Class Field Theory

Total Page:16

File Type:pdf, Size:1020Kb

Class Field Theory CLASS FIELD THEORY EMIL ARTIN JOHN TATE AMS CHELSEA PUBLISHING American Mathematical Society • Providence, Rhode Island M THE ATI A CA M L 42(4/3,-( N %)3)47 S A O C C I I R E E T !'%7-% Y M A F O 8 U 88 NDED 1 http://dx.doi.org/10.1090/chel/366.H 2000 Mathematics Subject Classification.Primary11R37; Secondary 11–01, 11R34. For additional information and updates on this book, visit www.ams.org/bookpages/chel-366 Library of Congress Cataloging-in-Publication Data Artin, Emil, 1898–1962. Class field theory / Emil Artin, John Tate. Originally published: New York : W. A. Benjamin, 1967. Includes bibliographical references. ISBN 978-0-8218-4426-7 (alk. paper) 1. Class field theory. I. Tate, John Torrence, 1925– joint author. II. Title. QA247.A75 2008 512.7′4—dc22 2008042201 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294, USA. Requests can also be made by e-mail to [email protected]. c 1967, 1990 held by the American Mathematical Society. All rights reserved. ⃝ Reprinted with corrections by the American Mathematical Society, 2009. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. The paper used in this book is acid-free and falls within the guidelines ∞ ⃝ established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10 9 8 7 6 5 4 3 2 1 14 13 12 11 10 09 Contents Preface to the New Edition v Preface vii Preliminaries 1 1. Id`eles and Id`ele Classes 1 2. Cohomology 3 3. The Herbrand Quotient 5 4. Local Class Field Theory 8 Chapter V. The First Fundamental Inequality 11 1. Statement of the First Inequality 11 2. First Inequality in Function Fields 11 3. First Inequality in Global Fields 13 4. Consequences of the First Inequality 16 Chapter VI. Second Fundamental Inequality 19 1. Statement and Consequences of the Inequality 19 2. Kummer Theory 21 3. Proof in Kummer Fields of Prime Degree 24 4. Proof in p-extensions 27 5. Infinite Divisibility of the Universal Norms 32 6. Sketch of the Analytic Proof of the Second Inequality 33 Chapter VII. Reciprocity Law 35 1. Introduction 35 2. Reciprocity Law over the Rationals 36 3. Reciprocity Law 41 4. Higher Cohomology Groups in Global Fields 52 Chapter VIII. The Existence Theorem 55 1. Existence and Ramification Theorem 55 2. Number Fields 56 3. Function Fields 59 4. Decomposition Laws and Arithmetic Progressions 62 Chapter IX. Connected Component of Id`ele Classes 65 1. Structure of the Connected Component 65 2. Cohomology of the Connected Component 70 Chapter X. The Grunwald–Wang Theorem 73 1. Interconnection between Local and Global m-th Powers 73 iii iv CONTENTS 2. Abelian Fields with Given Local Behavior 76 3. Cyclic Extensions 81 Chapter XI. Higher Ramification Theory 83 1. Higher Ramification Groups 83 2. Ramification Groups of a Subfield 86 3. The General Residue Class Field 90 4. General Local Class Field Theory 92 5. The Conductor 99 Appendix: Induced Characters 104 Chapter XII. Explicit Reciprocity Laws 109 1. Formalism of the Power Residue Symbol 109 2. Local Analysis 111 3. Computation of the Norm Residue Symbol in Certain Local Kummer Fields 114 4. The Power Reciprocity Law 122 Chapter XIII. Group Extensions 127 1. Homomorphisms of Group Extensions 127 2. Commutators and Transfer in Group Extensions 131 3. The Akizuki–Witt Map v : H2(G, A) H2(G/H, AH )134 4. Splitting Modules and the Principal Ideal→ Theorem 137 Chapter XIV. Abstract Class Field Theory 143 1. Formations 143 2. Field Formations. The Brauer Groups 146 3. Class Formations; Method of Establishing Axioms 150 4. The Main Theorem 154 Exercise 157 5. The Reciprocity Law Isomorphism 158 6. The Abstract Existence Theorem 163 Chapter XV. Weil Groups 167 Bibliography 191 Preface to the New Edition The original preface which follows tells about the history of these notes and the missing chapters. This book is a slightly revised edition. Some footnotes and historical comments have been added in an attempt to compensate for the lack of references and attribution of credit in the original. There are two mathematical additions. One is a sketch of the analytic proof of the second inequality in Chapter VI. The other is several additional pages on Weil groups at the end of Chapter XV. They explain that what is there called a Weil group for a finite Galois extension K/F lacks an essential feature of a Weil group in Weil’s sense, namely the homomorphism ab WK,F Gal(K /F ), but that we recover this once we construct a Weil group for F/F¯ by→ passing to an inverse limit. There is also a sketch of an abstract version of Weil’s proof of the existence and uniqueness of his WK,F for number fields. Ihavenotrenumberedthechapters.Aftersomepreliminaries,thebookstill starts with Chapter V, but the mysterious references to the missing chapters have been eliminated. The book is now in TeX. The handwritten German letters are gone, and many typographical errors have been corrected. I thank Mike Rosen for his help with that effort. For the typos we’ve missed and other mistakes in the text, the AMS maintains a Web page with a list of errata at http://www.ams.org/bookpages/chel-366/ IwouldliketothanktheAMSforrepublishingthisbook,andespeciallySergei Gelfand for his patience and help with the preparation of the manuscript. For those unacquainted with the book, it is a quite complete account of the algebraic (as opposed to analytic) aspects of classical class field theory. The first four chapters, V–VIII, cover the basics of global class field theory, the cohomology of id`ele classes, the reciprocity law and existence theorem, for both number fields and function fields. Chapters IX and X cover two more special topics, the structure and cohomology of the connected component of 1 in the id`ele class group of a number field, and questions of local vs. global behavior surrounding the Grunwald–Wang theorem. Then there are two chapters on higher ramification theory, generalized local classfield theory, and explicit reciprocity laws. This material is beautifully covered also in [21]. For a recent report, see [8]. There is a nice generalization of our classical explicit formula in [13]. The last three chapters of the book cover abstract class field theory. The cohomological algebra behind the reciprocity law is common to both the local and global class field theory of number fields and function fields. Abstracting it led to the definition of a new algebraic structure, ‘class formation’, which embodies the common features of the four theories. The difference is in the proofs that the id`ele classes globally, and the multiplicative groups locally, satisfy the axioms of a class formation. Chapter XIV concludes with a discussion of the reciprocity law and existence theorem for an abstract class formation. In the last v vi PREFACE TO THE NEW EDITION chapter XV, Weil groups are defined for finite layers of an arbitrary class formation, and then, for topological class formations satisfying certain axioms which hold in the classical cases, a Weil group for the whole formation is constructed, by passage to an inverse limit, The class formation can be recovered from its Weil group, and the topological groups which occur as Weil groups are characterized by axioms. The mathematics in this book is the result of a century of developement, roughly 1850–1950. Some history is discussed by Hasse in [5] and in several of the papers in [18]. The high point came in the 1920’s with Takagi’s proof that the finite abelian extensions of a number field are in natural one-to-one correspondence with the quotients of the generalized ideal class groups of that field, and Artin’s proof several years later that an abelian Galois group and the corresponding ideal class group are canonically isomorphic, by an isomorphism which implied all known reciprocity laws. The flavor of this book is strongly influenced by the last steps in that history. Around 1950, the systematic use of the cohomology of groups by Hochschild, Nakayama and the authors shed new light. It enabled many theorems of the local class field theory of the 1930’s to be transferred to the global theory, and led to the notion of class formation embodying the common features of both theo- ries. At about the same time, Weil conceived the idea of Weil groups and proved their existence. With those two developments it is fair to say that the classical one-dimensional abelian class field theory had reached full maturity. There were still a few things to be worked out, such as the local and global duality theories, and the cohomology of algebraic tori, but it was time for new directions. They soon came. For example: Higher dimensional class field theory; • Non-abelian reciprocity laws and the Langlands program; • Iwasawa theory; • Leopold’s conjecture; • Abelian (and non-abelian) ℓ-adic representations; • Lubin-Tate local theory, Hayes explicit theory for function fields, Drinfeld • modules; Stark conjectures; • Serre conjectures (now theorems).
Recommended publications
  • Langlands, Weil, and Local Class Field Theory
    LANGLANDS, WEIL, AND LOCAL CLASS FIELD THEORY DAVID SCHWEIN Abstract. The local Langlands conjecture predicts a relationship between Galois repre- sentations and representations of the topological general linear group. In this talk we explain a special case of the program, local class field theory, with a goal towards its nonabelian generalization. One of our main conclusions is that the Galois group should be replaced by a variant called the Weil group. As number theorists, we would like to understand the absolute Galois group ΓQ of Q. It is hard to say briefly why such an understanding would be interesting. But for one, if we understood the open, index-n subgroups of ΓQ then we would understand the number fields of degree n. There are much deeper reasons, related to the geometry of algebraic varieties, why we suspect ΓQ carries deep information, though that is more speculative. One way to study ΓQ is through its n-dimensional complex representations, that is, (con- jugacy classes of) homomorphisms ΓQ ! GLn(C): Starting with a 1967 letter to Weil, Langlands proposed that these representations are related to the representations of a completely different kind of group, the adelic group GLn(AQ). This circle of ideas is known as the Langlands program. The Langlands program over Q turned out to be very difficult. Even today, we cannot properly formulate a precise conjecture. So to get a start on the problem, mathematicians restricted attention to the completions of Q, namely Qp and R, and studied the problem there. As over Q, Langlands conjectured a relationship between n-dimensional Galois rep- resentations ΓQp ! GLn(C) and representations of the group GLn(Qp), as well as an analogous relationship over R.
    [Show full text]
  • Determining Large Groups and Varieties from Small Subgroups and Subvarieties
    Determining large groups and varieties from small subgroups and subvarieties This course will consist of two parts with the common theme of analyzing a geometric object via geometric sub-objects which are `small' in an appropriate sense. In the first half of the course, we will begin by describing the work on H. W. Lenstra, Jr., on finding generators for the unit groups of subrings of number fields. Lenstra discovered that from the point of view of computational complexity, it is advantageous to first consider the units of the ring of S-integers of L for some moderately large finite set of places S. This amounts to allowing denominators which only involve a prescribed finite set of primes. We will de- velop a generalization of Lenstra's method which applies to find generators of small height for the S-integral points of certain algebraic groups G defined over number fields. We will focus on G which are compact forms of GLd for d ≥ 1. In the second half of the course, we will turn to smooth projective surfaces defined by arithmetic lattices. These are Shimura varieties of complex dimension 2. We will try to generate subgroups of finite index in the fundamental groups of these surfaces by the fundamental groups of finite unions of totally geodesic projective curves on them, that is, via immersed Shimura curves. In both settings, the groups we will study are S-arithmetic lattices in a prod- uct of Lie groups over local fields. We will use the structure of our generating sets to consider several open problems about the geometry, group theory, and arithmetic of these lattices.
    [Show full text]
  • Local Class Field Theory Via Lubin-Tate Theory and Applications
    Local Class Field Theory via Lubin-Tate Theory and Applications Misja F.A. Steinmetz Supervisor: Prof. Fred Diamond June 2016 Abstract In this project we will introduce the study of local class field theory via Lubin-Tate theory following Yoshida [Yos08]. We explain how to construct the Artin map for Lubin-Tate extensions and we will show this map gives an isomorphism onto the Weil group of the maximal Lubin-Tate extension of our local field K: We will, furthermore, state (without proof) the other results needed to complete a proof of local class field theory in the classical sense. At the end of the project, we will look at a result from a recent preprint of Demb´el´e,Diamond and Roberts which gives an 1 explicit description of a filtration on H (GK ; Fp(χ)) for K a finite unramified extension of Qp and × χ : GK ! Fp a character. Using local class field theory, we will prove an analogue of this result for K a totally tamely ramified extension of Qp: 1 Contents 1 Introduction 3 2 Local Class Field Theory5 2.1 Formal Groups..........................................5 2.2 Lubin-Tate series.........................................6 2.3 Lubin-Tate Modules.......................................7 2.4 Lubin-Tate Extensions for OK ..................................8 2.5 Lubin-Tate Groups........................................9 2.6 Generalised Lubin-Tate Extensions............................... 10 2.7 The Artin Map.......................................... 11 2.8 Local Class Field Theory.................................... 13 1 3 Applications: Filtration on H (GK ; Fp(χ)) 14 3.1 Definition of the filtration.................................... 14 3.2 Computation of the jumps in the filtration..........................
    [Show full text]
  • Arithmetic Duality Theorems
    Arithmetic Duality Theorems Second Edition J.S. Milne Copyright c 2004, 2006 J.S. Milne. The electronic version of this work is licensed under a Creative Commons Li- cense: http://creativecommons.org/licenses/by-nc-nd/2.5/ Briefly, you are free to copy the electronic version of the work for noncommercial purposes under certain conditions (see the link for a precise statement). Single paper copies for noncommercial personal use may be made without ex- plicit permission from the copyright holder. All other rights reserved. First edition published by Academic Press 1986. A paperback version of this work is available from booksellers worldwide and from the publisher: BookSurge, LLC, www.booksurge.com, 1-866-308-6235, [email protected] BibTeX information @book{milne2006, author={J.S. Milne}, title={Arithmetic Duality Theorems}, year={2006}, publisher={BookSurge, LLC}, edition={Second}, pages={viii+339}, isbn={1-4196-4274-X} } QA247 .M554 Contents Contents iii I Galois Cohomology 1 0 Preliminaries............................ 2 1 Duality relative to a class formation . ............. 17 2 Localfields............................. 26 3 Abelianvarietiesoverlocalfields.................. 40 4 Globalfields............................. 48 5 Global Euler-Poincar´echaracteristics................ 66 6 Abelianvarietiesoverglobalfields................. 72 7 An application to the conjecture of Birch and Swinnerton-Dyer . 93 8 Abelianclassfieldtheory......................101 9 Otherapplications..........................116 AppendixA:Classfieldtheoryforfunctionfields............126
    [Show full text]
  • Number Theory
    Number Theory Alexander Paulin October 25, 2010 Lecture 1 What is Number Theory Number Theory is one of the oldest and deepest Mathematical disciplines. In the broadest possible sense Number Theory is the study of the arithmetic properties of Z, the integers. Z is the canonical ring. It structure as a group under addition is very simple: it is the infinite cyclic group. The mystery of Z is its structure as a monoid under multiplication and the way these two structure coalesce. As a monoid we can reduce the study of Z to that of understanding prime numbers via the following 2000 year old theorem. Theorem. Every positive integer can be written as a product of prime numbers. Moreover this product is unique up to ordering. This is 2000 year old theorem is the Fundamental Theorem of Arithmetic. In modern language this is the statement that Z is a unique factorization domain (UFD). Another deep fact, due to Euclid, is that there are infinitely many primes. As a monoid therefore Z is fairly easy to understand - the free commutative monoid with countably infinitely many generators cross the cyclic group of order 2. The point is that in isolation addition and multiplication are easy, but together when have vast hidden depth. At this point we are faced with two potential avenues of study: analytic versus algebraic. By analytic I questions like trying to understand the distribution of the primes throughout Z. By algebraic I mean understanding the structure of Z as a monoid and as an abelian group and how they interact.
    [Show full text]
  • Algebraic Number Theory II
    Algebraic number theory II Uwe Jannsen Contents 1 Infinite Galois theory2 2 Projective and inductive limits9 3 Cohomology of groups and pro-finite groups 15 4 Basics about modules and homological Algebra 21 5 Applications to group cohomology 31 6 Hilbert 90 and Kummer theory 41 7 Properties of group cohomology 48 8 Tate cohomology for finite groups 53 9 Cohomology of cyclic groups 56 10 The cup product 63 11 The corestriction 70 12 Local class field theory I 75 13 Three Theorems of Tate 80 14 Abstract class field theory 83 15 Local class field theory II 91 16 Local class field theory III 94 17 Global class field theory I 97 0 18 Global class field theory II 101 19 Global class field theory III 107 20 Global class field theory IV 112 1 Infinite Galois theory An algebraic field extension L/K is called Galois, if it is normal and separable. For this, L/K does not need to have finite degree. For example, for a finite field Fp with p elements (p a prime number), the algebraic closure Fp is Galois over Fp, and has infinite degree. We define in this general situation Definition 1.1 Let L/K be a Galois extension. Then the Galois group of L over K is defined as Gal(L/K) := AutK (L) = {σ : L → L | σ field automorphisms, σ(x) = x for all x ∈ K}. But the main theorem of Galois theory (correspondence between all subgroups of Gal(L/K) and all intermediate fields of L/K) only holds for finite extensions! To obtain the correct answer, one needs a topology on Gal(L/K): Definition 1.2 Let L/K be a Galois extension.
    [Show full text]
  • Weil Groups and $ F $-Isocrystals
    Weil groups and F -Isocrystals Richard Crew The University of Florida December 19, 2017 Introduction The starting point for local class field theory in most modern treatments is the classification of central simple algebras over a local field K. On the other hand an old theorem of Dieudonn´e[6] may interpreted as saying that when K is absolutely unramified and of characteristic zero any such algebra is the endomorphism algebra of an isopentic F -isocrystal on the completion Knr of a maximal unramified extension of K. In fact the restrictions on K can be removed by a suitably generalizing the notion of F -isocrystal, so one is led to ask if there approach to local class field theory based on the structure theory of F -isocrystals. One aim of this article is to carry out this project, and we will find that it gives a particularly quick approach to most of the main results of local class field theory, the exception being the existence theorem. We will not need many of the more technical results of group cohomology such as the Tate-Nakayama theorem or the “ugly lemma” of [4, Ch. 6 §1.5], and the formal properties of the norm residue symbol follow from the construction rather than the usual cohomological formalism. In this approach one sees a close relation between two topics not normally associated with each other. The first is a celebrated formula of Dwork for the norm residue symbol in the case of a totally ramified abelian extension. A generalization of Dwork’s formula valid for any finite Galois extension can be unearthed from the exercises in chapter XIII of [10].
    [Show full text]
  • On the Non-Abelian Global Class Field Theory
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/268165110 On the non-abelian global class field theory Article · September 2013 DOI: 10.1007/s40316-013-0004-9 CITATION READS 1 19 1 author: Kazım Ilhan Ikeda Bogazici University 15 PUBLICATIONS 28 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: The Langlands Reciprocity and Functoriality Principles View project All content following this page was uploaded by Kazım Ilhan Ikeda on 10 January 2018. The user has requested enhancement of the downloaded file. On the non-abelian global class field theory Kazımˆ Ilhan˙ Ikeda˙ –Dedicated to Robert Langlands for his 75th birthday – Abstract. Let K be a global field. The aim of this speculative paper is to discuss the possibility of constructing the non-abelian version of global class field theory of K by “glueing” the non-abelian local class field theories of Kν in the sense of Koch, for each ν ∈ hK, following Chevalley’s philosophy of ideles,` and further discuss the relationship of this theory with the global reciprocity principle of Langlands. Mathematics Subject Classification (2010). Primary 11R39; Secondary 11S37, 11F70. Keywords. global fields, idele` groups, global class field theory, restricted free products, non-abelian idele` groups, non-abelian global class field theory, ℓ-adic representations, automorphic representations, L-functions, Langlands reciprocity principle, global Langlands groups. 1. Non-abelian local class field theory in the sense of Koch For details on non-abelian local class field theory (in the sense of Koch), we refer the reader to the papers [21, 23, 24, 50] as well as Laubie’s work [37].
    [Show full text]
  • Questions and Remarks to the Langlands Program
    Questions and remarks to the Langlands program1 A. N. Parshin (Uspekhi Matem. Nauk, 67(2012), n 3, 115-146; Russian Mathematical Surveys, 67(2012), n 3, 509-539) Introduction ....................................... ......................1 Basic fields from the viewpoint of the scheme theory. .............7 Two-dimensional generalization of the Langlands correspondence . 10 Functorial properties of the Langlands correspondence. ................12 Relation with the geometric Drinfeld-Langlands correspondence . 16 Direct image conjecture . ...................20 A link with the Hasse-Weil conjecture . ................27 Appendix: zero-dimensional generalization of the Langlands correspondence . .................30 References......................................... .....................33 Introduction The goal of the Langlands program is a correspondence between representations of the Galois groups (and their generalizations or versions) and representations of reductive algebraic groups. The starting point for the construction is a field. Six types of the fields are considered: three types of local fields and three types of global fields [L3, F2]. The former ones are the following: 1) finite extensions of the field Qp of p-adic numbers, the field R of real numbers and the field C of complex numbers, arXiv:1307.1878v1 [math.NT] 7 Jul 2013 2) the fields Fq((t)) of Laurent power series, where Fq is the finite field of q elements, 3) the field of Laurent power series C((t)). The global fields are: 4) fields of algebraic numbers (= finite extensions of the field Q of rational numbers), 1I am grateful to R. P. Langlands for very useful conversations during his visit to the Steklov Mathematical institute of the Russian Academy of Sciences (Moscow, October 2011), to Michael Harris and Ulrich Stuhler, who answered my sometimes too naive questions, and to Ilhan˙ Ikeda˙ who has read a first version of the text and has made several remarks.
    [Show full text]
  • 22 Ring Class Fields and the CM Method
    18.783 Elliptic Curves Spring 2015 Lecture #22 04/30/2015 22 Ring class fields and the CM method p Let O be an imaginary quadratic order of discriminant D, let K = Q( D), and let L be the splitting field of the Hilbert class polynomial HD(X) over K. In the previous lecture we showed that there is an injective group homomorphism Ψ: Gal(L=K) ,! cl(O) that commutes with the group actions of Gal(L=K) and cl(O) on the set EllO(C) = EllO(L) of roots of HD(X) (the j-invariants of elliptic curves with CM by O). To complete the proof of the the First Main Theorem of Complex Multiplication, which asserts that Ψ is an isomorphism, we need to show that Ψ is surjective; this is equivalent to showing the HD(X) is irreducible over K. At the end of the last lecture we introduced the Artin map p 7! σp, which sends each unramified prime p of K to the unique automorphism σp 2 Gal(L=K) for which Np σp(x) ≡ x mod q; (1) for all x 2 OL and primes q of L dividing pOL (recall that σp is independent of q because Gal(L=K) ,! cl(O) is abelian). Equivalently, σp is the unique element of Gal(L=K) that Np fixes q and induces the Frobenius automorphism x 7! x of Fq := OL=q, which is a generator for Gal(Fq=Fp), where Fp := OK =p. Note that if E=C has CM by O then j(E) 2 L, and this implies that E can be defined 2 3 by a Weierstrass equation y = x + Ax + B with A; B 2 OL.
    [Show full text]
  • 22 Ring Class Fields and the CM Method
    18.783 Elliptic Curves Spring 2017 Lecture #22 05/03/2017 22 Ring class fields and the CM method Let O be an imaginary quadratic order of discriminant D, and let EllO(C) := fj(E) 2 C : End(E) = Cg. In the previous lecture we proved that the Hilbert class polynomial Y HD(X) := HO(X) := X − j(E) j(E)2EllO(C) has integerp coefficients. We then defined L to be the splitting field of HD(X) over the field K = Q( D), and showed that there is an injective group homomorphism Ψ: Gal(L=K) ,! cl(O) that commutes with the group actions of Gal(L=K) and cl(O) on the set EllO(C) = EllO(L) of roots of HD(X). To complete the proof of the the First Main Theorem of Complex Multiplication, which asserts that Ψ is an isomorphism, we need to show that Ψ is surjective, equivalently, that HD(X) is irreducible over K. At the end of the last lecture we introduced the Artin map p 7! σp, which sends each unramified prime p of K (prime ideal of OK ) to the corresponding Frobenius element σp, which is the unique element of Gal(L=K) for which Np σp(x) ≡ x mod q; (1) for all x 2 OL and primes qjp (prime ideals of OL that divide the ideal pOL); the existence of a single σp 2 Gal(L=K) satisfying (1) for all qjp follows from the fact that Gal(L=K) ,! cl(O) is abelian. The Frobenius element σp can also be characterized as follows: for each prime qjp the finite field Fq := OL=q is an extension of the finite field Fp := OK =p and the automorphism σ¯p 2 Gal(Fq=Fp) defined by σ¯p(¯x) = σ(x) (where x 7! x¯ is the reduction Np map OL !OL=q), is the Frobenius automorphism x 7! x generating Gal(Fq=Fp).
    [Show full text]
  • The Twelfth Problem of Hilbert Reminds Us, Although the Reminder Should
    Some Contemporary Problems with Origins in the Jugendtraum Robert P. Langlands The twelfth problem of Hilbert reminds us, although the reminder should be unnecessary, of the blood relationship of three subjects which have since undergone often separate devel• opments. The first of these, the theory of class fields or of abelian extensions of number fields, attained what was pretty much its final form early in this century. The second, the algebraic theory of elliptic curves and, more generally, of abelian varieties, has been for fifty years a topic of research whose vigor and quality shows as yet no sign of abatement. The third, the theory of automorphic functions, has been slower to mature and is still inextricably entangled with the study of abelian varieties, especially of their moduli. Of course at the time of Hilbert these subjects had only begun to set themselves off from the general mathematical landscape as separate theories and at the time of Kronecker existed only as part of the theories of elliptic modular functions and of cyclotomicfields. It is in a letter from Kronecker to Dedekind of 1880,1 in which he explains his work on the relation between abelian extensions of imaginary quadratic fields and elliptic curves with complex multiplication, that the word Jugendtraum appears. Because these subjects were so interwoven it seems to have been impossible to disentangle the different kinds of mathematics which were involved in the Jugendtraum, especially to separate the algebraic aspects from the analytic or number theoretic. Hilbert in particular may have been led to mistake an accident, or perhaps necessity, of historical development for an “innigste gegenseitige Ber¨uhrung.” We may be able to judge this better if we attempt to view the mathematical content of the Jugendtraum with the eyes of a sophisticated contemporary mathematician.
    [Show full text]