Draft Washington State Status Report for the Tufted Puffin

Total Page:16

File Type:pdf, Size:1020Kb

Draft Washington State Status Report for the Tufted Puffin PUBLIC REVIEW DRAFT Washington State Status Report for the Tufted Puffin Tufted Puffin at Tatoosh Island, Washington (Photo © Charles Bergman) Thor Hanson The SeaDoc Society, 942 Deer Harbor Road, Eastsound, WA 98245 Gary J. Wiles Washington Department of Fish and Wildlife, 600 Capitol Way N, Olympia, WA 98501-1091 Washington Department of Fish and Wildlife Wildlife Program 600 Capitol Way N Olympia, WA 98501-1091 August 2014 The Washington Department of Fish and Wildlife maintains a list of endangered, threatened, and sensitive species (Washington Administrative Codes 232-12-014 and 232-12-011, Appendix B). In 1990, the Washington Fish and Wildlife Commission adopted listing procedures developed by a group of citizens, interest groups, and state and federal agencies (Washington Administrative Code 232-12-297, Appendix B). The procedures include how species listing will be initiated, criteria for listing and delisting, public review standards, and guiding principles for recovery and management of listed species. The first step in the process is to develop a preliminary species status report. The report includes a review of information relevant to the species’ status in Washington and addresses factors affecting its status including, but not limited to: historical, current, and future species population trends; natural history including ecological relationships; historical and current habitat trends; population demographics and their relationship to long term sustainability; and historical and current species management activities. The procedures then provide for a 90-day public review opportunity for interested parties to submit new scientific data relevant to the draft status report and classification recommendation. During the 90-day review period, the Department will hold two public meetings to take comments and answer questions: one in eastern Washington and one in western Washington. At the close of the comment period, the Department incorporates new information and prepares the final status report and listing recommendation for presentation to the Washington Fish and Wildlife Commission. The final report and recommendations are then released for public review 30 days prior to the Commission presentation. This current draft version of the Tufted Puffin status report is being distributed for public review. This report should be cited as: Hanson, T. and G. J. Wiles. 2014. Draft Washington state status report for the Tufted Puffin. Washington Department of Fish and Wildlife, Olympia, Washington. 64 pp. Cover photo © Charles Bergman Back cover photo © Bill Hoglund PUBLIC REVIEW DRAFT August 2014 i Washington Department of Fish and Wildlife TABLE OF CONTENTS ACKNOWLEDGMENTS ........................................................................................................................... iv EXECUTIVE SUMMARY .......................................................................................................................... v INTRODUCTION ........................................................................................................................................ 1 TAXONOMY ............................................................................................................................................... 2 DESCRIPTION............................................................................................................................................. 2 GEOGRAPHICAL DISTRIBUTION........................................................................................................... 3 World ......................................................................................................................................................... 3 North America ........................................................................................................................................... 3 Washington ................................................................................................................................................ 3 NATURAL HISTORY ................................................................................................................................. 4 Daily Habits ............................................................................................................................................... 4 Diet and Foraging ...................................................................................................................................... 5 Reproduction, Longevity, and Survival..................................................................................................... 7 Migration and Dispersal ............................................................................................................................ 8 Molting ...................................................................................................................................................... 9 Ecological Relationships ........................................................................................................................... 9 Diseases and Parasites ............................................................................................................................. 10 HABITAT REQUIREMENTS ................................................................................................................... 11 POPULATION STATUS AND TRENDS ................................................................................................. 11 Global Status and Trends ........................................................................................................................ 12 Washington Status and Trends ................................................................................................................ 14 HABITAT STATUS ................................................................................................................................... 17 Past .......................................................................................................................................................... 17 Present and Future ................................................................................................................................... 18 CONSERVATION STATUS ..................................................................................................................... 19 RESEARCH, MONITORING, AND RESTORATION ............................................................................. 20 FACTORS AFFECTING CONTINUED EXISTENCE ............................................................................. 21 Adequacy of Existing Regulatory Mechanisms ...................................................................................... 21 Reduced Prey Availability....................................................................................................................... 22 Climate Change Effects ........................................................................................................................... 25 Environmental Contaminants .................................................................................................................. 27 Introduced Species .................................................................................................................................. 29 Commercial and Tribal Fishing Bycatch ................................................................................................. 31 Human Disturbance ................................................................................................................................. 32 Bald Eagle Predation ............................................................................................................................... 32 Other Factors ........................................................................................................................................... 32 CONCLUSIONS AND RECOMMENDATION ........................................................................................ 33 LITERATURE CITED ............................................................................................................................... 35 PERSONAL COMMUNICATIONS AND SOURCES OF UNPUBLISHED DATA .............................. 48 Appendix A. Counts of Tufted Puffins at breeding sites and other locations in Washington, 1886-2013. ............................................................................................................................................... 49 Appendix B. Washington Administrative Codes 232-12-011, 232-12-014, and 232-12-297 and Revised Codes of Washington 77.15.120 and 77.15.130. ..................................................................................... 59 PUBLIC REVIEW DRAFT August 2014 ii Washington Department of Fish and Wildlife LISTS OF TABLES AND FIGURES TABLES Table 1. Name, location, and occupancy status of documented Tufted Puffin breeding sites in Washington……...………………………………………………………………………………… 4 Table 2. Population trends of Tufted Puffins in North America …………….…………………………... 13 Table 3. Changes in the numbers and sizes of breeding colonies of Tufted Puffins in Washington from the late 1800s to 2007-2010….…………………………………………………………….. 15 FIGURES Figure 1. Hourly attendance patterns of Tufted Puffins at Tatoosh Island, Washington, from June 1 to August 24, 2005–2008, averaged across years ...…..…………………………………… 5 Figure 2. Population trends (abundance or density) for Tufted Puffins
Recommended publications
  • Assessment of Alaska Reindeer Populations and Range Conditions
    Paper presented at The First Arctic Ungulate Conference, Nuuk, Greenland, 3-8. September, 1991. Assessment of Alaska reindeer populations and range conditions J. D. Swanson1 and M. H. W. Barker2 1 USDA Soil Conservation Service, 201 E. 9th Avenue, Suite 300, Anchorage, Alaska 99501, U.S.A. 2 Department of Biological Sciences, University of Alaska Anchorage, Alaska 99508, U.S.A. Abstract: Populations of reindeer (Rangifer tarandus) have fluctated greatly since their introduction to Alaska in 1891. In the 1930s, reported numbers exceeded 600,000. Presently, 38,000 reindeer graze 6.2 million ha of rangeland and woodland in Western Alaska (from 66°54'N to 52°07'N latitude). Condition of winter range producing fruticose lichens (Cladina rangiferina, Cladina arbuscula, Cladina stellaris, Cetraria cucullata, Cetra- ria islandica) is of major concern. Monitoring programs have been established for vegetation, fire, reindeer and wildlife. Reindeer have overgrazed lichen resources on some Bering Sea Islands. Wildfires have had the greatest impact on lichen range depletion on the mainland. Overgrazing has been a problem in localized areas. Moose (AIces alces) and muskox (Ovibos moschatus) rarely contribute to major lichen depletion. 60-80% of the mainland and 5-30% of most island winter lichen ranges are presently estimated to be in good to excel• lent ecological condition. Procedures for assessing condition of the lichen ranges are being further refined. Keywords: Alaska, winter, pastures, lichens, population dynamics, sampling techniques Rangifer, 12 (1): 33-43 Introduction Siberian reindeer herders were originally Sheldon Jackson, General Agent of Education brought to instruct local natives in reindeer in Alaska, toured the northern coasts of Siberia husbandry and herding techniques (Brickey, and Alaska in 1890.
    [Show full text]
  • Extrusion of Contracaecum Osculatum Nematode Larvae from Liver of Cod (Gadus Morhua)
    Extrusion of Contracaecum osculatum nematode larvae from liver of cod (Gadus morhua) S. Zuo · L. Barlaup · A. Mohammadkarami · A. Al-Jubury · D. Chen · P.W. Kania · K. Buchmann Abstract Baltic cod livers have during recent years been found increasingly and heavily infected with third stage larvae of Contracaecum osculatum. The infections are associated with an increasing population of grey seals which are final hosts for the parasite. Heavy worm burdens challenge utilization and safety of the fish liver products and technological solutions for removal of worms are highly needed. We investigated the attachment of the worm larvae in liver tissue by use of histochemical techniques and found that the cod host encapsulates the worm larva in layers of host cells (macrophages, fibroblasts) supported by enclosures of collagen and calcium. A series of incubation techniques, applying compounds targeting molecules in the capsule, were then tested for their effect to induce worm escape/release reactions. Full digestion solutions comprising pepsin, NaCl, HCl and water induced a fast escape of more than 60 % of the worm larvae within 20 min and gave full release within 65 min but the liver tissue became highly dispersed. HCl alone, in concentrations of 48 and 72 mM, triggered a corresponding release of worm larvae with minor effect on liver integrity. A lower HCl concentration of 24 mM resulted in 80 % release within 35 min. Water and physiological saline had no effect on worm release and 1 % pepsin in water elicited merely a weak escape reaction. Besides the direct effect of acid on worm behavior it is hypothesized that the acid effect on calcium carbonate in the encapsulation, with subsequent release of reaction products, may contribute to activation of C.
    [Show full text]
  • Status and Occurrence of Parakeet Auklet (Aethia Psittacula) in British Columbia
    Status and Occurrence of Parakeet Auklet (Aethia psittacula) in British Columbia. By Rick Toochin and Louis Haviland. Introduction and Distribution The Parakeet Auklet (Aethia psittacula) is a small species of auklet found breeding in the Beringia region of Alaska and Russia (Gaston and Jones 1998). This species has an Alaskan population estimated at 1 million birds (Gaston and Jones 1998). There is also a Russian population, but the exact population total is not known, due to a lack of population inventory work, but it is estimated to number about 400,000 birds with the vast majority, about 300,000 birds, found in the Sea of Okhotsk (Gaston and Jones 1998). The Parakeet Auklet has breeding colonies that are found on rocky mainland points and islands in the Gulf of Alaska (Jones et al. 2001). These sites include: Shumagin Island, Semidi Isand, Chirikof Island near Kodiak, locally in Kenai Peninsula and southeastern Alaska with small numbers south to St. Lazaria, Hazy and Forrester Island; and in the Aleutian Islands west to Buldir and Agattu Island; and in the Bering Sea at Little Diomede, St. Lawrence Island, King Island, St. Matthew Island, Pribilof Island and Nunivak Island (Sowls et al. 1978). The Parakeet Auklet also breeds in Russia in the Kurile Island chain with colonies on Chirinkontan, Lovushki, Raikoke, Matua, Yankicha, Simushir, Brat Chirpoev, Urup, and Iturup Island (Jones et al. 2001, Brazil 2009). They are also breeding on islands in the Sea of Okhotsk with colonies on Sakhalin, Tyuleniy, Iona, Talan, and Yamskyie Island (Jones et al. 2001, Brazil 2009). The Parakeet Auklet is also found breeding on Commander Island, and northwards locally along coast of the Kamchatka Peninsula, on Karaginski Island, Cape Navarin, and on Chukotka Peninsula (Konyukhov 1989, Kondratyev et al.
    [Show full text]
  • Insights at Morphological Features of Contracaecum Rudolphii Hartwich
    Journal of Entomology and Zoology Studies 2017; 5(3): 116-119 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Insights at morphological features of Contracaecum JEZS 2017; 5(3): 116-119 © 2017 JEZS rudolphii Hartwich, 1964 (Nematoda: Anisakidae) as Received: 19-03-2017 Accepted: 20-04-2017 revealed by scanning electron microscope (SEM) Azhar A Al-Moussawi Iraq Natural History Museum, Azhar A Al-Moussawi University of Baghdad, Bab Al-Muadham, Baghdad, Iraq Abstract The present study provides morphological description of adults (male and female) of Contracaecum rudolphii Hartwich, 1964 collected from the proventriculus and ventriculus of the cormorant Phalacrocorax carbo (Linnaeus, 1758) in Iraq using scanning electron microscopy (SEM) showing the structures of cephalic extremity of the nematode, labium, interlabium, papillae in the dorsal labium, the morphology of caudal papillae in male, phasmids, the shape of the tip of spicule which considers as a characteristic feature of this species. A comparison with previous studies is provided. Keywords: Phalacrocorax carbo, nematode, Contracaecum rudolphii, morphology, scanning electron microscopy 1. Introduction [1] Phalacrocorax carbo is one of birds wintering in suitable water bodies in Iraq . It consumes fishes, young fishes and fingerlings of fish farms in Iraq [2], and serves as a final host for some helminthes. Few papers have been carried out on parasitic helminthes of P. carbo in Iraq, including Abed [3] who isolated three larvae of Contracaecum (Contracaecum sp.1 [4] Contracaecum sp.2 Contracaecum sp.3) ; Khudhaier et al. who reported the cestode [5] Haploparaxis crassirostris ; Al-Moussawi and Mohammad recorded Contracaecum rudolphii ; Mohammad and Al-Moussawi [6] isolated the trematode Paryphostomum testitrifolium and the cestode Paradilepis scolecina ; later, Al-Tameemi [7] reported the cestode P.
    [Show full text]
  • Breeding Biology of the Horned Puffin on St. Lawrence Island, Bering Sea, with Zoogeographical Notes on the North Pacific Puffins I
    Pacific Science (1973), Vol. 27, No.2, p. 99-119 Printed in Great Britain Breeding Biology of the Horned Puffin on St. Lawrence Island, Bering Sea, with Zoogeographical Notes on the North Pacific Puffins I SPENCER G. SEALY' THE HORNED PUFFIN (Fratercula corniculata) is one of six species ofalcids which regularly nest on Sevuokuk Mountain, 3 km east of Gambell on St. Lawrence Island, Alaska (Fig. 1). During the summers of 1966 and 1967, I conducted on this island a study of the breeding ecology of three of these species, the Parakeet Auklet (Cyc/orrf?ynchuspsittacula), Crested Auklet (Aethia cristatella), and Least Auklet (A. pusilla) (see Sealy, 1968). During these summers some ob­ servations on the breeding biology of the Horn­ ed Puffin were obtained and are reported here. The only life history study ofthis species which spans the entire breeding season is that of Swartz (1966) in the Cape Thompson region, Alaska, some 560 km north of St. Lawrence Island (Fig. 2). Numerous studies of the biology of the con­ generic Common Puffin (Fratercula arctica) of the Atlantic and Arctic oceans are available (e.g., Lockley, 1953; Be1opol'skii, 1957; Uspen­ ski, 1958; Myrberget, 1959, 1961, 1962; Kartas­ chew, 1960; Nettleship, 1972; and others) and some of these will be utilized here for compara­ tive purposes. When available, comparative ob­ servations on the breeding biology of the other Pacific puffins, the Rhinoceros Auklet (Ceror­ hinca monocerata), which is actually a puffin (Storer, 1945), and the Tufted Puffin (Lunda cirrhata) will also be included. DISTRIBUTION The breeding distribution of the Horned Puffin has been mapped recently by Udvardy (1963: 105).
    [Show full text]
  • A Mass Post-Breeding Movement of Crested Auklets Aethia Cristatella in the Chukchi Sea
    Maftei & Russ et al.: Crested Auklets in the Chukchi Sea 31 A MASS POST-BREEDING MOVEMENT OF CRESTED AUKLETS AETHIA CRISTATELLA IN THE CHUKCHI SEA MARK MAFTEI1 & RODNEY RUSS2 1High Arctic Gull Research Group, Bamfield, BC V0R 1B0, Canada ([email protected]) 2Heritage Expeditions, Christchurch 8023, NZ Submitted 23 November 2013; accepted 16 January 2014 SUMMARY MAFTEI, M. & RUSS, R. 2014. A mass post-breeding movement of Crested Auklets Aethia cristatella in the Chukchi Sea. Marine Ornithology 42: 31–34. The Crested Auklet Aethia cristatella is a highly pelagic alcid for which non-breeding movements and distribution remain poorly understood. On 18 August 2013, in the vicinity of Cape Kekurnyi at the eastern end of the Chukotski Peninsula (66°9.2′N, 169°43.6′W), we observed an uninterrupted passage of an estimated 10 560 000 Crested Auklets over a period of four hours. At the peak of the movement, birds were passing at a rate exceeding 1 000 individuals per second. While the northward movement of Crested Auklets into the Chukchi Sea is well known, our observations indicate that birds from multiple breeding colonies congregate during the post-breeding season and travel in huge numbers to locally productive foraging areas. It also seems likely either that the global population of Crested Auklets has been previously underestimated, or that recent population increases have gone undetected. Key words: Chukchi Sea, Chukotski Peninsula, Crested Auklet, post-breeding movement, world population INTRODUCTION from the bridge and main deck of the ship. From our position at anchor approximately 1.5 km offshore of Uelen, virtually all of the In August and September of 2013, the ship Professor Khromov was migrating auklets were visible in one vertical field of view.
    [Show full text]
  • Foraging Radii and Energetics of Least Auklets (Aethia Pusilla) Breeding on Three Bering Sea Islands
    647 Foraging Radii and Energetics of Least Auklets (Aethia pusilla) Breeding on Three Bering Sea Islands Bryan S. Obst1·* Robert W. Russell2·t 2 George L. Hunt, Jr. ·; Zoe A. Eppler·§ Nancy M. Harrison2·ll 1Departmem of Biology, University of California, Los Angeles, California 90024; 2Depanment of Ecology and Evolutionary Biology, University of California, Irvine, California 92717 Accepted 11/18/94 Abstract We studied the relationship between the foraging radius and energy economy of least auklets (Aethia pusilla) breeding in colonies on three islands in the Bering Sea (St. Lawrence, St. Matthew, and St. George Islands). The distan:ce to which auklets commuted on foraging trips varied by more than an order of magnitude (5-56 km), but mean field metabolic rate (FMR) did not vary significantly among birds from the three islands. These observations indicate that allocation to various compartments of time and energy budgets is flexible and suggest that least auklets may have a preferred level ofdaily energy expenditure that is simi­ lar across colonies. We modeled the partitioning of energy to various activities and hypothesize that the added cost of commuting incurred by auktets from St. Lawrence Island (foraging radius, 56 km) was offiet by reduced energy costs while foraging at sea. Data on bird diets and prey abundances indicated that aukletsfrom St. Lawrence Island fed on larger, more energy-rich copepods than did aukletsfrom St. Matthew island (foraging radius, 5 km) but that depth-aver­ aged prey density did not differ significantly between the birds' principal forag­ ing areas. However, previous studies have indicated that zooplankton abun­ dance is vertically compressed into near-surface layers in stratified waters off St.
    [Show full text]
  • Monitoring of Populations and Productivity of Seabirds at St
    OCS Study MMS 90-0049 Monitoring Seabird Populations in Areas of Oil and Gas Development on the Alaskan Continental ShelE MONITORING OF POPULATIONS AND PRODUCTIVITY OF SEABIRDS AT ST. GEORGE ISLAND, CAPE PEIRCE, AND BLUFF, ALASKA, 1989 Final Report Edited by Vivian M. Mendenhall U. S. Fish & Wildlife Service Migratory Bird Management Marine and Coastal Bird Project Anchorage, Alaska OCS Study MMS 90-0049 MONITORING OF POPULATIONS AND PRODUCTIVITY OF SEABIRDS AT ST. GEORGE ISLAND, CAPE PIERCE, AND BLUFF, ALASKA, 1989 Edited by Vivian M. Mendenhall U.S. Fish and Wildlife Service Migratory Bud Management Marine and Coastal Birds Project 101 1 East Tudor Rd. Anchorage, Alaska 99503 Submitted to: Minds Management Service Environment Studies Unit 949 East 36th Avenue Anchorage, Alaska 995 10 April 1991 The opinions, findings, conclusions, or recommendations expressed in this report are those of the authors and do not necessarily reflect the views of the Minerals Management Service, nor does mention of trade names or commercial products constitute endorsement or recommendation for use by the Federal Government of the United States. TABLE OF CONTENTS LIST OF TABLES ......................................................................................................... v LIST OF RGURES ........................................................................................................... ix ABSTRACT ..................................................................................................................... xi 1. INTRODUCTION................................................................................................
    [Show full text]
  • Parasite Loss Or Parasite Gain? Story of Contracaecum Nematodes in Antipodean Waters
    Parasite Epidemiology and Control 3 (2019) e00087 Contents lists available at ScienceDirect Parasite Epidemiology and Control journal homepage: www.elsevier.com/locate/parepi Parasite loss or parasite gain? Story of Contracaecum nematodes in antipodean waters Shokoofeh Shamsi School of Animal and Veterinary Sciences, Graham Centre for Agricultural Innovations, Charles Sturt University, Australia article info abstract Article history: Contracaecum spp. are parasitic nematodes belonging to the family Anisakidae. They are known to Received 26 October 2018 be able to have highly pathogenic impacts on both wildlife (fish, birds, marine mammals) and Received in revised form 16 January 2019 humans. Despite having the most numerous species of any genus of Anisakidae, and despite a Accepted 16 January 2019 wide range of publications on various aspects of their pathogenicity, biology and ecology, there are no recent comprehensive reviews of these important parasites, particularly in the Southern Hemisphere. In this article, the diversity of Contracaecum parasites in Australian waters is reviewed and possible anthropological impacts on their populations are discussed. The abundance and diver- sity of these parasites may have been under-reported due to the inadequacy of common methods used to find them. Populations of Contracaecum parasites may be increasing due to anthropogenic factors. To minimise the risk these parasites pose to public health, preventive education of stake- holders is essential. There are still many unknown aspects of the parasites, such as detailed informa- tion on life cycles and host switching, that will be interesting directions for future studies. © 2019 Published by Elsevier Ltd on behalf of World Federation of Parasitologists. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by- nc-nd/4.0/).
    [Show full text]
  • Worms, Germs, and Other Symbionts from the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor
    h ' '' f MASGC-B-78-001 c. 3 A MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico CRCDU7M COPY Sea Grant Depositor NATIONAL SEA GRANT DEPOSITORY \ PELL LIBRARY BUILDING URI NA8RAGANSETT BAY CAMPUS % NARRAGANSETT. Rl 02882 Robin M. Overstreet r ii MISSISSIPPI—ALABAMA SEA GRANT CONSORTIUM MASGP—78—021 MARINE MALADIES? Worms, Germs, and Other Symbionts From the Northern Gulf of Mexico by Robin M. Overstreet Gulf Coast Research Laboratory Ocean Springs, Mississippi 39564 This study was conducted in cooperation with the U.S. Department of Commerce, NOAA, Office of Sea Grant, under Grant No. 04-7-158-44017 and National Marine Fisheries Service, under PL 88-309, Project No. 2-262-R. TheMississippi-AlabamaSea Grant Consortium furnish ed all of the publication costs. The U.S. Government is authorized to produceand distribute reprints for governmental purposes notwithstanding any copyright notation that may appear hereon. Copyright© 1978by Mississippi-Alabama Sea Gram Consortium and R.M. Overstrect All rights reserved. No pari of this book may be reproduced in any manner without permission from the author. Primed by Blossman Printing, Inc.. Ocean Springs, Mississippi CONTENTS PREFACE 1 INTRODUCTION TO SYMBIOSIS 2 INVERTEBRATES AS HOSTS 5 THE AMERICAN OYSTER 5 Public Health Aspects 6 Dcrmo 7 Other Symbionts and Diseases 8 Shell-Burrowing Symbionts II Fouling Organisms and Predators 13 THE BLUE CRAB 15 Protozoans and Microbes 15 Mclazoans and their I lypeiparasites 18 Misiellaneous Microbes and Protozoans 25 PENAEID
    [Show full text]
  • Monitoring Recovery of Overgrazed Lichen Communities on Hagemeister Island, Southwestern Alaska Patrick Walsh1 & Trevor Goward2
    Monitoring recovery of overgrazed lichen communities on Hagemeister Island, southwestern Alaska Patrick Walsh1 & Trevor Goward2 1 U.S. Fish and Wildlife Service, Togiak National Wildlife Refuge, P.O. Box 270, Dillingham, Alaska 99576, USA 1 (Corresponding author: [email protected]). 2 UBC Herbarium, Beaty Museum, University of British Columbia, Vancouver, BC V6T 1Z4, Canada. Abstract: Understanding the recovery rate of overgrazed lichen communities has value to mangers of lands in northern regions. We describe lichen community composition and present recovery rate measurements for a 12-year period following overgrazing by reindeer (Rangifer tarandus) on Hagemeister Island, Alaska. Reindeer were removed from the island in 1993 following overgrazing and average total lichen biomass increased from 504.2 kg/ha (SD 205.4) in 2003 to 795.3 (SD 489.6) in 2015. We estimate time to recovery with three competing growth curves which estimate grazeable biomass may be reached in 34-41 years. However, estimates of full recovery to climax biomass varied among the models, ranging from 71 to 400 years. In 2015, lichen communities were composed of various mixtures of at least 78 lichen taxa, and were dominated by Cladina stygia and other important reindeer forage species. While reindeer overgrazing diminished forage quantity, it did not extirpate preferred forage taxa. Key words: Range recovery; Rangifer tarandus; grazing management. Rangifer, 41, (1), 2021: 1-12 DOI 10.7557/2.41.1.5340 Introduction Hagemeister Island, located in Bristol Bay to reduce the reindeer population from 1,000 to of the Bering Sea, is characterized by various 450 (Swanson & LaPlant, 1987). The reindeer shrub and tundra plant and lichen communi- population was not reduced, and a 1987 survey ties (Fig.
    [Show full text]
  • SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does Not Include Alcidae
    SHOREBIRDS (Charadriiformes*) CARE MANUAL *Does not include Alcidae CREATED BY AZA CHARADRIIFORMES TAXON ADVISORY GROUP IN ASSOCIATION WITH AZA ANIMAL WELFARE COMMITTEE Shorebirds (Charadriiformes) Care Manual Shorebirds (Charadriiformes) Care Manual Published by the Association of Zoos and Aquariums in association with the AZA Animal Welfare Committee Formal Citation: AZA Charadriiformes Taxon Advisory Group. (2014). Shorebirds (Charadriiformes) Care Manual. Silver Spring, MD: Association of Zoos and Aquariums. Original Completion Date: October 2013 Authors and Significant Contributors: Aimee Greenebaum: AZA Charadriiformes TAG Vice Chair, Monterey Bay Aquarium, USA Alex Waier: Milwaukee County Zoo, USA Carol Hendrickson: Birmingham Zoo, USA Cindy Pinger: AZA Charadriiformes TAG Chair, Birmingham Zoo, USA CJ McCarty: Oregon Coast Aquarium, USA Heidi Cline: Alaska SeaLife Center, USA Jamie Ries: Central Park Zoo, USA Joe Barkowski: Sedgwick County Zoo, USA Kim Wanders: Monterey Bay Aquarium, USA Mary Carlson: Charadriiformes Program Advisor, Seattle Aquarium, USA Sara Perry: Seattle Aquarium, USA Sara Crook-Martin: Buttonwood Park Zoo, USA Shana R. Lavin, Ph.D.,Wildlife Nutrition Fellow University of Florida, Dept. of Animal Sciences , Walt Disney World Animal Programs Dr. Stephanie McCain: AZA Charadriiformes TAG Veterinarian Advisor, DVM, Birmingham Zoo, USA Phil King: Assiniboine Park Zoo, Canada Reviewers: Dr. Mike Murray (Monterey Bay Aquarium, USA) John C. Anderson (Seattle Aquarium volunteer) Kristina Neuman (Point Blue Conservation Science) Sarah Saunders (Conservation Biology Graduate Program,University of Minnesota) AZA Staff Editors: Maya Seaman, MS, Animal Care Manual Editing Consultant Candice Dorsey, PhD, Director of Animal Programs Debborah Luke, PhD, Vice President, Conservation & Science Cover Photo Credits: Jeff Pribble Disclaimer: This manual presents a compilation of knowledge provided by recognized animal experts based on the current science, practice, and technology of animal management.
    [Show full text]