An Introduction to Compressed Sensing
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Surjective Isometries on Grassmann Spaces 11
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository of the Academy's Library SURJECTIVE ISOMETRIES ON GRASSMANN SPACES FERNANDA BOTELHO, JAMES JAMISON, AND LAJOS MOLNAR´ Abstract. Let H be a complex Hilbert space, n a given positive integer and let Pn(H) be the set of all projections on H with rank n. Under the condition dim H ≥ 4n, we describe the surjective isometries of Pn(H) with respect to the gap metric (the metric induced by the operator norm). 1. Introduction The study of isometries of function spaces or operator algebras is an important research area in functional analysis with history dating back to the 1930's. The most classical results in the area are the Banach-Stone theorem describing the surjective linear isometries between Banach spaces of complex- valued continuous functions on compact Hausdorff spaces and its noncommutative extension for general C∗-algebras due to Kadison. This has the surprising and remarkable consequence that the surjective linear isometries between C∗-algebras are closely related to algebra isomorphisms. More precisely, every such surjective linear isometry is a Jordan *-isomorphism followed by multiplication by a fixed unitary element. We point out that in the aforementioned fundamental results the underlying structures are algebras and the isometries are assumed to be linear. However, descriptions of isometries of non-linear structures also play important roles in several areas. We only mention one example which is closely related with the subject matter of this paper. This is the famous Wigner's theorem that describes the structure of quantum mechanical symmetry transformations and plays a fundamental role in the probabilistic aspects of quantum theory. -
1 Lecture 09
Notes for Functional Analysis Wang Zuoqin (typed by Xiyu Zhai) September 29, 2015 1 Lecture 09 1.1 Equicontinuity First let's recall the conception of \equicontinuity" for family of functions that we learned in classical analysis: A family of continuous functions defined on a region Ω, Λ = ffαg ⊂ C(Ω); is called an equicontinuous family if 8 > 0; 9δ > 0 such that for any x1; x2 2 Ω with jx1 − x2j < δ; and for any fα 2 Λ, we have jfα(x1) − fα(x2)j < . This conception of equicontinuity can be easily generalized to maps between topological vector spaces. For simplicity we only consider linear maps between topological vector space , in which case the continuity (and in fact the uniform continuity) at an arbitrary point is reduced to the continuity at 0. Definition 1.1. Let X; Y be topological vector spaces, and Λ be a family of continuous linear operators. We say Λ is an equicontinuous family if for any neighborhood V of 0 in Y , there is a neighborhood U of 0 in X, such that L(U) ⊂ V for all L 2 Λ. Remark 1.2. Equivalently, this means if x1; x2 2 X and x1 − x2 2 U, then L(x1) − L(x2) 2 V for all L 2 Λ. Remark 1.3. If Λ = fLg contains only one continuous linear operator, then it is always equicontinuous. 1 If Λ is an equicontinuous family, then each L 2 Λ is continuous and thus bounded. In fact, this boundedness is uniform: Proposition 1.4. Let X,Y be topological vector spaces, and Λ be an equicontinuous family of linear operators from X to Y . -
Symmetric Coverage of Dynamic Mapping Error for Mobile Sensor Networks
2011 American Control Conference on O'Farrell Street, San Francisco, CA, USA June 29 - July 01, 2011 Symmetric coverage of dynamic mapping error for mobile sensor networks Carlos H. Caicedo-Nu´nez˜ and Naomi Ehrich Leonard Abstract—We present an approach to control design for nonuniform density fields. Related problems include control a mobile sensor network tasked with sampling a scalar field of a mobile sensor network in a noisy, possibly time-varying and providing optimal space-time measurements. The coverage field for minimum-error spatial estimation [9], [10] and metric is derived from the mapping error in objective analysis (OA), an assimilation scheme that provides a linear statistical cooperative exploration of features [11]. In [12] agents are estimation of a sampled field. OA mapping error is an example deployed in a distributed way in order to maximize the of a consumable density field: the error decreases dynamically probability of event detection. The authors of [13] study the at locations where agents move and sample. OA mapping error distributed implementation of maximizing joint entropy in is also a regenerating density field if the sampled field is measurements. However, none of these methods have been time-varying: error increases over time as measurement value decays. The resulting optimal coverage problem presents a chal- designed to specifically address a spatial-temporal density lenge to traditional coverage methods. We prove a symmetric field that changes in response to the motion of the agents. dynamic coverage solution that exploits the symmetry of the In this paper we propose a coverage strategy for a density domain and yields symmetry-preserving coordinated motion field defined by OA mapping error in the case that the of mobile sensors. -
The Banach-Alaoglu Theorem for Topological Vector Spaces
The Banach-Alaoglu theorem for topological vector spaces Christiaan van den Brink a thesis submitted to the Department of Mathematics at Utrecht University in partial fulfillment of the requirements for the degree of Bachelor in Mathematics Supervisor: Fabian Ziltener date of submission 06-06-2019 Abstract In this thesis we generalize the Banach-Alaoglu theorem to topological vector spaces. the theorem then states that the polar, which lies in the dual space, of a neighbourhood around zero is weak* compact. We give motivation for the non-triviality of this theorem in this more general case. Later on, we show that the polar is sequentially compact if the space is separable. If our space is normed, then we show that the polar of the unit ball is the closed unit ball in the dual space. Finally, we introduce the notion of nets and we use these to prove the main theorem. i ii Acknowledgments A huge thanks goes out to my supervisor Fabian Ziltener for guiding me through the process of writing a bachelor thesis. I would also like to thank my girlfriend, family and my pet who have supported me all the way. iii iv Contents 1 Introduction 1 1.1 Motivation and main result . .1 1.2 Remarks and related works . .2 1.3 Organization of this thesis . .2 2 Introduction to Topological vector spaces 4 2.1 Topological vector spaces . .4 2.1.1 Definition of topological vector space . .4 2.1.2 The topology of a TVS . .6 2.2 Dual spaces . .9 2.2.1 Continuous functionals . -
Journal of Computational and Applied Mathematics Numerical Integration
Journal of Computational and Applied Mathematics 233 (2009) 279–292 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam Numerical integration over polygons using an eight-node quadrilateral spline finite elementI Chong-Jun Li a,∗, Paola Lamberti b, Catterina Dagnino b a School of Mathematical Sciences, Dalian University of Technology, Dalian 116024, China b Department of Mathematics, University of Torino, via C. Alberto, 10 Torino 10123, Italy article info a b s t r a c t Article history: In this paper, a cubature formula over polygons is proposed and analysed. It is based Received 9 February 2009 on an eight-node quadrilateral spline finite element [C.-J. Li, R.-H. Wang, A new 8-node Received in revised form 8 July 2009 quadrilateral spline finite element, J. Comp. Appl. Math. 195 (2006) 54–65] and is exact for quadratic polynomials on arbitrary convex quadrangulations and for cubic polynomials on MSC: rectangular partitions. The convergence of sequences of the above cubatures is proved for 65D05 continuous integrand functions and error bounds are derived. Some numerical examples 65D07 are given, by comparisons with other known cubatures. 65D30 65D32 ' 2009 Elsevier B.V. All rights reserved. Keywords: Numerical integration Spline finite element method Bivariate splines Triangulated quadrangulation 1. Introduction The problem considered in this paper is the numerical evaluation of Z IΩ .f / D f .x; y/dxdy; (1) Ω 2 where f 2 C.Ω/ and Ω is a polygonal domain in R , i.e. a domain with the boundary composed of piecewise straight lines. -
MATHEMATICAL TRIPOS Part IB 2017
MATHEMATICALTRIPOS PartIB 2017 List of Courses Analysis II Complex Analysis Complex Analysis or Complex Methods Complex Methods Electromagnetism Fluid Dynamics Geometry Groups, Rings and Modules Linear Algebra Markov Chains Methods Metric and Topological Spaces Numerical Analysis Optimisation Quantum Mechanics Statistics Variational Principles Part IB, 2017 List of Questions [TURN OVER 2 Paper 3, Section I 2G Analysis II What does it mean to say that a metric space is complete? Which of the following metric spaces are complete? Briefly justify your answers. (i) [0, 1] with the Euclidean metric. (ii) Q with the Euclidean metric. (iii) The subset (0, 0) (x, sin(1/x)) x> 0 R2 { } ∪ { | }⊂ with the metric induced from the Euclidean metric on R2. Write down a metric on R with respect to which R is not complete, justifying your answer. [You may assume throughout that R is complete with respect to the Euclidean metric.] Paper 2, Section I 3G Analysis II Let X R. What does it mean to say that a sequence of real-valued functions on ⊂ X is uniformly convergent? Let f,f (n > 1): R R be functions. n → (a) Show that if each fn is continuous, and (fn) converges uniformly on R to f, then f is also continuous. (b) Suppose that, for every M > 0, (f ) converges uniformly on [ M, M]. Need n − (fn) converge uniformly on R? Justify your answer. Paper 4, Section I 3G Analysis II State the chain rule for the composition of two differentiable functions f : Rm Rn → and g : Rn Rp. → Let f : R2 R be differentiable. -
Bounded Operator - Wikipedia, the Free Encyclopedia
Bounded operator - Wikipedia, the free encyclopedia http://en.wikipedia.org/wiki/Bounded_operator Bounded operator From Wikipedia, the free encyclopedia In functional analysis, a branch of mathematics, a bounded linear operator is a linear transformation L between normed vector spaces X and Y for which the ratio of the norm of L(v) to that of v is bounded by the same number, over all non-zero vectors v in X. In other words, there exists some M > 0 such that for all v in X The smallest such M is called the operator norm of L. A bounded linear operator is generally not a bounded function; the latter would require that the norm of L(v) be bounded for all v, which is not possible unless Y is the zero vector space. Rather, a bounded linear operator is a locally bounded function. A linear operator on a metrizable vector space is bounded if and only if it is continuous. Contents 1 Examples 2 Equivalence of boundedness and continuity 3 Linearity and boundedness 4 Further properties 5 Properties of the space of bounded linear operators 6 Topological vector spaces 7 See also 8 References Examples Any linear operator between two finite-dimensional normed spaces is bounded, and such an operator may be viewed as multiplication by some fixed matrix. Many integral transforms are bounded linear operators. For instance, if is a continuous function, then the operator defined on the space of continuous functions on endowed with the uniform norm and with values in the space with given by the formula is bounded. -
Chapter 6 Linear Transformations and Operators
Chapter 6 Linear Transformations and Operators 6.1 The Algebra of Linear Transformations Theorem 6.1.1. Let V and W be vector spaces over the field F . Let T and U be two linear transformations from V into W . The function (T + U) defined pointwise by (T + U)(v) = T v + Uv is a linear transformation from V into W . Furthermore, if s F , the function (sT ) ∈ defined by (sT )(v) = s (T v) is also a linear transformation from V into W . The set of all linear transformation from V into W , together with the addition and scalar multiplication defined above, is a vector space over the field F . Proof. Suppose that T and U are linear transformation from V into W . For (T +U) defined above, we have (T + U)(sv + w) = T (sv + w) + U (sv + w) = s (T v) + T w + s (Uv) + Uw = s (T v + Uv) + (T w + Uw) = s(T + U)v + (T + U)w, 127 128 CHAPTER 6. LINEAR TRANSFORMATIONS AND OPERATORS which shows that (T + U) is a linear transformation. Similarly, we have (rT )(sv + w) = r (T (sv + w)) = r (s (T v) + (T w)) = rs (T v) + r (T w) = s (r (T v)) + rT (w) = s ((rT ) v) + (rT ) w which shows that (rT ) is a linear transformation. To verify that the set of linear transformations from V into W together with the operations defined above is a vector space, one must directly check the conditions of Definition 3.3.1. These are straightforward to verify, and we leave this exercise to the reader. -
Linear Algebra Review
1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic facts about real and complex numbers. In particular, both R and C are fields; they satisfy the field axioms. For p z = x + iy 2 C, the modulus, i.e. jzj = x2 + y2 ≥ 0, represents the distance from z to the origin in the complex plane. (As such, it coincides with the absolute value for real z.) For z = x + iy 2 C, complex conjugation, i.e. z = x − iy, represents reflection about the x-axis in the complex plane. It will also be important that both R and C are complete, as metric spaces, when equipped with the metric d(z; w) = jz − wj. 1.1. Vector Spaces. One of the most important notions in this course is that of a vector space. Although vector spaces can be defined over any field, we will (by and large) restrict our attention to fields F 2 fR; Cg. The following definition is fundamental. Definition 1.1. Let F be a field. A vector space V over F is a non-empty set V (the elements of V are called vectors) over a field F (the elements of F are called scalars) equipped with two operations: i) To each pair u; v 2 V , there exists a unique element u + v 2 V . This operation is called vector addition. ii) To each u 2 V and α 2 F, there exists a unique element αu 2 V . -
Complex Analysis
University of Cambridge Mathematics Tripos Part IB Complex Analysis Lent, 2018 Lectures by G. P. Paternain Notes by Qiangru Kuang Contents Contents 1 Basic notions 2 1.1 Complex differentiation ....................... 2 1.2 Power series .............................. 4 1.3 Conformal maps ........................... 8 2 Complex Integration I 10 2.1 Integration along curves ....................... 10 2.2 Cauchy’s Theorem, weak version .................. 15 2.3 Cauchy Integral Formula, weak version ............... 17 2.4 Application of Cauchy Integration Formula ............ 18 2.5 Uniform limits of holomorphic functions .............. 20 2.6 Zeros of holomorphic functions ................... 22 2.7 Analytic continuation ........................ 22 3 Complex Integration II 24 3.1 Winding number ........................... 24 3.2 General form of Cauchy’s theorem ................. 26 4 Laurent expansion, Singularities and the Residue theorem 29 4.1 Laurent expansion .......................... 29 4.2 Isolated singularities ......................... 30 4.3 Application and techniques of integration ............. 34 5 The Argument principle, Local degree, Open mapping theorem & Rouché’s theorem 38 Index 41 1 1 Basic notions 1 Basic notions Some preliminary notations/definitions: Notation. • 퐷(푎, 푟) is the open disc of radius 푟 > 0 and centred at 푎 ∈ C. • 푈 ⊆ C is open if for any 푎 ∈ 푈, there exists 휀 > 0 such that 퐷(푎, 휀) ⊆ 푈. • A curve is a continuous map from a closed interval 휑 ∶ [푎, 푏] → C. It is continuously differentiable, i.e. 퐶1, if 휑′ exists and is continuous on [푎, 푏]. • An open set 푈 ⊆ C is path-connected if for every 푧, 푤 ∈ 푈 there exists a curve 휑 ∶ [0, 1] → 푈 with endpoints 푧, 푤. -
U(T)\\ for All S, Te CD(H) (See [8, P. 197])
proceedings of the american mathematical society Volume 110, Number 3, November 1990 ON SOME EQUIVALENT METRICS FOR BOUNDED OPERATORS ON HILBERT SPACE FUAD KITTANEH (Communicated by Palle E. T. Jorgensen) Abstract. Several operator norm inequalities concerning the equivalence of some metrics for bounded linear operators on Hilbert space are given. In addi- tion, some related inequalities for the Hilbert-Schmidt norm are presented. 1. Introduction Let H be a complex Hilbert space and let CD(H) denote the family of closed, densely defined linear operators on H, and B(H) the bounded members of CD(H). For each T G CD(H), let 11(F) denote the orthogonal projection of H @ H onto the graph of F, and let a(T) denote the pure contraction defined by a(T) = T(l + T*T)~ ' . The gap metric on CD(H) is defined by d(S, T) = \\U(S) - U(T)\\ for all S, Te CD(H) (see [8, p. 197]). In [11], W. E. Kaufman introduced a metric ô on CD(H) defined by ô(S, T) = \\a(S)-a(T)\\ for all S, TeCD(H) and he showed that this metric is stronger than the gap metric d and not equivalent to it. He also stated that on B(H) the gap metric d is equivalent to the metric generated by the usual operator norm and he proved that the metric ô has this property. The purpose of this paper is to present quantitative estimates to this effect. In §2, we present several operator norm inequalities to compare the metric ô, the gap metric d, and the usual operator norm metric. -
On the Approximability of Injective Tensor Norm Vijay Bhattiprolu
On the Approximability of Injective Tensor Norm Vijay Bhattiprolu CMU-CS-19-115 June 28, 2019 School of Computer Science Carnegie Mellon University Pittsburgh, PA 15213 Thesis Committee: Venkatesan Guruswami, Chair Anupam Gupta David Woodruff Madhur Tulsiani, TTIC Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. Copyright c 2019 Vijay Bhattiprolu This research was sponsored by the National Science Foundation under award CCF-1526092, and by the National Science Foundation under award 1422045. The views and conclusions contained in this document are those of the author and should not be interpreted as representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity. Keywords: Injective Tensor Norm, Operator Norm, Hypercontractive Norms, Sum of Squares Hierarchy, Convex Programming, Continuous Optimization, Optimization over the Sphere, Approximation Algorithms, Hardness of Approximation Abstract The theory of approximation algorithms has had great success with combinatorial opti- mization, where it is known that for a variety of problems, algorithms based on semidef- inite programming are optimal under the unique games conjecture. In contrast, the ap- proximability of most continuous optimization problems remains unresolved. In this thesis we aim to extend the theory of approximation algorithms to a wide class of continuous optimization problems captured by the injective tensor norm framework. Given an order-d tensor T, and symmetric convex sets C1,... Cd, the injective tensor norm of T is defined as sup hT , x1 ⊗ · · · ⊗ xdi, i x 2Ci Injective tensor norm has manifestations across several branches of computer science, optimization and analysis.