Wasteless Journaling for Fast and Reliable Multistream Storage

Total Page:16

File Type:pdf, Size:1020Kb

Wasteless Journaling for Fast and Reliable Multistream Storage Okeanos: Wasteless Journaling for Fast and Reliable Multistream Storage Andromachi Hatzieleftheriou and Stergios V. Anastasiadis Department of Computer Science University of Ioannina, Greece Abstract more, logging is useful for checkpointing parallel appli- Synchronous small writes play a critical role in the re- cations to preserve multiple hours or days of processing liability and availability of file systems and applications after an application or system crash [1]. that use them to safely log recent state modifications and Today, several file systems use a log file (journal)in quickly recover from failures. However, storage stacks order to temporarily move data or metadata from mem- usually enforce page-sized granularity in their data trans- ory to disk at sequential throughput. Thus, they post- fers from memory to disk. We experimentally show that pone the more costly writes to the file system without subpage writes may lead to storage bandwidth waste and penalizing the corresponding latency perceived by the high disk latencies. To address the issue in a journaled applications. A basic component across current oper- file system, we propose wasteless journaling as a mount ating systems is the page cache that temporarily stores mode that coalesces synchronous concurrent small writes recently accessed data and metadata in case they are of data into full page-sized blocks before transferring reused soon. It receives byte-range requests from the them to the journal. Additionally, we propose selective applications, and communicates with the disk through journaling that automatically applies wasteless journal- page-sized blocks. The page-sized block granularity of ing on data writes whose size lies below a fixed precon- disk accesses is prevalent across all data transfers, in- figured threshold. In the Okeanos prototype implemen- cluding data and metadata updates or the correspond- tation that we developed, we use microbenchmarks and ing journaling whenever it is used. Asynchronous small application-level workloads to show substantial improve- writes improve their efficiency, when multiple consecu- ments in write latency, transaction throughput and stor- tive requests are batched into page-sized blocks before age bandwidth requirements. they are flushed to disk. Instead, each synchronous write is flushed to disk individually causing data and metadata 1 Introduction traffic of multiple full pages, even if the bytes actually Synchronous small writes lie in the critical path of sev- modified across the pages collectively occupy much less eral contemporary systems that target fast recovery from space. failures with low performance overhead during normal In Figure 1, we measure the amount of data written to operation [1, 4, 5]. Typically, synchronous small writes the journal across different mount modes. We use a syn- are applied to a sequential file (write-ahead log)inorder thetic workload that consists of 100 concurrent threads to record updates before the actual modification of the with periodic synchronous writes of varying request sizes system state. In addition, the system periodically copies (one req/s). We include the ordered, writeback, and its entire state (checkpoint) to permanent storage. After a journal –refered to as data journaling from now on for transient failure, recent state can be reconstructed by re- clarity– modes of the ext3 file system (Section 4). As playing the logged updates against the latest checkpoint. the request size increases up to 4KB, the trafficofdata Write-ahead logging improves system reliability by pre- journaling remains almost unchanged at a disproportion- serving recent updates from failures; it also increases ately high value. At each write call, the mode appends to system availability by substantially reducing the subse- the journal the entire modified data and metadata blocks quent recovery time. The method is widely applied in rather than only the corresponding block modifications. general-purpose file systems [6], relational databases [5], Instead, the ordered and writeback modes incur almost distributed key-value stores [4], event processing en- linearly increasing traffic, because they only store to the gines [3], and other mission-critical systems [7]. Further- journal the blocks that contain modified metadata. 1 Write Traffic 2 Related Work 1000 The log-structured file system addresses the synchronous metadata update problem and the small-write problem by batching data writes sequentially to a segmented log [9]. 100 In transaction processing, group commit is a known Data Jrn Wasteless database logging optimization that periodically flushes 10 Writeback to the log multiple outstanding commit requests [5]. The Selective above approaches gather multiple block writes into a sin- Total Journal Volume (MB) Ordered 1 gle multi-block request instead of fitting multiple sub- 0 1 10 100 page modifications into a single block that we do. Also, Request Size (KB) subpage journaling of metadata updates is already avail- able in commercial file systems, such as IBM JFS and Figure 1: During a 5min interval, we measure the total MS NTFS [8]. Adding extra spindles to improve I/O write traffic to the journal device across different mount parallelism or non-volatile RAM to absorb small writes modes of the ext3 file system on Linux. could also reduce latency and raise throughput [6]. How- ever, such solutions carry drawbacks that primarily have to do with increased cost and maintenance concerns. We set as objective to reduce the journal trafficsothat A structured storage system may maintain numerous we improve the performance of reliable storage at low independent log files to facilitate load balancing in case cost. Thus, we introduce wasteless journaling and selec- of failure [4]. However, concurrent sequential writes to tive journaling as two new mount modes, that we pro- the same device create a random-access workload with pose, design and fully implement in the Linux ext3 file low disk throughput. To address this issue, the sys- system. We are specifically concerned about highly con- tem may store multiple logs into a single file and sepa- current multithreaded workloads that synchronously ap- rate them by record sorting during recovery. Similarly, ply small writes over common storage devices [1, 4, 7]. for the storage needs of parallel applications in high- We target to save the disk bandwidth that is currently performance computing, specialized file formats are used wasted due to unnecessary writes of unmodified data, to manage as a single file the data streams generated by or writes with high positioning overhead. The opera- multiple processes [1]. Instead, we aim to handle the tions in both these cases occupy valuable disk access above cases at low cost through the mount modes that time that should be used for useful data transfers instead. we add to a general-purpose file system. To achieve our goal we transform multiple random small The Echo distributed file system logged subpage up- writes into a single block append to the journal. dates for improved performance and availability, but by- We summarize our contributions as follows: (i) Con- passed logging for page-sized or larger writes [2]. How- sider the reduction of journal bandwidth in current sys- ever, Echo was discontinued in the early nineties partly tems as a means to improve the performance of reli- because its hardware lacked fast enough computation rel- able storage at low cost; (ii) Design and fully implement ative to communication. Recent research introduced se- wasteless and selective journaling as optional mount mantic trace playback to rapidly emulate alternative file modes in a widely-used file system; (iii) Discuss the im- system designs [8]. In that context, the authors emulated plications of our journaling optimizations to the consis- writing block modifications instead of entire blocks to tency semantics; (iv) Apply micro-benchmarks, a storage the journal, but didn’t consider the performance and re- workload and database logging traces over a single jour- covery implications. Due to the obsolete hardware plat- nal spindle to demonstrate performance improvements form or the high emulation level at which they were ap- up to an order of magnitude across several metrics; (v) plied, the above studies leave open the general architec- Use a parallel file system to show that wasteless journal- tural fit and actual performance benefit of journal band- ing doubles, at reasonable cost, the throughput of parallel width reduction in current systems. application checkpointing over small writes. In the remaining paper, we summarize the related re- 3SystemDesign search in Section 2, present architectural aspects of our We set as objective to safely store recent state updates design in Section 3, while in Section 4 we describe on disk and ensure their fast recovery in case of fail- the implementation of the Okeanos prototype system. ure. We also strive to serve the synchronous small writes In Section 5, we explain our experimentation environ- and subsequent reads at sequential disk throughput with ment, in Section 6 we present performance measure- low bandwidth requirements. We are motivated by the ments across different workloads, and in Section 7 we important role that small writes play for reliable stor- outline our conclusions and future work. age and the lack of comprehensive studies on subpage 2 data logging in current systems. In order to reduce the Thus, we handle consistency in a relatively clean way, storage bandwidth consumed by data journaling, we de- because we eliminate the case that we turn off the jour- signed and implemented a new mount mode that we call naling of a particular buffer halfway through a transac- wasteless journaling. During synchronous writes, we tion. On the other hand, if the first update of the buffer transform partially modified data blocks into descrip- is page-sized, we decide to skip journaling for the entire tor records that we subsequently accumulate into special update sequence of the corresponding block. In our ex- journal blocks. We synchronously transfer all the data perience, the above two transitions in update sizes along modifications from memory to the journal device.
Recommended publications
  • CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N
    CERIAS Tech Report 2017-5 Deceptive Memory Systems by Christopher N. Gutierrez Center for Education and Research Information Assurance and Security Purdue University, West Lafayette, IN 47907-2086 DECEPTIVE MEMORY SYSTEMS ADissertation Submitted to the Faculty of Purdue University by Christopher N. Gutierrez In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2017 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF DISSERTATION APPROVAL Dr. Eugene H. Spa↵ord, Co-Chair Department of Computer Science Dr. Saurabh Bagchi, Co-Chair Department of Computer Science Dr. Dongyan Xu Department of Computer Science Dr. Mathias Payer Department of Computer Science Approved by: Dr. Voicu Popescu by Dr. William J. Gorman Head of the Graduate Program iii This work is dedicated to my wife, Gina. Thank you for all of your love and support. The moon awaits us. iv ACKNOWLEDGMENTS Iwould liketothank ProfessorsEugeneSpa↵ord and SaurabhBagchi for their guidance, support, and advice throughout my time at Purdue. Both have been instru­ mental in my development as a computer scientist, and I am forever grateful. I would also like to thank the Center for Education and Research in Information Assurance and Security (CERIAS) for fostering a multidisciplinary security culture in which I had the privilege to be part of. Special thanks to Adam Hammer and Ronald Cas­ tongia for their technical support and Thomas Yurek for his programming assistance for the experimental evaluation. I am grateful for the valuable feedback provided by the members of my thesis committee, Professor Dongyen Xu, and Professor Math­ ias Payer.
    [Show full text]
  • Ext4 File System and Crash Consistency
    1 Ext4 file system and crash consistency Changwoo Min 2 Summary of last lectures • Tools: building, exploring, and debugging Linux kernel • Core kernel infrastructure • Process management & scheduling • Interrupt & interrupt handler • Kernel synchronization • Memory management • Virtual file system • Page cache and page fault 3 Today: ext4 file system and crash consistency • File system in Linux kernel • Design considerations of a file system • History of file system • On-disk structure of Ext4 • File operations • Crash consistency 4 File system in Linux kernel User space application (ex: cp) User-space Syscalls: open, read, write, etc. Kernel-space VFS: Virtual File System Filesystems ext4 FAT32 JFFS2 Block layer Hardware Embedded Hard disk USB drive flash 5 What is a file system fundamentally? int main(int argc, char *argv[]) { int fd; char buffer[4096]; struct stat_buf; DIR *dir; struct dirent *entry; /* 1. Path name -> inode mapping */ fd = open("/home/lkp/hello.c" , O_RDONLY); /* 2. File offset -> disk block address mapping */ pread(fd, buffer, sizeof(buffer), 0); /* 3. File meta data operation */ fstat(fd, &stat_buf); printf("file size = %d\n", stat_buf.st_size); /* 4. Directory operation */ dir = opendir("/home"); entry = readdir(dir); printf("dir = %s\n", entry->d_name); return 0; } 6 Why do we care EXT4 file system? • Most widely-deployed file system • Default file system of major Linux distributions • File system used in Google data center • Default file system of Android kernel • Follows the traditional file system design 7 History of file system design 8 UFS (Unix File System) • The original UNIX file system • Design by Dennis Ritche and Ken Thompson (1974) • The first Linux file system (ext) and Minix FS has a similar layout 9 UFS (Unix File System) • Performance problem of UFS (and the first Linux file system) • Especially, long seek time between an inode and data block 10 FFS (Fast File System) • The file system of BSD UNIX • Designed by Marshall Kirk McKusick, et al.
    [Show full text]
  • CS 152: Computer Systems Architecture Storage Technologies
    CS 152: Computer Systems Architecture Storage Technologies Sang-Woo Jun Winter 2019 Storage Used To be a Secondary Concern Typically, storage was not a first order citizen of a computer system o As alluded to by its name “secondary storage” o Its job was to load programs and data to memory, and disappear o Most applications only worked with CPU and system memory (DRAM) o Extreme applications like DBMSs were the exception Because conventional secondary storage was very slow o Things are changing! Some (Pre)History Magnetic core memory Rope memory (ROM) 1960’s Drum memory 1950~1970s 72 KiB per cubic foot! 100s of KiB (1024 bits in photo) Hand-woven to program the 1950’s Apollo guidance computer Photos from Wikipedia Some (More Recent) History Floppy disk drives 1970’s~2000’s 100 KiBs to 1.44 MiB Hard disk drives 1950’s to present MBs to TBs Photos from Wikipedia Some (Current) History Solid State Drives Non-Volatile Memory 2000’s to present 2010’s to present GB to TBs GBs Hard Disk Drives Dominant storage medium for the longest time o Still the largest capacity share Data organized into multiple magnetic platters o Mechanical head needs to move to where data is, to read it o Good sequential access, terrible random access • 100s of MB/s sequential, maybe 1 MB/s 4 KB random o Time for the head to move to the right location (“seek time”) may be ms long • 1000,000s of cycles! Typically “ATA” (Including IDE and EIDE), and later “SATA” interfaces o Connected via “South bridge” chipset Ding Yuan, “Operating Systems ECE344 Lecture 11: File
    [Show full text]
  • Filesystem Considerations for Embedded Devices ELC2015 03/25/15
    Filesystem considerations for embedded devices ELC2015 03/25/15 Tristan Lelong Senior embedded software engineer Filesystem considerations ABSTRACT The goal of this presentation is to answer a question asked by several customers: which filesystem should you use within your embedded design’s eMMC/SDCard? These storage devices use a standard block interface, compatible with traditional filesystems, but constraints are not those of desktop PC environments. EXT2/3/4, BTRFS, F2FS are the first of many solutions which come to mind, but how do they all compare? Typical queries include performance, longevity, tools availability, support, and power loss robustness. This presentation will not dive into implementation details but will instead summarize provided answers with the help of various figures and meaningful test results. 2 TABLE OF CONTENTS 1. Introduction 2. Block devices 3. Available filesystems 4. Performances 5. Tools 6. Reliability 7. Conclusion Filesystem considerations ABOUT THE AUTHOR • Tristan Lelong • Embedded software engineer @ Adeneo Embedded • French, living in the Pacific northwest • Embedded software, free software, and Linux kernel enthusiast. 4 Introduction Filesystem considerations Introduction INTRODUCTION More and more embedded designs rely on smart memory chips rather than bare NAND or NOR. This presentation will start by describing: • Some context to help understand the differences between NAND and MMC • Some typical requirements found in embedded devices designs • Potential filesystems to use on MMC devices 6 Filesystem considerations Introduction INTRODUCTION Focus will then move to block filesystems. How they are supported, what feature do they advertise. To help understand how they compare, we will present some benchmarks and comparisons regarding: • Tools • Reliability • Performances 7 Block devices Filesystem considerations Block devices MMC, EMMC, SD CARD Vocabulary: • MMC: MultiMediaCard is a memory card unveiled in 1997 by SanDisk and Siemens based on NAND flash memory.
    [Show full text]
  • State-Of-The-Art Garbage Collection Policies for NILFS2
    State-of-the-art Garbage Collection Policies for NILFS2 DIPLOMARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur im Rahmen des Studiums Software Engineering/Internet Computing eingereicht von Andreas Rohner, Bsc Matrikelnummer 0502196 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Anton Ertl Wien, 23. Jänner 2018 Andreas Rohner M. Anton Ertl Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at State-of-the-art Garbage Collection Policies for NILFS2 DIPLOMA THESIS submitted in partial fulfillment of the requirements for the degree of Diplom-Ingenieur in Software Engineering/Internet Computing by Andreas Rohner, Bsc Registration Number 0502196 to the Faculty of Informatics at the TU Wien Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Anton Ertl Vienna, 23rd January, 2018 Andreas Rohner M. Anton Ertl Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Andreas Rohner, Bsc Grundsteingasse 43/22 Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 23. Jänner 2018 Andreas Rohner v Danksagung Ich danke meinem Betreuer Ao.Univ.Prof. Dipl.-Ing. Dr.techn. M. Anton Ertl für seine Geduld und Unterstützung. Außerdem schulde ich Ryusuke Konishi, dem Maintainer des NILFS2-Subsystems im Linux-Kernel, Dank für die Durchsicht meiner Patches und die vielen wertvollen Verbesserungsvorschläge.
    [Show full text]
  • The Ongoing Evolution of Ext4 File System
    The Ongoing Evolution of Ext4 file system New features and Performance Enhancements Red Hat Luk´aˇsCzerner October 24, 2011 Copyright © 2011 Luk´aˇsCzerner, Red Hat. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the COPYING file. Part I Statistics Agenda 1 Who works on Ext4? 2 Lines of code Who works on Ext4? Agenda 1 Who works on Ext4? 2 Lines of code Who works on Ext4? Last year of Ext4 development 250 non merge changes from 72 developers 9 developers has at least 10 commits 8512 lines of code inserted 5675 lined of code deleted Who works on Ext4? Comparison with other local file systems File system Number of commits Developers Developers* Ext4 250 72 9 Ext3 95 34 2 Xfs 294 34 4 Btrfs 506 60 11 550 Number of commits 500 Developers 450 400 350 300 250 Duration [s] 200 150 100 50 0 EXT3 EXT4 XFS BTRFS File system Lines of code Agenda 1 Who works on Ext4? 2 Lines of code Lines of code Development of the number of lines 80000 Ext3 Xfs Ext4 70000 Btrfs 60000 50000 40000 Lines of code 30000 20000 10000 01/01/05 01/01/06 01/01/07 01/01/08 01/01/09 01/01/10 01/01/11 01/01/12 Part II What's new in Ext4? Agenda 3 Faster file system creation 4 Discard support 5 Support for file systems beyond 16TB 6 Punch hole support 7 Scalability improvements 8 Clustered allocation Faster file system creation
    [Show full text]
  • NOVA: the Fastest File System for Nvdimms
    NOVA: The Fastest File System for NVDIMMs Steven Swanson, UC San Diego XFS F2FS NILFS EXT4 BTRFS © 2017 SNIA Persistent Memory Summit. All Rights Reserved. Disk-based file systems are inadequate for NVMM Disk-based file systems cannot 1-Sector 1-Block N-Block 1-Sector 1-Block N-Block Atomicity overwrit overwrit overwrit append append append exploit NVMM performance e e e Ext4 ✓ ✗ ✗ ✗ ✗ ✗ wb Ext4 ✓ ✓ ✗ ✓ ✗ ✓ Performance optimization Order Ext4 ✓ ✓ ✓ ✓ ✗ ✓ compromises consistency on Dataj system failure [1] Btrfs ✓ ✓ ✓ ✓ ✗ ✓ xfs ✓ ✓ ✗ ✓ ✗ ✓ Reiserfs ✓ ✓ ✗ ✓ ✗ ✓ [1] Pillai et al, All File Systems Are Not Created Equal: On the Complexity of Crafting Crash-Consistent Applications, OSDI '14. © 2017 SNIA Persistent Memory Summit. All Rights Reserved. BPFS SCMFS PMFS Aerie EXT4-DAX XFS-DAX NOVA M1FS © 2017 SNIA Persistent Memory Summit. All Rights Reserved. Previous Prototype NVMM file systems are not strongly consistent DAX does not provide data ATomic Atomicity Metadata Data Snapshot atomicity guarantee Mmap [1] So programming is more BPFS ✓ ✓ [2] ✗ ✗ difficult PMFS ✓ ✗ ✗ ✗ Ext4-DAX ✓ ✗ ✗ ✗ Xfs-DAX ✓ ✗ ✗ ✗ SCMFS ✗ ✗ ✗ ✗ Aerie ✓ ✗ ✗ ✗ © 2017 SNIA Persistent Memory Summit. All Rights Reserved. Ext4-DAX and xfs-DAX shortcomings No data atomicity support Single journal shared by all the transactions (JBD2- based) Poor performance Development teams are (rightly) “disk first”. © 2017 SNIA Persistent Memory Summit. All Rights Reserved. NOVA provides strong atomicity guarantees 1-Sector 1-Sector 1-Block 1-Block N-Block N-Block Atomicity Atomicity Metadata Data Mmap overwrite append overwrite append overwrite append Ext4 ✓ ✗ ✗ ✗ ✗ ✗ BPFS ✓ ✓ ✗ wb Ext4 ✓ ✓ ✗ ✓ ✗ ✓ PMFS ✓ ✗ ✗ Order Ext4 ✓ ✓ ✓ ✓ ✗ ✓ Ext4-DAX ✓ ✗ ✗ Dataj Btrfs ✓ ✓ ✓ ✓ ✗ ✓ Xfs-DAX ✓ ✗ ✗ xfs ✓ ✓ ✗ ✓ ✗ ✓ SCMFS ✗ ✗ ✗ Reiserfs ✓ ✓ ✗ ✓ ✗ ✓ Aerie ✓ ✗ ✗ © 2017 SNIA Persistent Memory Summit. All Rights Reserved.
    [Show full text]
  • I/O Stack Optimization for Smartphones
    I/O Stack Optimization for Smartphones Sooman Jeong1, Kisung Lee2,*, Seongjin Lee1, Seoungbum Son2,*, and Youjip Won1 1 Hanyang University, Seoul, Korea 2Samsung Electronics, Suwon, Korea Abstract ing devices for a variety of applications, including so- The Android I/O stack consists of elaborate and mature cial network services, games, cameras, camcorders, mp3 components (SQLite, the EXT4 filesystem, interrupt- players, and web browsers. driven I/O, and NAND-based storage) whose integrated The application performance of a smartphone is not behavior is not well-orchestrated, which leaves a sub- governed by the speed of its airlink, e.g., Wi-Fi, but stantial room for an improvement. We overhauled the rather by the storage performance, which is currently uti- block I/O behavior of five filesystems (EXT4, XFS, lized in a quite inefficient manner [11]. Furthermore, BTRFS, NILFS, and F2FS) under each of the five dif- one of the main sources of this inefficiency is an ex- ferent journaling modes of SQLite. We found that the cessive I/O activity caused by uncoordinated interac- most significant inefficiency originates from the fact that tions between EXT4 journaling and SQLite journaling filesystem journals the database journaling activity; we [14]. Despite its significant implications for the overall refer to this as the JOJ (Journaling of Journal) anomaly. smartphone performance, the I/O subsystem behavior of The JOJ overhead compounds in EXT4 when the bulky smartphones has not been studied nearly as thoroughly as EXT4 journaling activity is triggered by an fsync() call those in enterprise servers [26, 23], web servers [4, 10], from SQLite.
    [Show full text]
  • Android Boot Optimization on Dra7xx Devices (Rev. A)
    Application Report SPRAC30A–January 2016–Revised February 2018 Android Boot Optimization on DRA7xx Devices ABSTRACT Boot time optimizations are critical for achieving the perception of immediate application availability in the Automotive Infotainment system. They impact the end user's experience by improving the launch time of applications and infotainment use-cases. This application report captures the details on how to optimize Android software stack, along with a few optional early infotainment system features, and is meant to be used as a reference guide. The end product owner (OEM/ODM/Customer) can review the guidance for improving boot time for their specific Android powered system. Contents 1 Introduction ................................................................................................................... 2 2 Build Instructions............................................................................................................. 3 3 Deploying Instructions....................................................................................................... 5 4 Tooling/Profiling .............................................................................................................. 6 5 Optimization Steps........................................................................................................... 7 6 Adding Early Infotainment (IVI) Features to the Android System ..................................................... 8 7 Recommended Userspace Optimizations ..............................................................................
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,460,110 B2 Klughart (45) Date of Patent: *Oct
    USOO946O11 OB2 (12) United States Patent (10) Patent No.: US 9,460,110 B2 Klughart (45) Date of Patent: *Oct. 4, 2016 (54) FILE SYSTEM EXTENSION SYSTEMAND 13/287 (2013.01); G06F 13/37 (2013.01); METHOD G06F 13/385 (2013.01); G06F 13/409 (2013.01); G06F 13/4068 (2013.01); G06F (71) Applicant: Kevin Mark Klughart, Denton, TX 13/4072 (2013.01); G06F 13/4234 (2013.01); (US) G06F 13/4247 (2013.01); G06F 3/0607 (2013.01); G06F 3/0658 (2013.01); G06F (72) Inventor: Kevin Mark Klughart, Denton, TX 2212/262 (2013.01); G06F 2213/0032 (US) (2013.01); G06F 22 13/28 (2013.01); G06F 2213/3802 (2013.01) (*) Notice: Subject to any disclaimer, the term of this (58) Field of Classification Search patent is extended or adjusted under 35 CPC ... G06F 3/0607; G06F 3/0689; G06F 13/00; U.S.C. 154(b) by 0 days. GO6F 13/409 This patent is Subject to a terminal dis- See application file for complete search history. claimer. (56) References Cited (21) Appl. No.: 14/886,616 U.S. PATENT DOCUMENTS (22) Filed: Oct. 19, 2015 4,873,665 A 10/1989 Jiang et al. 5,164,613 A 11/1992 Mumper et al. (65) Prior Publication Data (Continued) US 2016/OO78054 A1 Mar. 17, 2016 OTHER PUBLICATIONS Related U.S. Application Data HCL, ashok.madaan(a)hcl. In SATA Host Controller, pp. 1-2, India. (63) Continuation-in-part of application No. 14/685,439, (Continued) filed on Apr. 13, 2015, now Pat. No. 9,164,946, which is a continuation of application No.
    [Show full text]
  • Filesystem Support for Continuous Snapshotting
    Ottawa Linux Symposium 2007 Discussion Filesystem Support for Continuous Snapshotting Ryusuke Konishi, Koji Sato, Yoshiji Amagai {ryusuke,koji,amagai}@osrg.net NILFS Team, NTT Labs. Agenda ● What is Continuous Snapshotting? ● Continuous Snapshotting Demo ● Brief overview of NILFS filesystem ● Performance ● Kernel issues ● Free Discussion – Applications, other approaches, and so on. June 30, 2007 Copyright (C) NTT 2007 2 What©s Continuous Snapshotting? ● Technique creating number of checkpoints (recovery points) continuously. – can restore files mistakenly overwritten or destroyed even the mis-operation happened a few seconds ago. – need no explicit instruction BEFORE (unexpected) data loss – Instantaneous and automatic creation – No inconvenient limits on the number of recovery points. June 30, 2007 Copyright (C) NTT 2007 3 What©s Continuous Snapshotting? ● Typical backup techniques... – make a few recovery points a day – have a limit on number of recovery points ● e.g. The Vista Shadow Copy (VSS): 1 snapshot a day (by default), up to 64 snapshots, not instant. June 30, 2007 Copyright (C) NTT 2007 4 User©s merits ● Receive full benefit of snapshotting – For general desktop users ● No need to append versions to filename; document folders become cleaner. ● can take the plunge and delete (or overwrite save). ● Possible application to regulatory compliance (i.e. SOX act). – For system administrators and operators ● can help online backup, online data restoration. ● allow rollback to past system states and safer system upgrade. ● Tamper detection or recovery of contaminated hard drives. June 30, 2007 Copyright (C) NTT 2007 5 Continuous Snapshotting Demo (NILFS) ● A realization of Continuous Snapshotting shown through a Browser Interface ● Online Disk Space Reclaiming (NILFSv2) June 30, 2007 Copyright (C) NTT 2007 6 NILFS project ● NILFS(v1) released in Sept, 2005.
    [Show full text]
  • Kernel Versions  Technology Areas  Distributions  Resources
    Status Status of Embedded Kernel Features (July 2009) Tim Bird - CELF AG Chair Outline Kernel Versions Technology Areas Distributions Resources Interesting Stuff in Recent Kernel Versions Kernel Versions Linux v2.6.26 – 13 July 2008 Linux v2.6.27 – 9 Oct 2008 Linux v2.6.28 – 24 Dec 2008 Linux v2.6.29 – 23 Mar 2009 Linux v2.6.30 – 10 June 2009 Linux v2.6.31-rc3 – 14 July 2009 Linux v2.6.26 KGDB Finally, an in-kernel debugger gets mainlined Linux v2.6.27 Ftrace core UBIFS Bits of Linux-tiny Linux v2.6.28 Tracepoints Bits of Linux-tiny Linux v2.6.29 SquashFS BTRFS Kernel mode setting Ability to set graphics mode in kernel Asynchronous Function Calls Linux v2.6.30 TOMOYO security module Integrity measurement Threaded interrupts NILFS Linux v2.6.31-rc3 Ftrace filters kmemleak Technology Areas Technology Areas File Systems System Size Tracing Real-time Security Power Management Bootup Time File Systems SquashFS Compressed, read-only FS Mainlined in 2.6.29 Really nice to finally get into kernel BTRFS Check-pointing log-structured file system Mainlined in 2.6.29, BUT STILL EXPERIMENTAL See http://www.linux-mag.com/id/7308 NILFS NILFS = New Implementation of a Log-Structured FS Continous checkpointing, ability to snapshot Mainlined in 2.6.30 See http://www.nilfs.org/ File Systems Issues Patches of interest: VFAT patent workaround 2 attempts by Andrew Tridgell to work around Microsoft VFAT long-name patent First attempt was controversial, because functionality was lost . New approach preserves functionality http://lwn.net/Articles/339641 VFS-based union mounts See http://lkml.org/lkml/2009/5/18/289 Some log-structured file system is needed for fast mounting Possibly NILFS or BTRFS will fill this role System Size / Memory LZMA support Support for LZMA kernel image compression Still would like to see generic LZMA support in kernel (for e.g.
    [Show full text]