Plant Embryogenesis: Plants Occur in the Postembryonic Sporo- Phyte After Seed Germination (Fig

Total Page:16

File Type:pdf, Size:1020Kb

Plant Embryogenesis: Plants Occur in the Postembryonic Sporo- Phyte After Seed Germination (Fig ......- !l~ -g 'an 1 *It -!aiA Most morphogenetic events in flowering Plant Embryogenesis: plants occur in the postembryonic sporo- phyte after seed germination (Fig. 1) (2). Zygote to Seed Vegetative organ systems differentiate con- tinuously from root and shoot meristematic regions that are formed initially during em- Robert B. Goldberg,* Genaro de Paiva, Ramin Yadegari bryogenesis. The reproductive organs of the flower are differentiated from a repro- Most differentiation events in higher plants occur continuously in the postembryonic adult grammed shoot meristem after the seedling phase of the life cycle. Embryogenesis in plants, therefore, is concerned primarily with has become a mature plant (Fig. 1) (25). establishing the basic shoot-root body pattern of the plant and accumulating food re- Thus, a germline analogous to that found in serves that will be used by the germinating seedling after a period of embryonic dormancy animals (1) is not set aside during plant within the seed. Recent genetics studies in Arabidopsis have identified genes that provide embryogenesis. new insight into how embryos form during plant development. These studies, and others A mature flowering plant embryo con- using molecular approaches, are beginning to reveal the underlying processes that control tains two primary organ systems-the axis plant embryogenesis. and cotyledon (Fig. 1) (2). These organs have distinct developmental fates and are both composed of three basic, or primordial, tissue layers-protoderm, procambium, and A major problem in plant development is lecular approaches suggest that a plant em- ground meristem-which will become the to unravel the mechanisms operating dur- bryo has a modular structure and consists of epidermal, vascular, and parenchyma tissues ing embryogenesis that enable a plant to several regions that form autonomously dur- of the young seedling, respectively (2). The specify its body plan and tissue differentia- ing embryogenesis. axis, or hypocotyl-radicle region of the em- tion patterns. Although progress with a va- bryo, contains the shoot and root meristems riety of animal systems has been spectacular Embryos Begin the Diploid Phase and will give rise to the mature plant after in this regard (1), a detailed understanding of the Higher Plant Life Cycle seed germination (Fig. 1). By contrast, the of the events that govern plant embryo cotyledon is a terminally differentiated or- formation has yet to be realized. One obsta- The flowering plant life cycle is divided gan that accumulates food reserves that are cle in achieving this goal is the location of into haploid and diploid generations that utilized by the seedling for growth and de- on March 26, 2012 embryos within the plant and their relative are dependent on each other (Fig. 1) (2, velopment before it becomes photosynthet- inaccessibility to experimental manipula- 16-18). The haploid, or gametophytic, ically active (Fig. 1). The cotyledon func- tion, particularly at the early stages of em- generation begins after meiosis with spores tions primarily during seed germination and bryogenesis. In flowering plants, reproduc- that undergo mitosis and differentiate into senesces shortly after the seedling emerges tive processes occur within floral organs either a pollen grain (male gametophyte) or from the soil. Embryogenesis in higher (Fig. 1) (2). The egg cell is present in the an embryo sac (female gametophyte) (3, plants, therefore, serves (i) to specify meri- ovule, a multicellular structure that is buried 19-20). The pollen grain contains two stems and the shoot-root plant body pat- beneath several cell layers of the pistil, the sperm cells, whereas the embryo sac con- tern, (ii) to differentiate the primary plant www.sciencemag.org female reproductive organ (2-4). Because tains a single egg (Fig. 1). Other accessory tissue types, (iii) to generate a specialized egg cell formation, fertilization, and embry- cells within the haploid male and female storage organ essential for seed germination ogenesis occur within the pistil, it has been gametophytes help facilitate the pollination and seedling development, and (iv) to en- difficult to dissect the major events that take and fertilization processes (3, 19, 20). The able the sporophyte to lie dormant until place during the early stages of higher plant male and female gametophytes are derived conditions are favorable for postembryonic development. from specialized spore-forming cells within development. Recently, it has become feasible to iso- the reproductive organs of the flower (3, 4, late plant eggs and fertilize them in vitro in 21). By contrast, the diploid, or sporo- The Shoot-Root Body Plan Is Downloaded from order to investigate the initial events of phytic, generation begins after fertilization Generated During Early plant embryogenesis (5). In addition, genet- with the zygote and forms the mature plant Embryogenesis ic approaches have been used to identify with vegetative organs (leaf, stem, root) genes required for various embryogenic pro- and flowers that contain the reproductive How the embryo acquires its three-dimen- cesses, including pattern formation (6, 7). organs (anther and pistil) (Fig. 1). sional shape with specialized organs and Genetic manipulation of Arabidopsis thali- Two fertilization events occur in flower- tissues, and what gene networks orchestrate ana, by both chemical mutagenesis (8-12) ing plants (2, 22). One sperm unites with embryonic development remain major un- and insertional mutagenesis (13-15), has the egg cell to produce a zygote and initiate resolved problems. From a descriptive point identified a large number of mutants that embryogenesis. The other unites with a spe- of view, plant embryogenesis can be divided are blocked at different stages of embryo- cialized cell within the embryo sac (central into three general phases in which distinct genesis. In this review we outline the major cell) to initiate the differentiation of the developmental and physiological events oc- insights that have been derived from studies endosperm, a triploid tissue that is neither cur: (i) postfertilization-proembryo, (ii) ofArabidopsis embryo mutants, and we sum- gametophytic nor sporophytic in origin (Fig. globular-heart transition, and (iii) organ ex- marize gene transcription experiments in 1) (23). The endosperm is present during pansion and maturation (26-28) (Fig. 2 other plants that provide new information seed development and provides nutrients for and Table 1). Although there is consider- about the processes regulating higher plant either the developing embryo, the germinat- able variation in how embryos in different embryogenesis. Both the genetic and mo- ing seedling, or both (23). Fertilization also plant taxa form (29), the overall trends are causes the ovule, containing the embryo and remarkably similar (29). We summarize the Authors are in the Department of Biology, University of endosperm, to develop into a seed and the Capsella and Arabidopsis pattern of embryo California, Los Angeles, CA 90024-1606, USA. ovary to differentiate into a fruit, which development (29-33) because (i) it is one *To whom correspondence should be addressed. facilitates seed dispersal (Fig. 1) (24). of the most well-studied forms of plant em- SCIENCE * VOL. 266 * 28 OCTOBER 1994 605 liiiiiiiiniiinii!iii -- ....- Fig. 1. The life cycle of a Pollen flowering plant with em- Egg cell formation, grains ?"' phasis on egg cell forma- pollination, and fertilization Stigma Sperm cells tion and seed develop- FTube ment. [Adapted from (16, Pistil Megaspore Surviving Embryo Female Style nucleus 26).] mother cell megaspore sac gametophyte (n) (2n) (n) Male us I \ Anti.iFipdal gametophyte Nucellu ' - b Central Aceells Meiosis Mitosis cell s l -_ ___ Ovary-fruitvary-ft(n) Ovule 'Synergid Flower cells Funiculus /Integuments Micropyle yW Germinating Dormant Developing Fertilized endosperm seed seed seed nucleus (3n) Endosperm 0* Fertilized meristem Root Axis lvEmbryo eeloping egg (2n) Cotyledons j embryo Seed development and germination bryogenesis, dating back to the classical the suspensor (Fig. 2). In Arabidopsis, the to be passed from the maternal sporophyte studies of Hanstein, Schaffner, and Soueges suspensor contains only 7 to 10 cells (Fig. into the developing proembryo (Fig. 2) with Capsella (30-32), (ii) it has an invari- 2). The suspensor anchors the embryo prop- (35). The suspensor senesces after the heart on March 26, 2012 ant division pattern during the early stages, er to the surrounding embryo sac and ovule stage and is not a functional part of the which allows cell lineages to be traced his- tissue and serves as a conduit for nutrients embryo in the mature seed. Derivatives of tologically (33), and (iii) recent studies mutants have provided with Arabidopsis Postfertilization Globular-heart transition new insights into the processes that control I a 5 A embryo development (6, 9). l II1 A Proembryo C Asymmetric cleavage of the zygote results in -cPd ti the formation of an embryo with a suspensor A and embryo proper that have distinct develop- www.sciencemag.org mental fates. The zygote in Arabidopsis and 0 Capsella has an asymmetric distribution of cellular components-the nucleus and most Zygote 2-cell of the cytoplasm are present in the upper 2/4-cell Heart EP 8-cell portion of the cell, whereas a large vacuole EP 16-cell embryo dominates the middle to lower portion (Fig. EP Globular embryo 2). This spatial asymmetry is derived from Downloaded from the egg cell (30). The zygote divides asym- metrically into two distinct-sized daughter Organ expansion and maturation cells a small, upper terminal cell and a Torpedo embryo Walking-stick embryo Mature embryo large, lower basal cell-which establish a CE polarized longitudinal axis within the em- SM bryo (Fig. 2) (2, 30-33). Histological stud- ies over the course of the past 125 years BeEn - SC have indicated that the terminal and basal -Pd A- cells give rise to different regions of the - SM mature embryo (29-33). The small termi- EGm nal cell gives rise to the embryo proper that -Pc will form most of the mature embryo (Fig.
Recommended publications
  • Plant Physiology
    PLANT PHYSIOLOGY Vince Ördög Created by XMLmind XSL-FO Converter. PLANT PHYSIOLOGY Vince Ördög Publication date 2011 Created by XMLmind XSL-FO Converter. Table of Contents Cover .................................................................................................................................................. v 1. Preface ............................................................................................................................................ 1 2. Water and nutrients in plant ............................................................................................................ 2 1. Water balance of plant .......................................................................................................... 2 1.1. Water potential ......................................................................................................... 3 1.2. Absorption by roots .................................................................................................. 6 1.3. Transport through the xylem .................................................................................... 8 1.4. Transpiration ............................................................................................................. 9 1.5. Plant water status .................................................................................................... 11 1.6. Influence of extreme water supply .......................................................................... 12 2. Nutrient supply of plant .....................................................................................................
    [Show full text]
  • Axis Formation in Plant Embryogenesis
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell, Vol. 81, 467-470, May 19, 1995, Copyright 0 1995 by Cell Press Axis Formation Minireview in Plant Embryogenesis: Cues and Clues Gerd Jiirgens focus on pattern formation in the embryo that establishes Lehrstuhl fur Entwicklungsgenetik the basic body organization of flowering plants. Universitat Ttibingen The Shoot Me&tern: Linking Up the Embryo D-72076 Tiibingen with the Flower Federal Republic of Germany Pattern formation in animals is largely confined to em- bryogenesis such that the future adult form is represented in the body organization of the mature embryo. By con- Imagine a textbook entitled Developmental Biology that trast, plant embryogenesis produces a juvenile form, the focuses entirely on plants, mentioning animals only for seedling, that lacks most structures of the adult plant. Em- their peculiar way of making germ cells by setting aside bryogenesis in essence organizes two groups of stem cells a group of precursor cells early in the embryo. The con- at the opposite ends of the body axis, the primary meri- verse has been, and still is, common practice. It is true stems of the shoot and the root. These meristems then that the regenerative potential of plants, which is indeed add new structures to the seedling, thus generating the impressive, sets them apart from the more familiar animal species-specific adult form during postembryonic devel- models: individual cells can give rise to embryos in culture; opment (Steeves and Sussex, 1989). Regardless of the localized groups of stem cells called meristems make the appearance of the adult plant, the shoot meristem is orga- adult plant in a seemingly autonomous fashion not only nized essentially the same way in different plant species.
    [Show full text]
  • Ferns of the National Forests in Alaska
    Ferns of the National Forests in Alaska United States Forest Service R10-RG-182 Department of Alaska Region June 2010 Agriculture Ferns abound in Alaska’s two national forests, the Chugach and the Tongass, which are situated on the southcentral and southeastern coast respectively. These forests contain myriad habitats where ferns thrive. Most showy are the ferns occupying the forest floor of temperate rainforest habitats. However, ferns grow in nearly all non-forested habitats such as beach meadows, wet meadows, alpine meadows, high alpine, and talus slopes. The cool, wet climate highly influenced by the Pacific Ocean creates ideal growing conditions for ferns. In the past, ferns had been loosely grouped with other spore-bearing vascular plants, often called “fern allies.” Recent genetic studies reveal surprises about the relationships among ferns and fern allies. First, ferns appear to be closely related to horsetails; in fact these plants are now grouped as ferns. Second, plants commonly called fern allies (club-mosses, spike-mosses and quillworts) are not at all related to the ferns. General relationships among members of the plant kingdom are shown in the diagram below. Ferns & Horsetails Flowering Plants Conifers Club-mosses, Spike-mosses & Quillworts Mosses & Liverworts Thirty of the fifty-four ferns and horsetails known to grow in Alaska’s national forests are described and pictured in this brochure. They are arranged in the same order as listed in the fern checklist presented on pages 26 and 27. 2 Midrib Blade Pinnule(s) Frond (leaf) Pinna Petiole (leaf stalk) Parts of a fern frond, northern wood fern (p.
    [Show full text]
  • Live-Cell Imaging and Optical Manipulation of Arabidopsis Early Embryogenesis
    Technology Live-Cell Imaging and Optical Manipulation of Arabidopsis Early Embryogenesis Graphical Abstract Authors Keita Gooh, Minako Ueda, Kana Aruga, ..., Hideyuki Arata, Tetsuya Higashiyama, Daisuke Kurihara Correspondence [email protected] In Brief Gooh et al. establish a live-embryo imaging system for Arabidopsis and generate a complete lineage tree from double fertilization in early embryogenesis. They provide a platform for real-time analysis of cell division dynamics and cell fate specification using optical manipulation and micro- engineering techniques such as laser irradiation of specific cells. Highlights d A live-embryo imaging system for Arabidopsis is established d A complete lineage tree from double fertilization to 64-cell embryo uses this system d Endosperm development is not required for cell patterning during early embryogenesis d Damage to an embryo initial cell induces rapid cell fate conversion in the suspensor Gooh et al., 2015, Developmental Cell 34, 242–251 July 27, 2015 ª2015 Elsevier Inc. http://dx.doi.org/10.1016/j.devcel.2015.06.008 Developmental Cell Technology Live-Cell Imaging and Optical Manipulation of Arabidopsis Early Embryogenesis Keita Gooh,1 Minako Ueda,1,2 Kana Aruga,1 Jongho Park,1,3,4 Hideyuki Arata,1,3 Tetsuya Higashiyama,1,2,3 and Daisuke Kurihara1,3,* 1Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 2Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 3Higashiyama Live-Holonics Project, ERATO, JST, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan 4Present address: Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8503, Japan *Correspondence: [email protected] http://dx.doi.org/10.1016/j.devcel.2015.06.008 SUMMARY to the embryo (Kawashima and Goldberg, 2010; Lau et al., 2012; Wendrich and Weijers, 2013).
    [Show full text]
  • Signaling in Plant Embryogenesis John J Harada
    23 Signaling in plant embryogenesis John J Harada Embryogenesis is a critical stage of the sporophytic life cycle heart-stage of embryogenesis, localized cell divisions gen- during which the basic body plan of the plant is established. erate the cotyledons, embryonic storage organs. Fifth, by Although positional information is implicated to play a major the torpedo-stage, both the shoot and root apical meristems role in determining embryo cell fate, little is known about the are visible as organized structures (Figure 1g). nature of positional signals. Recent studies show that the monopterous and hobbit mutations reveal signaling during Although progress has been made in establishing a frame- patterning of the embryonic axis. The LEAFY COTYLEDON1 work for understanding the mechanisms involved in and PICKLE genes have been implicated to play important embryo development, many questions remain. Little is roles in controlling embryo development. known about the molecular processes that induce embryo formation. The morphogenetic events that underlie forma- Addresses tion of the embryo also remain to be defined. Because cell Section of Plant Biology, Division of Biological Sciences, University of fate is largely determined by positional information in California, One Shields Avenue, Davis, CA 95616, USA; plants, signaling and intercellular communication play crit- e-mail: [email protected] ical roles in development [8,9]. In this article, I review Current Opinion in Plant Biology 1999, 2:23–27 primarily information published during the past year that provide examples of signaling during plant embryogenesis. http://biomednet.com/elecref/1369526600200023 Due to space limitations, this review will not be compre- © Elsevier Science Ltd ISSN 1369-5266 hensive but will focus on specific examples.
    [Show full text]
  • Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris Richardii
    G C A T T A C G G C A T genes Article Development and Cell Cycle Activity of the Root Apical Meristem in the Fern Ceratopteris richardii Alejandro Aragón-Raygoza 1,2 , Alejandra Vasco 3, Ikram Blilou 4, Luis Herrera-Estrella 2,5 and Alfredo Cruz-Ramírez 1,* 1 Molecular and Developmental Complexity Group at Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 2 Metabolic Engineering Group, Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Cinvestav Sede Irapuato, Km. 9.6 Libramiento Norte Carretera, Irapuato-León, Irapuato 36821, Guanajuato, Mexico; [email protected] 3 Botanical Research Institute of Texas (BRIT), Fort Worth, TX 76107-3400, USA; [email protected] 4 Laboratory of Plant Cell and Developmental Biology, Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; [email protected] 5 Institute of Genomics for Crop Abiotic Stress Tolerance, Department of Plant and Soil Science, Texas Tech University, Lubbock, TX 79409, USA * Correspondence: [email protected] Received: 27 October 2020; Accepted: 26 November 2020; Published: 4 December 2020 Abstract: Ferns are a representative clade in plant evolution although underestimated in the genomic era. Ceratopteris richardii is an emergent model for developmental processes in ferns, yet a complete scheme of the different growth stages is necessary. Here, we present a developmental analysis, at the tissue and cellular levels, of the first shoot-borne root of Ceratopteris.
    [Show full text]
  • Morphological Description of Plants: New Perspectives in Development and Evolution
    ® International Journal of Plant Developmental Biology ©2010 Global Science Books Morphological Description of Plants: New Perspectives in Development and Evolution 1* 2 Emilio Cervantes • Juana G . de Diego 1 IRNASA-CSIC. Apartado 257. 37080. Salamanca. Spain 2 Dept Bioquímica y Biología Molecular. Campus Miguel de Unamuno. Universidad de Salamanca. Spain Corresponding author : * [email protected] ABSTRACT The morphological description of plants has been fundamental in the history of botany and provided the keys for taxonomy. Nevertheless, in biology, a discipline governed by the interest in function and based on reductionist approaches, the analysis of forms has been relegated to second place. Plants contain organs and structures that resemble geometrical forms. Plant ontogeny may be seen as a sequence of growth processes including periods of continuous growth with modification that stop at crucial points often represented by structures of remarkable similarity to geometrical figures. Instead of the tradition in developmental studies giving more importance to animal models, we propose that the modular type of plant development may serve to remark conceptual aspects in that may be useful in studies with animals and contribute to original views of evolution. _____________________________________________________________________________________________________________ Keywords: concepts, description, geometry, structure INTRODUCTION: PLANTS OFFER NEW reflects a more general situation in Biology, a discipline APPROACHES TO DEVELOPMENT that has matured from the experimental protocols and views of biochemistry, where the predominant role of experimen- The study of development is today a major biological disci- tation has contributed to a decline in basic aspects that need pline. Although it was traditionally more focused in animal to be more descriptive, such as those related with mor- systems, increased emphasis in plant development may phology.
    [Show full text]
  • The Origin of Alternation of Generations in Land Plants
    Theoriginof alternation of generations inlandplants: afocuson matrotrophy andhexose transport Linda K.E.Graham and LeeW .Wilcox Department of Botany,University of Wisconsin, 430Lincoln Drive, Madison,WI 53706, USA (lkgraham@facsta¡.wisc .edu ) Alifehistory involving alternation of two developmentally associated, multicellular generations (sporophyteand gametophyte) is anautapomorphy of embryophytes (bryophytes + vascularplants) . Microfossil dataindicate that Mid ^Late Ordovicianland plants possessed such alifecycle, and that the originof alternationof generationspreceded this date.Molecular phylogenetic data unambiguously relate charophyceangreen algae to the ancestryof monophyletic embryophytes, and identify bryophytes as early-divergentland plants. Comparison of reproduction in charophyceans and bryophytes suggests that the followingstages occurredduring evolutionary origin of embryophytic alternation of generations: (i) originof oogamy;(ii) retention ofeggsand zygotes on the parentalthallus; (iii) originof matrotrophy (regulatedtransfer ofnutritional and morphogenetic solutes fromparental cells tothe nextgeneration); (iv)origin of a multicellularsporophyte generation ;and(v) origin of non-£ agellate, walled spores. Oogamy,egg/zygoteretention andmatrotrophy characterize at least some moderncharophyceans, and arepostulated to represent pre-adaptativefeatures inherited byembryophytes from ancestral charophyceans.Matrotrophy is hypothesizedto have preceded originof the multicellularsporophytes of plants,and to represent acritical innovation.Molecular
    [Show full text]
  • Different Roles of Auxins in Somatic Embryogenesis Efficiency In
    International Journal of Molecular Sciences Article Different Roles of Auxins in Somatic Embryogenesis Efficiency in Two Picea Species Teresa Hazubska-Przybył * , Ewelina Ratajczak , Agata Obarska and Emilia Pers-Kamczyc Institute of Dendrology, Polish Academy of Sciences, 62-035 Kórnik, Poland; [email protected] (E.R.); [email protected] (A.O.); [email protected] (E.P.-K.) * Correspondence: [email protected]; Tel.: +48-61-8170-033 Received: 3 April 2020; Accepted: 9 May 2020; Published: 11 May 2020 Abstract: The effects of auxins 2,4-D (2,4-dichlorophenoxyacetic acid), NAA (1-naphthaleneacetic acid) or picloram (4-amino-3,5,6-trichloropicolinic acid; 9 µM) and cytokinin BA (benzyloadenine; 4.5 µM) applied in the early stages of somatic embryogenesis (SE) on specific stages of SE in Picea abies and P. omorika were investigated. The highest SE initiation frequency was obtained after 2,4-D application in P. omorika (22.00%) and picloram application in P. abies (10.48%). NAA treatment significantly promoted embryogenic tissue (ET) proliferation in P. abies, while 2,4-D treatment reduced it. This reduction was related to the oxidative stress level, which was lower with the presence of NAA in the proliferation medium and higher with the presence of 2,4-D. The reduced oxidative stress level after NAA treatment suggests that hydrogen peroxide (H2O2) acts as a signalling molecule and promotes ET proliferation. NAA and picloram in the proliferation medium decreased the further production and maturation of P. omorika somatic embryos compared with that under 2,4-D. The quality of the germinated P.
    [Show full text]
  • Phyllotaxis: a Remarkable Example of Developmental Canalization in Plants Christophe Godin, Christophe Golé, Stéphane Douady
    Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Golé, Stéphane Douady To cite this version: Christophe Godin, Christophe Golé, Stéphane Douady. Phyllotaxis: a remarkable example of devel- opmental canalization in plants. 2019. hal-02370969 HAL Id: hal-02370969 https://hal.archives-ouvertes.fr/hal-02370969 Preprint submitted on 19 Nov 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Phyllotaxis: a remarkable example of developmental canalization in plants Christophe Godin, Christophe Gol´e,St´ephaneDouady September 2019 Abstract Why living forms develop in a relatively robust manner, despite various sources of internal or external variability, is a fundamental question in developmental biology. Part of the answer relies on the notion of developmental constraints: at any stage of ontogenenesis, morphogenetic processes are constrained to operate within the context of the current organism being built, which is thought to bias or to limit phenotype variability. One universal aspect of this context is the shape of the organism itself that progressively channels the development of the organism toward its final shape. Here, we illustrate this notion with plants, where conspicuous patterns are formed by the lateral organs produced by apical meristems.
    [Show full text]
  • Plant Development Series Editor Paul M
    VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Series Editor Paul M. Wassarman Department of Developmental and Regenerative Biology Mount Sinai School of Medicine New York, NY 10029-6574 USA Olivier Pourquié Institut de Génétique et de Biologie Cellulaire et Moléculaire (IGBMC) Inserm U964, CNRS (UMR 7104) Université de Strasbourg Illkirch France Editorial Board Blanche Capel Duke University Medical Center Durham, NC, USA B. Denis Duboule Department of Zoology and Animal Biology NCCR ‘Frontiers in Genetics’ Geneva, Switzerland Anne Ephrussi European Molecular Biology Laboratory Heidelberg, Germany Janet Heasman Cincinnati Children’s Hospital Medical Center Department of Pediatrics Cincinnati, OH, USA Julian Lewis Vertebrate Development Laboratory Cancer Research UK London Research Institute London WC2A 3PX, UK Yoshiki Sasai Director of the Neurogenesis and Organogenesis Group RIKEN Center for Developmental Biology Chuo, Japan Philippe Soriano Department of Developmental and Regenerative Biology Mount Sinai Medical School New York, USA Cliff Tabin Harvard Medical School Department of Genetics Boston, MA, USA Founding Editors A. A. Moscona Alberto Monroy VOLUME NINETY ONE CURRENT TOPICS IN DEVELOPMENTAL BIOLOGY Plant Development Edited by MARJA C. P. TIMMERMANS Cold Spring Harbor Laboratory Cold Spring Harbor New York, USA AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO Academic Press is an imprint of Elsevier Academic Press is an imprint of Elsevier 525 B Street, Suite 1900, San Diego, CA 92101-4495, USA 30 Corporate Drive, Suite 400, Burlington, MA 01803, USA 32, Jamestown Road, London NW1 7BY, UK Linacre House, Jordan Hill, Oxford OX2 8DP, UK First edition 2010 Copyright Ó 2010 Elsevier Inc.
    [Show full text]
  • Patterning During Embryo Development in Pinus
    Patterning During Embryo Development in Pinus With Special Emphasis on Somatic Embryogenesis in Scots pine (Pinus sylvestris L.) Malin Abrahamsson Faculty of Natural Resources and Agricultural Sciences Department of Plant Biology Uppsala Doctoral Thesis Swedish University of Agricultural Sciences Uppsala 2016 Acta Universitatis agriculturae Sueciae 2016:48 Cover: Scanning electron microscopy picture of a cotyledonary somatic embryo from cell line 12:12 ISSN 1652-6880 ISBN (print version) 978-91-576-8598-8 ISBN (electronic version) 978-91-576-8599-5 © 2016 Malin Abrahamsson, Uppsala Print: SLU Service/Repro, Uppsala 2016 Embryoutveckling hos släktet Pinus – med särskild tonvikt på somatisk embyoutveckling i tall (Pinus sylvestris L.) Sammanfattning Skogsindustrin har ett stort intresse av att kunna föröka ekonomiskt viktiga trädslag vegetativt, då det innebär stora fördelar i både förädlingsarbetet och för massförökning av det förädlade materialet. Somatisk embryogenes är en relativt ny metod för vegetativ förökning, där man från ett enda frö kan producera ett obegränsat antal genetiskt identiska plantor. Metoden innebär att somatiska celler stimuleras att utvecklas till embryogena celler som kan bilda embryon, så kallade somatiska embryon, som motsvarar fröembryon. Gran, men inte tall, kan förökas effektivt via somatiska embryon. Till skillnad från gran, så multipliceras fröembryot i tall på ett tidigt stadium genom delning. Embryona börjar tävla för sin överlevnad, och så småningom blir ett embryo dominant medan de resterande underordnade embryona succesivt bryts ner. Embryogena cellkulturer av tall kan endast etableras från omogna fröembryon, under en tvåveckorsperiod varje sommar, när multipliceringen av fröembryot sker. Embryogena cellkulturer av tall växer mycket snabbt, men det är svårt att stimulera utvecklingen och mognad av somatiska embryon.
    [Show full text]