Volume 38, Number 1, Winter 2016
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Acid Sulfate Soils of the U.S
ACID SULFATE SOILS OF THE U.S. MID-ATLANTIC/CHESAPEAKE BAY REGION Tour July 6-8, 2006 For 18th World Congress of Soil Science Overall Tour Leader: Delvin S. Fanning Emeritus Professor, University of Maryland College Park, MD 20742-4452 [email protected] telephone: 301-405-1308 Table of Contents OVERALL INTRODUCTION, Page 3 Part 1 – Background Information SOME HISTORY OF THE RECOGNITION AND THE DEVELOPMENT OF INFORMATION ABOUT ACID SULFATE SOILS INTERNATIONALLY, AND IN THE U.S. (ESPECIALLY IN MARYLAND AND NEARBY STATES), Delvin S. Fanning, Martin C. Rabenhorst, and Leigh A. Sullivan – Page 5 DEVELOPMENTS IN THE CONCEPT OF SUBAQUEOUS PEDOGENESIS, Martin C. Rabenhorst – Page 24 FORMATION AND GENERAL GEOLOGY OF THE MID-ATLANTIC COASTAL PLAIN, Charlie Hanner, Susan Davis, and James Brewer – Page 31 AN INTRODUCTION TO THE CULTURAL HISTORY OF PENNSYLVANIA AND THE MID-ATLANTIC, John S. Wah and Jonathan A. Burns – Page 36 Part 2 – Stops Roadlog for tour – Page 43 Friday, July 7 Stop 1 -- Coastal Tidal Marsh Soils and Subaqueous Soils, Rehoboth Bay, DE – Page 47 Stop 2 -- Submerged Upland and Estuarine Tidal Marsh Soils in MD – Page 55 Stop 3 -- Upland Active Acid Sulfate Soil etc., Muddy Creek Rd. -- Page 63 Stop 4 -- Post-Active Acid Sulfate Soils at SERC – Page 68 Extra Stop – Potomac River Cliff Face at Loyola Retreat House – Page 80 Saturday, July 8 Extra Stop – Great Oaks Development, Fredericksbury, VA – Page 83 Stop 5 – Stafford County, VA, Regional Airport – Page 86 Stop 6 – Mine Road, Garrisonville, VA – Page 94 Stop 7 – Prince William Forest Park, VA – Page 100 Stop 8 – University of Maryland – Page 101 Extra Stop – Pyrite-Bearing Lignite exposure – Paint Branch Creek, College Park, MD – Page 102 Stop 9 – Active Sulfate Soil in Dredged Materials, Hawkin’s Point, Baltimore, MD – Page 103 ACKNOWLEDGEMENTS – Page 110 2 OVERALL INTRODUCTION First, some comments on various items in the guidebook. -
Comparing Chemical Properties of Subaqueous Soil Samples from Barnegat Bay, NJ: an Analysis of Carbon, Nitrogen, and Phosphorus
SUNY College of Environmental Science and Forestry Digital Commons @ ESF Honors Theses 5-2015 Comparing Chemical Properties of Subaqueous Soil Samples from Barnegat Bay, NJ: An Analysis of Carbon, Nitrogen, and Phosphorus Kristy Northrup Follow this and additional works at: https://digitalcommons.esf.edu/honors Part of the Chemistry Commons, and the Earth Sciences Commons Recommended Citation Northrup, Kristy, "Comparing Chemical Properties of Subaqueous Soil Samples from Barnegat Bay, NJ: An Analysis of Carbon, Nitrogen, and Phosphorus" (2015). Honors Theses. 93. https://digitalcommons.esf.edu/honors/93 This Thesis is brought to you for free and open access by Digital Commons @ ESF. It has been accepted for inclusion in Honors Theses by an authorized administrator of Digital Commons @ ESF. For more information, please contact [email protected], [email protected]. Comparing Chemical Properties of Subaqueous Soil Samples from Barnegat Bay, NJ: An Analysis of Carbon, Nitrogen, and Phosphorus by Kristy Northrup Candidate for Bachelor of Science Departments of Environmental Science and Chemistry With Honors May 2015 APPROVED Second Reader: ---A-..Q...1.:-!4.Do<.._..!..._..J.._...J..'.-l.'./_j_J,,l~---=:__-- Honors Director: (/4) ~ ~ William M. Shields, Ph.D. Date: --~~~/-=--K-+-j .:._[S"'__ _ Abstract Subaqueous soil science is considered one of the new subfields of Pedology. This recently developed idea defines subaqueous soils as sediments in shallow water environments that undergo soil-forming processes, are capable of supporting rooted plants, and form horizons in place. By surveying the subaqueous soils, soil scientists can provide insight for the management of submerged aquatic vegetation restoration and estuarine protection. -
Table of Contents Page
1 Table of Contents Page Agenda 5 Participants 10 National Headquarters Update and Perspective from NCSS Advisory Committee, 1998 15 National Soil Survey Center Activities Related Specifically to the Northeast 18 Training 18 Marketing and Outreach 20 Status of SSURGO Update 22 1998 NASIS Update 32 Forest Soils Research 34 Silver Spade Award 35 Maryland Report 36 University of Delaware Report 37 Delaware Report 38 Vermont Report 39 National Cartography & Geospatial Center Status Report 40 Soil Quality Institute - Technology Transfer 49 Carbon Sequestration - Climate Change Initiative 52 Committee Charges Established in 1998 56 Committee 1 - Research Needs 62 Committee 2 – Soil Taxonomy 66 Committee 3 - SSURGO/Map Finishing 74 Committee 4 - Role of Experiment Stations in NCSS 81 Committee 5 - Site Specific/High Intensity Soil Survey 87 NEC-50 Report 88 East Region Activities 91 Soil Related Activities in State of Maine Government 92 Soil Related Activities At The University Of Maine 94 Status of Soil Survey in Atlantic Canada 95 NCSS Activities in Connecticut 98 Summary of Soil Survey Related Activities of the Storrs Ag. Exp. Station 99 New Hampshire Report 100 Maine Association of Professional Soil Scientists 101 New Jersey Report 102 New York Report 103 Rhode Island Report 107 2 Soil Survey and Climate Interface 112 State of the Soils for the Centennial of Soil Survey 131 Soil Taxonomy Proposals and Changes 133 Update on Soil Survey Centennial Activities 135 Regional Technical Committees for Hydric Soils 138 Gelisols 140 Field Trip Site Locations and Abstracts 143 Massachusetts Research Report 151 Virginia NRCS Report 152 West Virginia Ag. -
Umi-Umd-5011.Pdf (13.45Mb)
ABSTRACT Title of Document: PEDOGENESIS, INVENTORY, AND UTILIZATION OF SUBAQUEOUS SOILS IN CHINCOTEAGUE BAY, MARYLAND Danielle Marie Balduff, Ph.D., 2007 Directed By: Professor Martin C. Rabenhorst, Department of Environmental Science and Technology Chincoteague Bay is the largest (19,000 ha) of Maryland’s inland coastal bays bounded by Assateague Island to the east and the Maryland mainland to the west. It is connected to the Atlantic Ocean by the Ocean City inlet to the north and the Chincoteague inlet to the south. Water depth ranges mostly from 1.0 to 2.5 meters mean sea level (MSL). The objectives of this study were to identify the subaqueous landforms, evaluate the suitability of existing subaqueous soil-landscape models, develop a soils map, and demonstrate the usefulness of subaqueous soils information. Bathymetric data collected by the Maryland Geological Survey in 2003 were used to generate a digital elevation model (DEM) of Chincoteague Bay. The DEM was used, in conjunction with false color infrared photography to identify subaqueous landforms based on water depth, slope, landscape shape, depositional environment, and geographical setting (proximity to other landforms). The eight such landforms identified were barrier cove, lagoon bottom, mainland cove, paleo-flood tidal delta, shoal, storm-surge washover fan flat, storm-surge washover fan slope, and submerged headland. Previously established soil-landscape models were evaluated and utilized to create a soils map of the area. Soil profile descriptions were collected at 163 locations throughout Chincoteague Bay. Pedons representative of major landforms were characterized for a variety of chemical, physical and mineralogical properties. Initially classification using Soil Taxonomy (Soil Survey Staff, 2006) identified the major soils as Typic Sulfaquents, Haplic Sulfaquents, Sulfic Hydraquents, and Thapto-Histic Sulfaquents. -
Field Book for Describing and Sampling Soils
Field Book for Describing and Sampling Soils {photo} Version 3.0 National Soil Survey Center Natural Resources Conservation Service U.S. Department of Agriculture August 2011 ACKNOWLEDGMENTS The science and knowledge in this document are distilled from the collective experience of thousands of dedicated Soil Scientists during the more than 100 years of the National Cooperative Soil Survey (NCSS) Program. A special thanks is due to these largely unknown stewards of the natural resources of this nation. This book was written, compiled, and edited by Philip J. Schoeneberger, Douglas A. Wysocki, and Ellis C. Benham, NRCS, Lincoln, NE. Special thanks and recognition are extended to those who contributed extensively to the preparation and production of this book: the 75 soil scientists from the NRCS and NCSS cooperators who reviewed and improved it; Tammy Umholtz for document preparation and graphics; and the NRCS Soil Survey Division for funding it. Proper citation for this document is: Schoeneberger, P.J., Wysock, D.A., and Benham, E.C. (edtors), 2011. Feld book for descrbng and samplng sols, Verson 3.0. Natural Resources Conservaton Servce, Natonal Sol Survey Center, Lncoln, NE. Cover Photo: {update} Trade names are used solely to provide specific information. Mention of a trade name does not consttute a guarantee of the product by the U.S. Department of Agrculture nor does t mply endorsement by the Department or the Natural Resources Conservaton Servce over comparable products that are not named. The U.S. Department of Agrculture (USDA) prohbts dscrmnaton n all ts programs and actvtes on the bass of race, color, natonal orgn, age, dsablty, and where applcable, sex, martal status, famlal status, parental status, relgon, sexual orentaton, genetc nformaton, poltcal belefs, reprsal, or because all or a part of an ndvdual’s ncome s derved from any publc assstance program. -
Aqueous Humipedons – Tidal and Subtidal Humus Systems and Forms
Humusica 2, article 12: Aqueous humipedons – Tidal and subtidal humus systems and forms Augusto Zanella, Chiara Ferronato, Maria de Nobili, Gilmo Vianello, Livia Vittori Antisari, Jean-François Ponge, Rein de Waal, Bas van Delft, Andrea Vacca To cite this version: Augusto Zanella, Chiara Ferronato, Maria de Nobili, Gilmo Vianello, Livia Vittori Antisari, et al.. Humusica 2, article 12: Aqueous humipedons – Tidal and subtidal humus systems and forms. Applied Soil Ecology, Elsevier, 2018, 122 (Part 2), pp.170-180. 10.1016/j.apsoil.2017.05.022. hal-01667378 HAL Id: hal-01667378 https://hal.archives-ouvertes.fr/hal-01667378 Submitted on 19 Dec 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Public Domain 1 Humusica 2, article 12: Aqueous humipedons – Tidal and subtidal humus systems and forms Augusto Zanellaa, Chiara Ferronatob,*, Maria De Nobilic, Gilmo Vianellob, Livia Vittori Antisarib, Jean- François Ponged, Rein De Waale, Bas Van Delfte, Andrea Vaccaf a University of Padua, Italy b University of Bologna, Italy c University of Udine, Italy d Muséum National d’Histoire Naturelle, Paris, France e University of Wageningen, The Netherlands f University of Cagliari, Italy ABSTRACT Soils formed in tidal and subtidal environments often do not show sufficient accumulation of undecomposed plant tissues to be classified as Histosols. -
National Cooperative Soil Survey Conference Guidebook for Field Trips
National Cooperative National Cooperative Soil Survey Conference Soil June 16‐20, 2013 Survey Annapolis, Maryland Guidebook for Field Trips University of Maryland, Dept. Environ. Sci. & Tech. USDA, Natural Resources Conservation Service Mid‐Atlantic Association of Professional Soil Scientists Page Table of Contents . 2 Conference Agenda . 3 Participant List . 10 Sunday Trip – Maryland Piedmont . 14 Acknowledgements . 15 Itinerary . 16 Background Information . 17 Stop 1 – Soldiers Delight Natural Environment Area . 23 Stop 2 – Historic Fort McHenry . 37 Stop 3 – Belmont Manor and Historical Park and Patapsco Valley State Park . 39 Wednesday Trip – Delmarva Peninsula . 49 Itinerary . 49 Acknowledgments and Hazards . 50 Background Information . 52 Stop 1 – Topohydrosequences in late Pleistocene dunes . 59 Furnace Road – Snow Hill, MD Transect A (“Site 2”) . 62 Transect B (“Site 1”) . 72 Stop 2 – Topohydrosequence along a submerging marsh landscape . 79 Blackwater National Wildlife Refuge, Moneystump Area Stop 3 – Soils formed in late Pleistocene loess deposits . 117 Talisman Farm, Graysonville, MD Page 2 2013 NCSS National Conference Agenda "Soil Survey-Planning for Soil Health in the Critical Zone” Sunday, June 16, 2013 800AM-5PM Western Maryland Piedmont field Tour (lunch & snacks included) 9:00AM-5PM NCERA3 Research Group Mtg(small board room 12-15 people) 1:30-5PM Registration-Loews Hotel Lobby 5PM-9PM Welcome no host reception- Loews Hotel Monday, June 17, 2013 Time Plenary Room (Ballroom A/B) Ballroom C Windjammer Skipjack 7:30-8:00AM Coffee in the Atrium Welcome to Maryland- STC NRCS MD 8:00AM-8:15AM Deena M. Wheby, State Conservationist, NRCS, Maryland Welcome to the NCSS Conference - Dr. 8:15AM-8:30AM William Bowerman, Chair, Environmental Science and Technology, University of Maryland Welcome, Introductions of NCSS 8:30AM-8:40AM Conference Members- Dr. -
Subaqueous Soils: Their Genesis and Importance in Ecosystem Management
SoilUse and Management Soil Use and Management doi: 10.1111/j.1475-2743.2010.00278.x REVIEW ARTICLE Subaqueous soils: their genesis and importance in ecosystem management E. Erich1 ,P.J.Drohan2 ,L.R.Ellis2 ,M.E.Collins2 ,M.Payne3 &D.Surabian4 1Department of Crop and Soil Sciences, The Pennsylvania State University, 116 ASI Bldg., University Park, PA 16802, USA, 2Soil and Water Science Department, University of Florida, 2169 McCarty Hall, Gainesville, FL 32611, USA, 3USDA-NRCS, 60 Quaker Lane, Suite 46, Warwick, RI 02886, USA, and 4USDA-NRCS, 344 Merrow Road, Suite A, Tolland, CT 06084-3917, USA Abstract Research by soil scientists examining estuarine aquatic substrates has identified pedogenic processes, resulting in the reclassification of these aquatic substrates (sediments) as subaqueous soils (SASs). Pedogenic processes in SASs are similar in concept to those occurring in subaerial soils, and thus SASs can be described and mapped based on pedogenic similarities using Jenny’s soil forming factors for interpreting soil genesis. The occurrence of SASs in estuarine and freshwater ecosystems places them at the centre of many ecosystem-dependent processes supporting food webs linked directly to the human population and its economy. Early research on SASs has been driven by addressing fishery habitat support questions for US subaquatic vegetation populations (SAV), and for estimating the carbon sequestration potential of soils with SAV. New land use interpretations for SASs include bottom type, presence of sulphidic materials, potential for submerged aquatic vegetation restoration, limitations for moorings and species lists for plants and algae common to tidal areas. Subaquatic soils are a viable, exciting frontier of soil science research that will surely foster multi-disciplinary collaborations.