Worms and Spiders: Reflection Calculi and Ordinal Notation Systems David Fernández-Duque Institute de Recherche en Informatique de Toulouse, Toulouse University, France. Department of Mathematics, Ghent University, Belgium.
[email protected] To the memory of Professor Grigori Mints. Abstract We give a general overview of ordinal notation systems arising from reflec- tion calculi, and extend the to represent impredicative ordinals up to those representable using Buchholz-style collapsing functions. 1 Introduction I had the honor of receiving the Gödel Centenary Research Prize in 2008 based on work directed by my doctoral advisor, Grigori ‘Grisha’ Mints. The topic of my dis- sertation was dynamic topological logic, and while this remains a research interest of mine, in recent years I have focused on studying polymodal provability logics. These logics have proof-theoretic applications and give rise to ordinal notation systems, al- though previously only for ordinals below the Feferman-Shütte ordinal, Γ . I last arXiv:1605.08867v3 [math.LO] 3 Oct 2017 0 saw Professor Mints in the First International Wormshop in 2012, where he asked if we could represent the Bachmann-Howard ordinal, ψ(εΩ+1), using provability logics. It seems fitting for this volume to once again write about a problem posed to me by Professor Mints. Notation systems for ψ(εΩ+1) and other ‘impredicative’ ordinals are a natural 0 1 step in advancing Beklemishev’s Π1 ordinal analysis to relatively strong theories This work was partially funded by ANR-11-LABX-0040-CIMI within the program ANR-11-IDEX- 0002-02. 1 0 The Π1 ordinal of a theory T is a way to measure its ‘consistency strength’.