Mineral Resources Tasmania Structure of the GIS Databases

Total Page:16

File Type:pdf, Size:1020Kb

Mineral Resources Tasmania Structure of the GIS Databases Mineral Resources Tasmania TASMANIA DEVELOPMENT REPORT 1994/07 AND RESOURCES Structure of the GIS databases by M. P. McClenaghan, M.J.Roach and R.S.Bottrill MINERAL RESOURCES TASMANIA PO BOX 56 ROSNY PARK TASMANIA AUSTRALIA _RE_PO__ R_T_I_9_94_IO_7 _____________________ ST_R_U_C_T_U_RE __ O_F_G_'_S_D_A_T_A_B_A_SE_S ____________________________ --=2\~:2 CONTENTS MIRLOCH Introduction ........ ' ......... " ... ... ... ................................. 3 Key to Mirloch listing abbreviations ..................................................... 4 Abbreviations used in deposit names ... 4 Abbreviations used in commodities ... 5 Abbreviations llsed in references 7 ROCKCHEM Field Description 8 Introduction 8 Sample table 8 Majors table ....................................................................... 8 Traces table... ... ................................................................ IO REE table .................................................................... IO Field Definitions 11 Sample table 11 Majors table ....... .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 11 Traces table... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 12 REE table .... .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 12 Authority Tables ........................................................................ 13 References ... ..' ... ... ... ." . 13 Originators ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 14 Period ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 14 DORIS Field Description ...... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 15 Field Definitions ........................................................................ 15 Doris table .............................. 15 STRUCTURAL GEOLOGY DATABASE Introduction .................................... 16 TASSTR.PAT ................................... 16 Authority Tables ......................... 16 STREAM SEDIMENT DATABASE Introduction... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 19 TASSED.PAT ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 19 TASSED.ANL... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 19 TASSED.SRV .............. 19 Authority Tables ........................ 19 ATTRIBUTES FOR GEOLOGICAL MAPS Introduction. .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 22 Geology.pat... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 22 Geology.lut ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 22 Geology.rel ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... .... ............... 22 Geology.ref ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 22 Authority Tables .... .. ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... ... 22 FIGURES I. Structural symbols 18 2. Structure of stream sediment database ............................................ 21 3. Geological map attribute scheme ..................................................... 23 _RE_PO_R_T_19_94_'_07__________ ..::S.:.TR::.U.:.C.:.T.:.U::.RE=-O:.:F_G.:.'..::S.:D:;.A:.:T.:.A..::B.:..:A:.SES=- ______________.::..3 \32. MIRLOCH possible (note UR is used for uranium, and some similar exceptions). A list of recommended abbreviations is provided on pages 5 to 7. Commas are used to separate INTRODUCTION commodities, e.g. CU, PB, ZN. MIRLOCH is a computerised database of mineral deposits Minor Commodity (11) in Tasmania. Data recorded include the name(s), The minor exploitable commodities in order of importance. commodities, location, age, form and strike of The distinction from the above item is somewhat arbitrary, mineralisation, the host rock grouping, and references. and usage is similar. The MIRLOCH database is loosely related to the MINLOC database of the Bureau of Mineral Resources. It is designed AMG Co-ominates (6,6) as a quick reference to particular deposits, particularly for Full AMG co-ordinates to the nearest metre if possible, mineral deposit map production, resource assessments, and excluding the first 5 in the northing (i.e. 6 figures for mE and GIS related applications. 6 figures for mN). This item is compUlsory. The data are presently available on 3.5 inch DOS-formatted Co-ominate error (1) discs in ASCII format with 'I' delimiters. There are currently The accuracy of the given co-ordinate is represented by a 3205 deposits recorded, and the data take up 440 kB of number as indicated in the list on page 4. memory. Map sheet (5) The codes are briefly described below for each item. Numbers in parentheses following each item indicate the The 1:50 000 National Map Sheet Index Numbers, e.g. maximum number of characters available. The 83124 for Broadmarsh. corresponding lists of abbreviations are listed on pages 4 to 7 of this report. Status (1) Either the present status of a mine (and an indication of Quadrangle (2) whether reserves are koown), or whether the deposit is a Mandatory number field giving the number ofthe quadrangle prospect, mineral occurrence or a mineralised area. A in which the mineral deposit occurs, e.g. 40 for Alberton. mineralised area may be, for example. an extensive alluvial gold field, an area of erratic or subeconomic mineralisation, etc. See the list on page 4. Reference No. (5) This is unique number for each mine or mineral occurrence. Size (1) The first two characters indicate the 1:50 000 geological The estimated total in situ size of the deposit (in tonnes for quadrangles, followed by a three-digit serial number. For 3 example 37017 represents deposit 17 on quadrangle 37 hard-rock deposits, or in m for placer and alluvial deposits) (Sheffield). The number for quadrangles 1 to 9 inclusive is represented as indicated on page 4. should be prefixed by 0 (e.g. 09001). Host Rock (2) Mine/deposit name (40) The relevant time/stratigraphic units hosting the deposit. The name(s) of the mine or mineral occurrence where Two host rocks may be defined to cater for discordant known. Where the name is unknown, the deposit may be deposits that traverse these time/stratigraphic boundaries. given the Mining Lease number. the name of the watercourse The units are listed on page 4. (for alluvial workings), named after the relevant prospector, prospecting association, etc. (if koown) or simply titled Age ofMineralisation (1) "Unnamed". If a series of significant deposits with the same The age of the mineralisation using the subdivisions name exist in a limited area, they may be appended A, B, C, indicated on page 4. The age of the primary mineralisation etc., or a centroid of the deposits given as a single deposit. is given if the ore has been later remobilised. The age is Alluvial goldfields and other mineral fields may be denoted usually inferred. in this manner. Form ofdeposit (2) The abbreviations recommended in this item are listed on The overall form of the deposit and/or nature of the page 4. mineralisation, using the classifications on page 4. Duplicate names should be separated by semi-colons. Other delimiters used previously, however, include: the backslash Strike (3) ( /), a comma and OR, while others are enclosed in The strike ofthe deposit, where applicable, in therangeO-359 parentheses ( ) or quotation marks. These will be amended in (OT). If unkoown or inapplicable, use -1. due course. Exploration ofDeposit (5) Major Commodity (8) Exploration which has been undertaken on this deposit. Up The main exploitable commodities in order of importance. to five methods may be entered (see page 4). Prospecting Chemical symbols are used for metallic resources where signifies pits, trenches or shafts. Geological mapping refers ~~_R2_1~9~!..°2. __________________________________________________________________STRUCTURE OF GIS DATABASES ~12~ ~"""- to detailed surface and/or underground mapping. 6 Permo-Triassic Geochemical surveys refer to detailed soil sampling as well 7 lurassic-Cretaceous as systematic chip sampling of mineralisation and host rocks. 8 Tertiary Geophysical surveys refers to ground-based techniques 9 Quaternary related to the deposits. Drilling refers to any drill hole intersecting the deposit. FORM OF DEPOSIT o Volcanic massive sulphide References/Comments (38) I Stratiform The best and most recent references available should be listed 2 Vein (single, sheet, saddle) here, plus relevant comments if space permits. Abbreviations 3 Stockwork for publications are listed on page 7. Examples: GSBSO 4 Disseminated p123; TCR 90-1234; MRV Min. Map S. S Replacement 6 Pipe 7 Placer Key To MIRLOCH Listing Abbreviations 8 Residual 9 Other (noted in references) CO-ORDINATE ERROR I <SOm EXPLORATION OF DEPOSIT 2 <100m 3 <SOOm o Nil or no known exploration 4 < I km I Prospecting S >Ikm 2 Geological mapping 3 Geochemical surveys STATUS 4 Geophysical surveys S Drilling o Operating mine I Non-operating mine - reserves known 2 Non-operating mine - reserves unknown 3 Abandoned mine - reserves known Abbreviations used in deposit names 4 Abandoned mine - reserves unknown S Abandoned - mined out 6 Prospect - explored 7 Prospect - unexplored
Recommended publications
  • Mineral Processing
    Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19
    [Show full text]
  • Minerals of the System Stichtite–Pyroaurite–Iowaite–Woodallite from Serpentinites of the Terekta Ridge (Gorny Altai, Russia)
    Russian Geology and Geophysics © 2020, V.S. Sobolev IGM, Siberian Branch of the RAS Vol. 61, No. 1, pp. 36–46, 2020 DOI:10.15372/RGG2019076 Geologiya i Geofizika Minerals of the System Stichtite–Pyroaurite–Iowaite–Woodallite from Serpentinites of the Terekta Ridge (Gorny Altai, Russia) E.S. Zhitovaa, , I.V. Pekovb, N.V. Chukanovb,c, V.O. Yapaskurtb, V.N. Bocharova aSt. Petersburg University, Universitetskaya nab. 7/9, St. Petersburg, 199034 Russia bLomonosov Moscow State University, Leninskie Gory GSP-1, Moscow, 119991, Russia cInstitute of Problems of Chemical Physics of RAS, pr. Akademika Semenova 1, Chernogolovka, 142432, Russia Received 26 April 2018; accepted 17 September 2018 Abstract—Hydrotalcite supergroup minerals stichtite, pyroaurite, iowaite, and woodallite form a complex solid-solution system at the Kyzyl-Uyuk locality (Terekta Ridge, Gorny Altai, Russia). The diversity of these minerals is due to: (1) subdivision by anionic interlayer composition into carbonate (stichtite and pyroaurite) and chloride (iowaite and woodallite) species and (2) isomorphism of M 3+ cations, mainly between Cr- (stichtite and woodallite) and Fe3+-dominant species (pyroaurite and iowaite), with a quantitative predominance of stichtite and iowaite. Most of the studied samples correspond to stichtite and woodallite with high Fe3+ contents or pyroaurite and iowaite with high Cr3+ contents. According to vibrational (IR and Raman) spectroscopy data, the interlayer Cl– is partially substituted by OH– rather 2– –1 than CO3 groups. We suppose that the presence/absence of a band in the region 1400–1350 cm in the Raman spectra of stichtite can be explained by the local distortion of triangular CO3 groups.
    [Show full text]
  • A (Sixth) List of New Mineral Names
    352 A (sixth) list of new mineral names: By L. J. Srv.Nc~a, M.A., F.G.S. Assistant in the Mineral Department of the British Museum. [Communicated March 11, 1918.] Achla,~ite. (R. Koechlin, l~iineralogisches Taschenbuch der Wiener Mineralogischen Gesellschaft, 1911, pp. 12, 62 ; Min. Petr. Mitt., 1912, vol. xxxi, p. 91 (Achiardit).) Synonym of Dachiardite (G. D'Achiardi, 1906; 4th list). Aohlusite. W.F. Petterd, 1910. Catalogue of the Minerals of Tasmania, 8rd edit., Hobart, 1910, p. 191; Papers Roy. Soc. Tasmania, 1910, p. 191. A green alteration product of topaz resembling steatite in appearance, but near soda-mica in composition. Derivation not stated, but no doubt from ~X~.J~, mist, alluding to the cloudy alteration of the clear topaz. Aomite-augite. F. Zambonini, 1910. Mineralogia Vesuviana. Mere. Accad. Sci. Fis. Mat. Napoli, vol. xiv, pp. 158, 155 (acmlteaugite). The same as aegirine-augite (H. Rosenbusch, 1902 ; 2nd List), but brown in colour. Aegerite. (~Jineral Resources U.S. Geol. Survey, for 1910, 1911, part ii, p. 886.) Trade-name for a bitumen allied to elaterite. Aconite. (Mineral Resources U.S. Geol. Survey, for 1909, 1911, part ii, p. 738.) Trade-name for a bitumen very similar to elaterite. Albanite. C. I. Istrati and M. A. Mihailescu, 1912. Bul. Soc. Rem~ne ,Sti., vol. xx, p. 626. A bituminous material from Alt~nia. Alleharite. B. Je~.ek, 1912. Zeits. Kryst. Min., vol. li, p. 275 (Alleharit). Small, acicular, orthorhombic crystals, resembling stibnite in appearance, found with vrbaite (q.v.) on specimens of realgar and i Previous lists of this series have been given at the ends of vols.
    [Show full text]
  • Mount Lyell Abt Railway Tasmania
    Mount Lyell Abt Railway Tasmania Nomination for Engineers Australia Engineering Heritage Recognition Volume 2 Prepared by Ian Cooper FIEAust CPEng (Retired) For Abt Railway Ministerial Corporation & Engineering Heritage Tasmania July 2015 Mount Lyell Abt Railway Engineering Heritage nomination Vol2 TABLE OF CONTENTS BIBLIOGRAPHIES CLARKE, William Branwhite (1798-1878) 3 GOULD, Charles (1834-1893) 6 BELL, Charles Napier, (1835 - 1906) 6 KELLY, Anthony Edwin (1852–1930) 7 STICHT, Robert Carl (1856–1922) 11 DRIFFIELD, Edward Carus (1865-1945) 13 PHOTO GALLERY Cover Figure – Abt locomotive train passing through restored Iron Bridge Figure A1 – Routes surveyed for the Mt Lyell Railway 14 Figure A2 – Mount Lyell Survey Team at one of their camps, early 1893 14 Figure A3 – Teamsters and friends on the early track formation 15 Figure A4 - Laying the rack rail on the climb up from Dubbil Barril 15 Figure A5 – Cutting at Rinadeena Saddle 15 Figure A6 – Abt No. 1 prior to dismantling, packaging and shipping to Tasmania 16 Figure A7 – Abt No. 1 as changed by the Mt Lyell workshop 16 Figure A8 – Schematic diagram showing Abt mechanical motion arrangement 16 Figure A9 – Twin timber trusses of ‘Quarter Mile’ Bridge spanning the King River 17 Figure A10 – ‘Quarter Mile’ trestle section 17 Figure A11 – New ‘Quarter Mile’ with steel girder section and 3 Bailey sections 17 Figure A12 – Repainting of Iron Bridge following removal of lead paint 18 Figure A13 - Iron Bridge restoration cross bracing & strengthening additions 18 Figure A14 – Iron Bridge new
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    Itkx1//7Lhmdq`knesgdLnmsg9Rshbgshsd Our ongoing search for new minerals to feature finds us scouring the more than forty separate shows that comprise the Tucson Gem & Mineral show every year, looking for large lots of interesting and attractive minerals. The search is rewarded when we make a new contact and find something especially vibrant like this month’s combination of lavender stichtite in green serpentinite! OGXRHB@K OQNODQSHDR Chemistry: Mg6Cr2(CO3)(OH)16A4H2O Basic Hydrous Magnesium Chromium Carbonate (Hydrous Magnesium Chromium Carbonate Hydroxide) Class: Carbonates Subclass: Carbonates with hydroxyl or halogen radicals Group: Hydrotalcite Crystal System: Trigonal Crystal Habits: Crystals rarely macroscopic; usually as crust-like aggregates in matrix; sometimes radiating, micaceous with flexible plates, and nodular with tuberous, irregular surface projections; also massive and fibrous. Color: Lavender, lilac, light violet, pink, or purplish. Luster: Waxy, greasy, sometimes pearly. Transparency: Transparent to translucent Streak: White to pale lilac Refractive Index: 1.516-1.542 Cleavage: Perfect in one direction Fracture: Uneven, brittle. Hardness: 1.5-2.0 Specific Gravity: 2.2 Luminescence: None Distinctive Features and Tests: Softness, color, crystal habits, occurrence in chromium-rich metamorphic environments, and frequent association with serpentinite (a greenish metamorphic rock). Stichtite can be confused with similarly colored sugilite [potassium sodium iron manganese aluminum lithium silicate, KNa2(Fe,Mn,Al)2Li2Si12O30].
    [Show full text]
  • Stichtite Mg6cr2co3(OH)16∙4H2O - Crystal Data: Hexagonal
    Stichtite Mg6Cr2CO3(OH)16∙4H2O - Crystal Data: Hexagonal. Point Group: 3 2/m or 6/m 2/m 2/m. As aggregates of fibers or plates, commonly matted, contorted; as cross-fiber veinlets and micaceous scales. Physical Properties: Cleavage: Perfect on {0001}. Tenacity: Laminae flexible, not elastic; greasy feel. Hardness = 1.5-2 D(meas.) = 2.16 D(calc.) = 2.11 Optical Properties: Transparent. Color: Lilac to rose-pink; lilac to rose-pink in transmitted light. Streak: Very pale lilac to white. Luster: Waxy to resinous, somewhat pearly. Optical Class: Uniaxial (–); may be anomalously biaxial. ω = 1.545(3) ε = 1.518(3) 2V(meas.) = Small. Pleochroism: Weak; O = dark rose-pink to lilac; E = light rose-pink to lilac. - Cell Data: Space Group: R3 m. a = 3.09575(3) c = 23.5069(6) Z = 3/8 (stichtite-3R) Space Group: P63/mmc. a = 3.09689(6) c = 15.6193(8) Z = 1/4 (stichtite-2H) X-ray Powder Pattern: Dundas, Tasmania, Australia. (ICDD 14-330) 7.8 (100), 3.91 (90), 2.60 (40), 2.32 (30), 1.97 (30), 1.54 (20), 1.51 (20) Chemistry: (1) (2) Al2O3 2.30 Fe2O3 4.18 Cr2O3 14.15 23.24 MgO 37.72 36.98 H2O 34.14 33.05 CO2 7.15 6.73 Total [100.00] 100.00 (1) Dundas, Tasmania, Australia; probably intermixed with stichtite-2H, original total of 99.27% recalculated to 100% after deduction of SiO2 2.09%, FeO 0.28% as chromite. (2) Mg6Cr2(CO3)(OH)16•4H2O. Polymorphism & Series: Polytypes 3R and 2H (formerly barbertonite).
    [Show full text]
  • Exploration Licence 4563
    ANNUAL TECHNICAL REPORT FOR THE PERIOD 19 July 2004 to 18 July 2005 EXPLORATION LICENCE 13/2002 “Dundas” And EXPLORATION LICENCE 19/2002 “Melba Siding” Western TASMANIA Licensee: Tamas Kapitany, 1672 Princes Highway, Oakleigh East, Victoria, 3166. Ph (03) 9544 5444, Fax (03) 9544 5433 Author: Michael Davie-Smythe Report Date: June 2005 ABSTRACT Exploration Licences 13/2002 ‘Dundas’ and 19/2002 ‘Melba Siding’ are being explored for collectable and ornamental stones by the licensee Mr Tamas Kapitany. The area is world renowned for producing rare and beautiful mineral specimens of crocoite and cerussite, together with minerals suitable for carving, such as stichtite and barbertonite within serpentinite. Previous exploration has included the purchase of aerial photos, geological mapping, hand collecting, costeaning, excavation, and bulk sampling. A number of serpentinite boulders were removed from the eastern fringe of the Tunnel Hill quarry. These were stored at Rosebery prior to proposed shipment to China for test carving work and market research. A Mining Lease 9M/2004 was applied for over some serpentinite cuttings west of the West Comet mine. These appeared to have good potential as lapidary material. Market research into the possible use of serpentinite as a paving material was proposed to be carried out. A small amount of stichtite (suitable as specimen pieces) was also located during the excavation/costeaning at Tunnel Hill. Exploration during the reporting period has included: organizing Bonds and Planning Permits for MLA’s 8M/2004 and 9M/2004,which were pegged over Tunnel Hill Quarry (EL 19/2002) and west of the West Comet (EL13/2002) respectively; transportation of, and cutting and polishing of samples; overseas trips for marketing/promotion of stichtite/serpentinite; return of serpentinite boulders to Tunnel Hill Quarry; field mapping and submission of Work Programs (3); mining of serpentinite/stichtite west of the West Comet; application to have 9M/2004 expanded and shipping of serpentinite/stichtite to Hong Kong.
    [Show full text]
  • STICHTITE Anew Tasmanian Mineral
    Gsr<fX.2. llLaSUlRtlia DEPARTMENT OF MINES GEOLOGICAL SURVEY RECORD No.2 STICHTITE ANew Tasmanian Mineral NOTES BY VARIOUS AUTHORS, COLLECTED AND EDITED BY W . H . TWELVETREES, Government Geologis t hllued under the a utho rity of The Honourable J. E. OGDEN . Ministe r {or Mines QI'.usmanta: JOHN VAIL. GOVERNMENT PRINTER HOBART II B571O-i 1914 TABLE OF CONTENTS. PAG. I.- PREFACE 1 n. - DESCRIPTION OF STICHTITE, BY W. F. PETTERD 3 llI.---QPTlcAL CHARACTERS OF STICHTITE, BY L. K. WARD, B.A., B.E. ... 5 lV.--ON A NEW CHROME-HEARING MAGNESIUM- HYDJlOx.YOAnBO~ATI<l. BY DR. LAURA BEZNER 6 V. --ON TfUl ~IINERAL STIOHTITE, BY DR. A. HIM- MEL BAUER 9 ILLUSTRATIONS. Pun II -LoC.O\T.ITY MAP ... " Facing Preface PLAT! ll.-PUOTOMICROGR.UH 0'1' STICBTITE IN SER- PENTINE ... ... At end of Record Scm LOCALITY MAP " T 'r-- TASMANIA ____ + ___________ M:A&..a ... -- - -------- - --.r<.. L..L!.~~ Cap> e.n.,; ~..d a.:'U I~nd(] , ~IIX' · I1'AIT ,.~ "\ ,;:: ____:z: r.;f' /-----.. ~,,------~ .. ... Stichtite ANew Tasmanian Mineral. I.-PREFACE. The following papers and notes on the new mineral stichtite have been collected for publication 80 as to be easily accessible to those interested in Tasmanian mio¥ eralogy. The occurrence of this mineral in Tasmania Las been knOWll since 1891, but up to the end of 1909 it was referred to kammererite" a chrome chlorite of similar colour. In 1910, however, the late W. F. Petterd, in publishing in his catalogue of the Minerals of Tasmania (pp. 167-170) an analysis made by Mr. A. S.
    [Show full text]
  • Mount Lyell Abt Railway Tasmania
    Mount Lyell Abt Railway Tasmania Nomination for Engineers Australia Engineering Heritage Recognition Volume 1 Prepared by Ian Cooper FIEAust CPEng (Retired) For Abt Railway Ministerial Corporation & Engineering Heritage Tasmania July 2015 Mount Lyell Abt Railway Engineering Heritage nomination Vol1 TABLE OF CONTENTS VOLUME 1 TABLE OF CONTENTS ii ILLUSTRATIONS iii HERITAGE AWARD NOMINATION FORM iv BASIC DATA FORM v ACCEPTANCE FROM OWNER vi INTRODUCTION 1 OUTLINE HISTORY OF MT LYELL MINING AND RAILWAY Early West Coast mining history 3 Birth of Mt Lyell and the Railway 4 The Intervening ‘Forgotten’ Years (1963-2000) 4 Rebirth of the Abt Railway 5 HISTORICALLY SIGNIFICANT ITEMS The Abt rack system and its creator 6 Survey and construction of the Mt Lyell Abt Railway 7 Restoration of the Railway infrastructure 9 Abt locomotives and the railway operation 11 Restoration of the Abt and diesel locomotives 11 Iron Bridge at Teepookana 12 Renovation of Iron Bridge 13 FURTHER ITEMS OF INTEREST 15 HERITAGE ASSESSMENT Historical significance 16 Historical individuals and associations 16 Creative and technical achievement 17 Research potential 18 Social benefits 18 Rarity 18 Representativeness 18 Integrity/Intactness 19 Statement of Significance 19 Area of Significance 19 INTERPRETATION PLAN 20 REFERENCES 21 VOLUME 2 BIOGRAPHIES PHOTO GALLERY Engineering Heritage Tasmania 2015 Page ii Mount Lyell Abt Railway Engineering Heritage nomination Vol1 ILLUSTRATIONS Volume 1 – Picture Gallery figures Cover Figure - Restored Abt No. 3 locomotive hauling carriages
    [Show full text]
  • The Journal of ^ Y Volume 26 No
    Gemmolog^^ The Journal of ^ y Volume 26 No. 8 October 1999 fj J The Gemmological Association and Gem Testing Laboratory of Great Britain Gemmological Association and Gem Testing Laboratory of Great Britain 27 Greville Street, London EC1N 8TN Tel: 020 7404 3334 Fax: 020 7404 8843 e-mail: [email protected] Website: www.gagtl.ac.uk/gagtl. President: Professor R.A. Howie Vice-Presidents: E.M. Bruton, A.E. Farn, D.G. Kent, R.K. Mitchell Honorary Fellows: Chen Zhonghui, R.A. Howie, R.T. Liddicoat Jnr, K. Nassau Honorary Life Members: H. Bank, D.J. Callaghan, E.A. Jobbins, H. Tillander Council of Management: T.J. Davidson, N.W. Deeks, R.R. Harding, I. Mercer, J. Monnickendam, M J. O'Donoghue, E. Stern, I. Thomson, V.P. Watson Members' Council: A.J. Allnutt, P. Dwyer-Hickey, S.A. Everitt, A.G. Good, J. Greatwood, B. Jackson, L. Music, J.B. Nelson, PG. Read, R. Shepherd, P.J. Wates, C.H. Winter Branch Chairmen: Midlands - G.M. Green, North West -1. Knight, Scottish - B. Jackson Examiners: A.J. Allnutt, MSc, Ph.D., FGA, L. Bartlett, B.Sc, MPhiL, FGA, DGA, E.M. Bruton, FGA, DGA, S. Coelho, B.Sc, FGA, DGA, Prof. A.T. Collins, B.Sc, Ph.D, A.G. Good, FGA, DGA, J. Greatwood, FGA, G.M. Howe, FGA, DGA, B. Jackson, FGA, DGA, G.H. Jones, B.Sc, Ph.D., FGA, M. Newton, B.Sc, D.Phil., C.J.E. Oldershaw, B.Sc (Hons), FGA, H.L. Plumb, B.Sc, FGA, DGA, R.D. Ross, B.Sc, FGA, DGA, PA.
    [Show full text]
  • C:\Documents and Settings\Alan Smithee\My Documents\MOTM
    @oqhk1/00Lhmdq`knesgdLnmsg9Jx`mhsd This month’s mineral is an unusual, polymorphic silicate mineral from Brazil. Our write-up explains its industrial and gemological uses, how our specimens were recovered as a by-product of gemstone mining, and why kyanite and other lesser-known gemstones are becoming increasingly popular in jewelry. OVERVIEW PHYSICAL PROPERTIES Chemistry: Al2SiO5 Aluminum Silicate, often containing iron and chromium. Class: Silicates Subclass: Nesosilicates (Independent Tetrahedral Silicates) Group: Subsaturate Nesosilicates (Nesosilicates with one or more oxygen ions in addition to those in the silica tetrahedra.) Subgroup: Kyanite Crystal System: Triclinic Crystal Habits: Usually as tabular or bladed, prismatic crystals elongated on the main axis and rarely terminated; often folded or wavy in bladed aggregates; also massive. Twinning common; well- developed, transparent crystals rare. Color: Primarily blue; also colorless and white; trace elements create shades of gray, green, brown, and occasionally pale pinks, oranges, and yellows. Exhibits pronounced, irregular color zoning. Luster: Vitreous to pearly Transparency: Transparent to translucent Streak: White Cleavage: Perfect in one direction, good in a second direction Fracture: Splintery to fibrous, brittle Hardness: 4.5-5.0 parallel to crystal length; 7.0 perpendicular to crystal length. Specific Gravity: 3.55-3.66 Refractive Index: 1.715-1.732 Luminescence: Weakly fluorescent Distinctive Features and Tests: Blue color; vitreous luster; bladed habit; perfect one-directional cleavage; splintery fracture; substantial variation in directional hardness; and occurrence in metamorphic environments with quartz [SiO2]; garnet-group member almandine [Fe3Al2(SiO4)3]; staurolite [(Fe,Mg,Zn)3-4(Al,Fe)18(Si,Al)8O48H2-4]; biotite micas (a group of basic potassium iron magnesium aluminosilicates); and the polymorphic minerals andalusite and sillimanite [both Al2SiO5].
    [Show full text]
  • Documented in the (Lambert and Brown, 1994; Sujatmiko Et Al., Gemmological Literature, the Results of the 2004)
    Volume 30 No. 7/8 July/October 2007 The Gemmological Association of Great Britain The Gemmological Association of Great Britain Registered Charity No. 1109555 27 Greville Street, London EC1N 8TN Tel: +44 (0)20 7404 3334 l Fax: +44 (0)20 7404 8843 e-mail: [email protected] l Website: www.gem-a.com President: E A Jobbins Vice-Presidents: N W Deeks, R A Howie Honorary Fellows: R A Howie, K Nassau Honorary Life Members: H Bank, D J Callaghan, E A Jobbins, J I Koivula, C M Ou Yang, I Thomson, V P Watson, C H Winter Chief Executive Offi cer: J M Ogden Council: A T Collins – Chairman, T Curtis-Taylor, T M J Davidson, S A Everitt, M J O’Donoghue, J Riley, E Stern, J F Williams Members’ Audit Committee: A J Allnutt, J W Collingridge, P Dwyer-Hickey, J Greatwood, G M Green, B Jackson, D J Lancaster Branch Chairmen: Midlands – P Phillips, North East – M Houghton, North West – D M Brady, Scottish – B Jackson, South East – V Wetten, South West – R M Slater Examiners: A J Allnutt MSc PhD FGA, L Bartlett BSc MPhil FGA DGA, He Ok Chang FGA DGA, Chen Meihua BSc PhD FGA DGA,Prof A T Collins BSc PhD, A G Good FGA DGA, D Gravier FGA, J Greatwood FGA, S Greatwood FGA DGA, G M Green FGA DGA, G M Howe FGA DGA, B Jackson FGA DGA, B Jensen BSc (Geol), T A Johne FGA, L Joyner PhD FGA, H Kitawaki FGA CGJ, R J Lake FGA DGA, Li Li Ping PhD FGA DGA, M A Medniuk FGA DGA, G A Millington FGA, T Miyata MSc PhD FGA, C J E Oldershaw BSc (Hons) FGA DGA, H L Plumb BSc FGA DGA, C Richardson FGA DGA, N R Rose FGA DGA, R D Ross BSc FGA DGA, J-C Rufl i FGA, E Stern FGA DGA,
    [Show full text]