Ruby. We want a language that’s homoiconic, with true macros like Lisp, but with obvious, familiar mathematical notation like Matlab. We want something as usable for general programming as Python, as easy for statistics as R, as natural for string processing as Perl, as powerful for linear algebra as Matlab, as good at gluing programs together as the shell. Something that is dirt simple to learn, yet keeps the most serious hackers happy.” Collapsing Dichotomies Many of these are just a matter of design and focus ‣ stats vs. linear algebra vs. strings vs.
    [Show full text]
  • Mastering Machine Learning with Scikit-Learn
    www.it-ebooks.info Mastering Machine Learning with scikit-learn Apply effective learning algorithms to real-world problems using scikit-learn Gavin Hackeling BIRMINGHAM - MUMBAI www.it-ebooks.info Mastering Machine Learning with scikit-learn Copyright © 2014 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: October 2014 Production reference: 1221014 Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK. ISBN 978-1-78398-836-5 www.packtpub.com Cover image by Amy-Lee Winfield [email protected]( ) www.it-ebooks.info Credits Author Project Coordinator Gavin Hackeling Danuta Jones Reviewers Proofreaders Fahad Arshad Simran Bhogal Sarah
    [Show full text]
  • Installing Python Ø Basics of Programming • Data Types • Functions • List Ø Numpy Library Ø Pandas Library What Is Python?
    Python in Data Science Programming Ha Khanh Nguyen Agenda Ø What is Python? Ø The Python Ecosystem • Installing Python Ø Basics of Programming • Data Types • Functions • List Ø NumPy Library Ø Pandas Library What is Python? • “Python is an interpreted high-level general-purpose programming language.” – Wikipedia • It supports multiple programming paradigms, including: • Structured/procedural • Object-oriented • Functional The Python Ecosystem Source: Fabien Maussion’s “Getting started with Python” Workshop Installing Python • Install Python through Anaconda/Miniconda. • This allows you to create and work in Python environments. • You can create multiple environments as needed. • Highly recommended: install Python through Miniconda. • Are we ready to “play” with Python yet? • Almost! • Most data scientists use Python through Jupyter Notebook, a web application that allows you to create a virtual notebook containing both text and code! • Python Installation tutorial: [Mac OS X] [Windows] For today’s seminar • Due to the time limitation, we will be using Google Colab instead. • Google Colab is a free Jupyter notebook environment that runs entirely in the cloud, so you can run Python code, write report in Jupyter Notebook even without installing the Python ecosystem. • It is NOT a complete alternative to installing Python on your local computer. • But it is a quick and easy way to get started/try out Python. • You will need to log in using your university account (possible for some schools) or your personal Google account. Basics of Programming Indentations – Not Braces • Other languages (R, C++, Java, etc.) use braces to structure code. # R code (not Python) a = 10 if (a < 5) { result = TRUE b = 0 } else { result = FALSE b = 100 } a = 10 if (a < 5) { result = TRUE; b = 0} else {result = FALSE; b = 100} Basics of Programming Indentations – Not Braces • Python uses whitespaces (tabs or spaces) to structure code instead.
    [Show full text]
  • Introduction to Ggplot2
    Introduction to ggplot2 Dawn Koffman Office of Population Research Princeton University January 2014 1 Part 1: Concepts and Terminology 2 R Package: ggplot2 Used to produce statistical graphics, author = Hadley Wickham "attempt to take the good things about base and lattice graphics and improve on them with a strong, underlying model " based on The Grammar of Graphics by Leland Wilkinson, 2005 "... describes the meaning of what we do when we construct statistical graphics ... More than a taxonomy ... Computational system based on the underlying mathematics of representing statistical functions of data." - does not limit developer to a set of pre-specified graphics adds some concepts to grammar which allow it to work well with R 3 qplot() ggplot2 provides two ways to produce plot objects: qplot() # quick plot – not covered in this workshop uses some concepts of The Grammar of Graphics, but doesn’t provide full capability and designed to be very similar to plot() and simple to use may make it easy to produce basic graphs but may delay understanding philosophy of ggplot2 ggplot() # grammar of graphics plot – focus of this workshop provides fuller implementation of The Grammar of Graphics may have steeper learning curve but allows much more flexibility when building graphs 4 Grammar Defines Components of Graphics data: in ggplot2, data must be stored as an R data frame coordinate system: describes 2-D space that data is projected onto - for example, Cartesian coordinates, polar coordinates, map projections, ... geoms: describe type of geometric objects that represent data - for example, points, lines, polygons, ... aesthetics: describe visual characteristics that represent data - for example, position, size, color, shape, transparency, fill scales: for each aesthetic, describe how visual characteristic is converted to display values - for example, log scales, color scales, size scales, shape scales, ..
    [Show full text]
  • 01 Introduction Lab.Pdf
    AN INTRODUCTION TO R DEEPAYAN SARKAR Introduction and examples What is R?. R provides an environment in which you can perform statistical analysis and produce graphics. It is actually a complete programming language, although that is only marginally described in this book. |Peter Dalgaard, \Introductory Statistics with R", 2002 R can be viewed as a programming language that happens to come with a large library of pre-defined functions that can be used to perform various tasks. A major focus of these pre-defined functions is statistical data analysis, and these allow R to be used purely as a toolbox for standard statistical techniques. However, some knowledge of R programming is essential to use it well at any level. For advanced users in particular, the main appeal of R (as opposed to other data analysis software) is as a programming environment suited to data analysis. Our goal will be to learn R as a statistics toolbox, but with a fairly strong emphasis on its programming language aspects. In this tutorial, we will do some elementary statistics, learn to use the documentation system, and learn about common data structures and programming features in R. Some follow-up tutorials are available for self-study at http://www.isid.ac.in/~deepayan/R-tutorials/. For more resources, see the R Project homepage http://www.r-project.org, which links to various manuals and other user-contributed documentation. A list of books related to R is available at http://www.r-project.org/doc/bib/R-jabref.html. An excellent introductory book is Peter Dalgaard, \Introductory Statistics with R", Springer (2002).
    [Show full text]
  • Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova
    Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology Polina Lemenkova To cite this version: Polina Lemenkova. Regression Models by Gretl and R Statistical Packages for Data Analysis in Marine Geology. International Journal of Environmental Trends (IJENT), 2019, 3 (1), pp.39 - 59. hal-02163671 HAL Id: hal-02163671 https://hal.archives-ouvertes.fr/hal-02163671 Submitted on 3 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License International Journal of Environmental Trends (IJENT) 2019: 3 (1),39-59 ISSN: 2602-4160 Research Article REGRESSION MODELS BY GRETL AND R STATISTICAL PACKAGES FOR DATA ANALYSIS IN MARINE GEOLOGY Polina Lemenkova 1* 1 ORCID ID number: 0000-0002-5759-1089. Ocean University of China, College of Marine Geo-sciences. 238 Songling Rd., 266100, Qingdao, Shandong, P. R. C. Tel.: +86-1768-554-1605. Abstract Received 3 May 2018 Gretl and R statistical libraries enables to perform data analysis using various algorithms, modules and functions. The case study of this research consists in geospatial analysis of Accepted the Mariana Trench, a hadal trench located in the Pacific Ocean.
    [Show full text]
  • Towards a Fully Automated Extraction and Interpretation of Tabular Data Using Machine Learning
    UPTEC F 19050 Examensarbete 30 hp August 2019 Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Per Hedbrant Master Thesis in Engineering Physics Department of Engineering Sciences Uppsala University Sweden Abstract Towards a fully automated extraction and interpretation of tabular data using machine learning Per Hedbrant Teknisk- naturvetenskaplig fakultet UTH-enheten Motivation A challenge for researchers at CBCS is the ability to efficiently manage the Besöksadress: different data formats that frequently are changed. Significant amount of time is Ångströmlaboratoriet Lägerhyddsvägen 1 spent on manual pre-processing, converting from one format to another. There are Hus 4, Plan 0 currently no solutions that uses pattern recognition to locate and automatically recognise data structures in a spreadsheet. Postadress: Box 536 751 21 Uppsala Problem Definition The desired solution is to build a self-learning Software as-a-Service (SaaS) for Telefon: automated recognition and loading of data stored in arbitrary formats. The aim of 018 – 471 30 03 this study is three-folded: A) Investigate if unsupervised machine learning Telefax: methods can be used to label different types of cells in spreadsheets. B) 018 – 471 30 00 Investigate if a hypothesis-generating algorithm can be used to label different types of cells in spreadsheets. C) Advise on choices of architecture and Hemsida: technologies for the SaaS solution. http://www.teknat.uu.se/student Method A pre-processing framework is built that can read and pre-process any type of spreadsheet into a feature matrix. Different datasets are read and clustered. An investigation on the usefulness of reducing the dimensionality is also done.
    [Show full text]
  • Why SAS Programmers Should Learn Python Too Michael Stackhouse, Covance, Inc
    PharmaSUG 2018 - Paper AD-12 Why SAS Programmers Should Learn Python Too Michael Stackhouse, Covance, Inc. ABSTRACT Day to day work can often require simple, yet repetitive tasks. All companies have tedious processes that may involve moving and renaming files, making redundant edits to code, and more. Often, one might also want to find or summarize information scattered amongst many different files as well. While SAS programmers are very familiar with the power of SAS, the power of some lesser known but readily available tools may go unnoticed. The programming language Python has many capabilities that can easily automate and facilitate these tasks. Additionally, many companies have adopted Linux and UNIX as their OS of choice. With a small amount of background, and an understanding of Linux/UNIX command line syntax, powerful tools can be developed to eliminate these tedious activities. Better yet, these tools can be written to “talk back” to the user, making them more user friendly for those averse to venturing from their SAS editor. This paper will explore the benefits of how Python can be adopted into a SAS programming world. INTRODUCTION SAS is a great language, and it does what it’s designed to do very well, but other languages are better catered to different tasks. One language in particular that can serve a number of different purposes is Python. This is for a number of reasons. First off, it’s easy. Python has a very spoken-word style of syntax that is both intuitive to use and easy to learn. This makes it a very attractive language for newcomers, but also an attractive language to someone like a SAS programmer.
    [Show full text]
  • Base SAS® Software Flexible and Extensible Fourth-Generation Programming Language Designed for Data Access, Transformation and Reporting
    FACT SHEET Base SAS® Software Flexible and extensible fourth-generation programming language designed for data access, transformation and reporting What does Base SAS® software do? Base SAS is a fourth-generation programming language (4GL) for data access, data transformation, analysis and reporting. It is included with the SAS Platform. Base SAS is designed for foundational data manipulation, information storage and retrieval, descrip- tive statistics and report writing. It also includes a powerful macro facility that reduces programming time and maintenance headaches. Why is Base SAS® software important? Base SAS runs on all major operating systems. It significantly reduces programming and maintenance time, while enabling your IT organization to produce the analyses and reports that decision makers need in the format they prefer. For whom is Base SAS® software designed? Base SAS is used by SAS programming experts and power users who prefer to code to manipulate data, produce and distribute ad hoc queries and reports, and/or interpret the results of descriptive data analysis. Many IT organizations struggle with functionality, including direct access to familiar Python interface using the SAS problems arising from complex and distrib- standardized data sources and advanced pipefitter package, fostering consis- uted data, spending excessive time synchro- statistical analysis. tency of code in the organization. nizing and reformatting data for various • Simplify reporting and delivery to applications. Producing accurate and visually Key Benefits mobile devices. Base SAS provides appealing reports often requires dispropor- maximum reporting flexibility. Easily • Integrate data across environments. tionate programming resources. Addition- create reports in formats such as RTF, Available with the SAS Platform, Base ally, IT often must manage a plethora of PDF, Microsoft PowerPoint, HTML and SAS integrates into any computing software packages that only support a e-books that can be read on many environment infrastructure, unifying specific demand.
    [Show full text]