Energy and Momentum Conservation: the Ballistic Pendulum

Total Page:16

File Type:pdf, Size:1020Kb

Energy and Momentum Conservation: the Ballistic Pendulum Energy and Momentum Conservation: The Ballistic Pendulum Introduction: With energy and momentum conservation, you can calculate the initial velocity of a metal ball fired by a spring launcher. Given this initial velocity, the projectile motion equations predict the firing distance of a Ballistic Pendulum. You will confirm your prediction by shooting a metal ball at a target. This will require precise measuring skills, a sharp eye, serious calculations, and strong arms. Required Equipment: Beck ballistic pendulum assembly w/ spring gun, ball, pendulum, meter sticks, rulers, plumb bob Study I: Measure Parameters 1. [DT1] Center of mass of ball/pendulum system: Place the ball in the pendulum cup. Remove the pendulum from the support arm and place it on a “knife edge” and locate a position where it balances. Mark the pendulum with a felt-tip pen “dot” to locate the center-of-mass. Use this dot as a reference for all y measurements. Reattach the pendulum securely to the support arm. 2. [DT1] Record the mass of the pendulum and ball. Ignore errors in these mass values. 3. [DT1] Measure and record the height, yo, of your dot (the center of mass of the ball-pendulum system) above the pendulum base. You can neglect the uncertainty in yo. Measuring in midair is difficult, so you’ve been provided with a wooden ruler with metal edges/triangles and a plastic ruler. Make a caliper with the wooden ruler and use the metal edges to accurately estimate the height. The plastic ruler is not necessary, but some groups find it helpful to measure between the metal edges. Study I: Firing the gun 4. Load the spring-gun: put the ball in place and push back until the spring is latched. This is difficult! 5. Lower the pendulum and make sure that it can swing freely and the opening in the bob is lined up with the gun. Each time you fire the spring gun, make sure that the pendulum is securely fastened to the support arm assembly at the top. 6. [DT2] Starting with the pendulum at rest, shoot the ball into the cup. The pendulum (and ball) will swing up and lock into some particular tooth in the rack. Measure the elevation (ymax) of the center of mass above the pendulum base. Ultimately you care about the change in height of the pendulum, but it is easier to line the bottom of the ruler with the base than yo. 7. [DT2] Take five trials. If the position for a trial is much different from the others, something may have happened during the firing and you should discard this measurement and repeat it. 8. [DT3] Use Graphical Analysis to calculate the average and standard deviation of your data. Use an “index” variable, create a plot, and hit the STAT button. 1 Study I: Collision of Ballistic Pendulum Data Table 1: Measured Parameters – Ballistic Pendulum yo mball M pendulum Table 2: Height of pendulum swing Trial 1 2 3 4 5 ymax Table 3: Statistical Data for ymax (don't print graph for STATS!) Average Uncertainty Standard Deviation ymax ymax ymax =/ N Steps 1-3 will help you to calculate the initial velocity OF THE PENDULUM using the change in energy AFTER the collision. Remember that MKS (meters, kilograms, seconds) make your life easier. 1. Calculate the change of the height of the (center of mass of the) pendulum: 2. The pendulum undergoes a change in potential energy due to the change in height. Determine the mass of the pendulum while it swings and calculate: U=mass∗g∗ y pend 3. The pendulum loses kinetic energy as it swings. What is its final kinetic energy? Why? 4. You want the initial velocity of the pendulum, which appears in the formula for kinetic energy. In order to calculate vo of the pendulum, assume that energy is conserved E=0 and combine the kinetic and potential energy. 2 2 K=1/2∗mass∗ vf −vo− pend 5. Calculate the initial velocity OF THE BALL using conservation of momentum DURING the collision. The formula is simple pi= pf . Initially only the ball has momentum, so pi=mball∗v o−ball . After the collision, both masses move together with a common velocity v o− pend . Calculate the momentum AFTER the collision and solve for v o−ball : 2 Study II: Projectile Motion (DON'T Fire without a TA Witness!). Remove the pendulum from the support arm and set it aside. You're going to check your calculation from Study I with a projectile launch (no collision). If you have room at your station to set up a firing range, use your table for the following measurements. If you are at the center of the classroom, set up a target range at one of the tables or benches at the perimeter of the classroom. 1. Measure Y, the height of the ball above ground and use the equations from projectile motion to predict the horizontal range of the ball. You will need your result from Study I for the initial velocity of the ball. 2 yt=−1/2gt voy t y o and xt=vox txo 2. You need to calculate an error in the range value, so you can make a paper target. This is simple if you've done a symbolic calculation for v ox−ball in terms of the change of height y pend , but quite difficult otherwise. a) It turns out v ox is proportional to y pend and you can use the following rule for square roots: v y ox = pend v ox 2 y pend b) Once you've found the relative error in v ox , the range will have the same relative error (ignore uncertainty in the height measurement). Calculate the absolute error in the range. 3. Once you’ve completed the calculations, you are ready to make a paper target and move to your firing range (remember DON'T FIRE!). The idea is that you can use the uncertainty calculated above to make real life error bars. That way you're not trying to hit a single place on your target. Target Range +/- uncertainty 3 4. Bonus point opportunity (5 possible points): Carefully measure where you expect your ball to land and place your paper target. Get it aligned as best as you can. Have a TA look at your work and set up. Be sure you have a TA witness before firing your shot. You can earn 5 bonus points for hitting the target on the first try. Alignment will be tricky: use the long meter sticks, the plumb bob, the floor tiles, and your eyes so you can find to get the pendulum lined up with the catch box. A plumb bob is designed to make a vertical line so that you can more accurately measure from heights; get a lesson from the TA if you don’t know how to use one. 5. When ready get a piece of carbon paper and your TA. After the TA has had a look at your calculations and target, place the carbon paper carbon-side down on the target (don’t use tape). FIRE! Hit Target! Missed Target! TA Witness Initials: 6. After the TA has witnessed the first shot, replace the carbon paper and shoot 5 more times. Use masking to tape to check for recoil of the entire assembly. You may have to move the pendulum between firings so that it always has the same initial starting position. Trial 1 2 3 4 5 Range 7. After completing the trials, estimate the uncertainty in the range based on the spread of points on the paper. 8. Calculate the initial velocity (given the average range value). Calculate the uncertainty in vox based on your estimated uncertainty in the range. Discussion Questions. 1. Is the mechanical energy conserved in the collision between the ball and the pendulum? Does this matter in your calculations (i.e. did you use conservation of energy to describe this part of the experiment?). 2. Why is it a reasonable assumption that E=0 during the pendulum swing? What are some of the problems with this assumption? Identify sources of systematic and random uncertainty in this lab. 3. How do your results support the concepts of conservation of momentum and energy? Explain with your data. 4. What explains the range of values you measured for ∆y and X, the range of the ball? Could these be attributed to “human error” or is something else going on? 5. Compare your values of vox from Studies I&II.ᅠ Do they agree within error? 4.
Recommended publications
  • Chapter 7. the Principle of Least Action
    Chapter 7. The Principle of Least Action 7.1 Force Methods vs. Energy Methods We have so far studied two distinct ways of analyzing physics problems: force methods, basically consisting of the application of Newton’s Laws, and energy methods, consisting of the application of the principle of conservation of energy (the conservations of linear and angular momenta can also be considered as part of this). Both have their advantages and disadvantages. More precisely, energy methods often involve scalar quantities (e.g., work, kinetic energy, and potential energy) and are thus easier to handle than forces, which are vectorial in nature. However, forces tell us more. The simple example of a particle subjected to the earth’s gravitation field will clearly illustrate this. We know that when a particle moves from position y0 to y in the earth’s gravitational field, the conservation of energy tells us that ΔK + ΔUgrav = 0 (7.1) 1 2 2 m v − v0 + mg(y − y0 ) = 0, 2 ( ) which implies that the final speed of the particle, of mass m , is 2 v = v0 + 2g(y0 − y). (7.2) Although we know the final speed v of the particle, given its initial speed v0 and the initial and final positions y0 and y , we do not know how its position and velocity (and its speed) evolve with time. On the other hand, if we apply Newton’s Second Law, then we write −mgey = maey dv (7.3) = m e . dt y This equation is easily manipulated to yield t v = dv ∫t0 t = − gdτ + v0 (7.4) ∫t0 = −g(t − t0 ) + v0 , - 138 - where v0 is the initial velocity (it appears in equation (7.4) as a constant of integration).
    [Show full text]
  • Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda
    Dynamics of the Elastic Pendulum Qisong Xiao; Shenghao Xia ; Corey Zammit; Nirantha Balagopal; Zijun Li Agenda • Introduction to the elastic pendulum problem • Derivations of the equations of motion • Real-life examples of an elastic pendulum • Trivial cases & equilibrium states • MATLAB models The Elastic Problem (Simple Harmonic Motion) 푑2푥 푑2푥 푘 • 퐹 = 푚 = −푘푥 = − 푥 푛푒푡 푑푡2 푑푡2 푚 • Solve this differential equation to find 푥 푡 = 푐1 cos 휔푡 + 푐2 sin 휔푡 = 퐴푐표푠(휔푡 − 휑) • With velocity and acceleration 푣 푡 = −퐴휔 sin 휔푡 + 휑 푎 푡 = −퐴휔2cos(휔푡 + 휑) • Total energy of the system 퐸 = 퐾 푡 + 푈 푡 1 1 1 = 푚푣푡2 + 푘푥2 = 푘퐴2 2 2 2 The Pendulum Problem (with some assumptions) • With position vector of point mass 푥 = 푙 푠푖푛휃푖 − 푐표푠휃푗 , define 푟 such that 푥 = 푙푟 and 휃 = 푐표푠휃푖 + 푠푖푛휃푗 • Find the first and second derivatives of the position vector: 푑푥 푑휃 = 푙 휃 푑푡 푑푡 2 푑2푥 푑2휃 푑휃 = 푙 휃 − 푙 푟 푑푡2 푑푡2 푑푡 • From Newton’s Law, (neglecting frictional force) 푑2푥 푚 = 퐹 + 퐹 푑푡2 푔 푡 The Pendulum Problem (with some assumptions) Defining force of gravity as 퐹푔 = −푚푔푗 = 푚푔푐표푠휃푟 − 푚푔푠푖푛휃휃 and tension of the string as 퐹푡 = −푇푟 : 2 푑휃 −푚푙 = 푚푔푐표푠휃 − 푇 푑푡 푑2휃 푚푙 = −푚푔푠푖푛휃 푑푡2 Define 휔0 = 푔/푙 to find the solution: 푑2휃 푔 = − 푠푖푛휃 = −휔2푠푖푛휃 푑푡2 푙 0 Derivation of Equations of Motion • m = pendulum mass • mspring = spring mass • l = unstreatched spring length • k = spring constant • g = acceleration due to gravity • Ft = pre-tension of spring 푚푔−퐹 • r = static spring stretch, 푟 = 푡 s 푠 푘 • rd = dynamic spring stretch • r = total spring stretch 푟푠 + 푟푑 Derivation of Equations of Motion
    [Show full text]
  • Measuring Earth's Gravitational Constant with a Pendulum
    Measuring Earth’s Gravitational Constant with a Pendulum Philippe Lewalle, Tony Dimino PHY 141 Lab TA, Fall 2014, Prof. Frank Wolfs University of Rochester November 30, 2014 Abstract In this lab we aim to calculate Earth’s gravitational constant by measuring the period of a pendulum. We obtain a value of 9.79 ± 0.02m/s2. This measurement agrees with the accepted value of g = 9.81m/s2 to within the precision limits of our procedure. Limitations of the techniques and assumptions used to calculate these values are discussed. The pedagogical context of this example report for PHY 141 is also discussed in the final remarks. 1 Theory The gravitational acceleration g near the surface of the Earth is known to be approximately constant, disregarding small effects due to geological variations and altitude shifts. We aim to measure the value of that acceleration in our lab, by observing the motion of a pendulum, whose motion depends both on g and the length L of the pendulum. It is a well known result that a pendulum consisting of a point mass and attached to a massless rod of length L obeys the relationship shown in eq. (1), d2θ g = − sin θ, (1) dt2 L where θ is the angle from the vertical, as showng in Fig. 1. For small displacements (ie small θ), we make a small angle approximation such that sin θ ≈ θ, which yields eq. (2). d2θ g = − θ (2) dt2 L Eq. (2) admits sinusoidal solutions with an angular frequency ω. We relate this to the period T of oscillation, to obtain an expression for g in terms of the period and length of the pendulum, shown in eq.
    [Show full text]
  • Conservation of Linear Momentum: the Ballistic Pendulum
    Conservation of Linear Momentum: the Ballistic Pendulum I. Discussion a. Determination of Velocity from Collision In the typical use made of a ballistic pendulum, a projectile, having a small mass, m, and a horizontal velocity, v, strikes and imbeds itself in a pendulum bob, having a large mass, M, and an initial horizontal velocity of zero. Immediately after the collision occurs the combined mass, M + m, of the bob and projectile has a small horizontal velocity, V. During this collision the conservation of linear momentum holds. If rotational effects are ignored, and if it is assumed that the time required for this event to take place is too short to allow the projectile to be substantially influenced by the earth's gravitational field, the motion remains horizontal, and mv = ( M + m ) V (1) After the collision has occurred, the combined mass, (M + m), rises along a circular arc to a vertical height h in the earth's gravitational field, as shown in Fig. l (c). During this portion of the motion, but not during the collision itself, the conservation of energy holds, if it is assumed that the effects of friction are negligible. Then, for motion along the arc, 1 2 ( M + m ) V = ( M + m) gh , or (2) 2 V = 2 gh (3) When V is eliminated using equations 1 and 3, the velocity of the projectile is v = M + m 2 gh (4) m b. Determination of Velocity from Range When a projectile, having an initial horizontal velocity, v, is fired from a height H above a plane, its horizontal range, R, is given by R = v t x o (5) and the height H is given by 1 2 H = gt (6) 2 where t = time during which projectile is in flight.
    [Show full text]
  • Leonhard Euler - Wikipedia, the Free Encyclopedia Page 1 of 14
    Leonhard Euler - Wikipedia, the free encyclopedia Page 1 of 14 Leonhard Euler From Wikipedia, the free encyclopedia Leonhard Euler ( German pronunciation: [l]; English Leonhard Euler approximation, "Oiler" [1] 15 April 1707 – 18 September 1783) was a pioneering Swiss mathematician and physicist. He made important discoveries in fields as diverse as infinitesimal calculus and graph theory. He also introduced much of the modern mathematical terminology and notation, particularly for mathematical analysis, such as the notion of a mathematical function.[2] He is also renowned for his work in mechanics, fluid dynamics, optics, and astronomy. Euler spent most of his adult life in St. Petersburg, Russia, and in Berlin, Prussia. He is considered to be the preeminent mathematician of the 18th century, and one of the greatest of all time. He is also one of the most prolific mathematicians ever; his collected works fill 60–80 quarto volumes. [3] A statement attributed to Pierre-Simon Laplace expresses Euler's influence on mathematics: "Read Euler, read Euler, he is our teacher in all things," which has also been translated as "Read Portrait by Emanuel Handmann 1756(?) Euler, read Euler, he is the master of us all." [4] Born 15 April 1707 Euler was featured on the sixth series of the Swiss 10- Basel, Switzerland franc banknote and on numerous Swiss, German, and Died Russian postage stamps. The asteroid 2002 Euler was 18 September 1783 (aged 76) named in his honor. He is also commemorated by the [OS: 7 September 1783] Lutheran Church on their Calendar of Saints on 24 St. Petersburg, Russia May – he was a devout Christian (and believer in Residence Prussia, Russia biblical inerrancy) who wrote apologetics and argued Switzerland [5] forcefully against the prominent atheists of his time.
    [Show full text]
  • Exact Solution for the Nonlinear Pendulum (Solu¸C˜Aoexata Do Pˆendulon˜Aolinear)
    Revista Brasileira de Ensino de F¶³sica, v. 29, n. 4, p. 645-648, (2007) www.sb¯sica.org.br Notas e Discuss~oes Exact solution for the nonlinear pendulum (Solu»c~aoexata do p^endulon~aolinear) A. Bel¶endez1, C. Pascual, D.I. M¶endez,T. Bel¶endezand C. Neipp Departamento de F¶³sica, Ingenier¶³ade Sistemas y Teor¶³ade la Se~nal,Universidad de Alicante, Alicante, Spain Recebido em 30/7/2007; Aceito em 28/8/2007 This paper deals with the nonlinear oscillation of a simple pendulum and presents not only the exact formula for the period but also the exact expression of the angular displacement as a function of the time, the amplitude of oscillations and the angular frequency for small oscillations. This angular displacement is written in terms of the Jacobi elliptic function sn(u;m) using the following initial conditions: the initial angular displacement is di®erent from zero while the initial angular velocity is zero. The angular displacements are plotted using Mathematica, an available symbolic computer program that allows us to plot easily the function obtained. As we will see, even for amplitudes as high as 0.75¼ (135±) it is possible to use the expression for the angular displacement, but considering the exact expression for the angular frequency ! in terms of the complete elliptic integral of the ¯rst kind. We can conclude that for amplitudes lower than 135o the periodic motion exhibited by a simple pendulum is practically harmonic but its oscillations are not isochronous (the period is a function of the initial amplitude).
    [Show full text]
  • B3 Momentum Key Question: How Well Is Momentum Conserved in Collisions?
    INVESTIGATION B3 Collaborative Learning This investigation is Exploros-enabled for tablets. See page xiii for details. B3 Momentum Key Question: How well is momentum conserved in collisions? The law of conservation of momentum is the second of Materials for each group the great conservation laws in physics, after the law of y Colliding pendulum kit conservation of energy. In this investigation, students observe elastic collisions between balls of the same and y Physics stand* differing masses. The speed of each ball before and after y Two photogates* each collision is determined, and the total momentum y DataCollector* before and after each collision is calculated. Students y Calculator* compare the total momentum before and after each collision to determine how well momentum is conserved. y Balance or digital scale, accurate to 1 gram (for the class)* Learning Goals *provided by the teacher ✔ Perform elastic collisions between balls of various masses. Online Resources Available at curiosityplace.com ✔ Calculate the velocity and momentum of the balls before and after each collision. y Equipment Video: Colliding Pendulum y Skill and Practice Sheets ✔ Determine whether momentum is conserved in each collision. y Whiteboard Resources y Animation: Changes in Momentum GETTING STARTED y Science Content Video: Newton’s Third Law y Student Reading: Newton’s Third Law and Momentum Time 100 minutes Setup and Materials 1. Make copies of investigation sheets for students. 2. Watch the equipment video. 3. Review all safety procedures with students. NGSS Connection This investigation builds conceptual understanding and skills for the following performance expectation. HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.
    [Show full text]
  • Leonhard Euler's Elastic Curves Author(S): W
    Leonhard Euler's Elastic Curves Author(s): W. A. Oldfather, C. A. Ellis and Donald M. Brown Source: Isis, Vol. 20, No. 1 (Nov., 1933), pp. 72-160 Published by: The University of Chicago Press on behalf of The History of Science Society Stable URL: http://www.jstor.org/stable/224885 Accessed: 10-07-2015 18:15 UTC Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/ info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press and The History of Science Society are collaborating with JSTOR to digitize, preserve and extend access to Isis. http://www.jstor.org This content downloaded from 128.138.65.63 on Fri, 10 Jul 2015 18:15:50 UTC All use subject to JSTOR Terms and Conditions LeonhardEuler's ElasticCurves (De Curvis Elasticis, Additamentum I to his Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes, Lausanne and Geneva, 1744). Translated and Annotated by W. A. OLDFATHER, C. A. ELLIS, and D. M. BROWN PREFACE In the fall of I920 Mr. CHARLES A. ELLIS, at that time Professor of Structural Engineering in the University of Illinois, called my attention to the famous appendix on elastic curves by LEONHARD EULER, which he felt might well be made available in an English translationto those students of structuralengineering who were interested in the classical treatises which constitute landmarks in the history of this ever increasingly important branch of scientific and technical achievement.
    [Show full text]
  • Pendulum.Pdf
    previous index next The Pendulum Michael Fowler The Simple Pendulum Galileo was the first to record that the period of a swinging lamp high in a cathedral was independent of the amplitude of the oscillations, at least for the small amplitudes he could observe. In 1657, Huygens constructed the first pendulum clock, a vast improvement in timekeeping over all previous techniques. So the pendulum was the first oscillator of real technological importance. Simple pendulum: a mass m at the end of a rigid light rod of length l, constrained to rotate in a vertical plane. mg sin mg cos In fact, though, the pendulum is not quite a simple harmonic oscillator: the period does depend on the amplitude, but provided the angular amplitude is kept small, this is a small effect. The weight mg of the bob (the mass at the end of the light rod) can be written in terms of components parallel and perpendicular to the rod. The component parallel to the rod balances the tension in the rod. The component perpendicular to the rod accelerates the bob, d 2 ml mg sin . dt 2 The mass cancels between the two sides, pendulums of different masses having the same length behave identically. (In fact, this was one of the first tests that inertial mass and gravitational mass are indeed equal: pendulums made of different materials, but the same length, had the same period.) 2 For small angles, the equation is close to that for a simple harmonic oscillator, d 2 lg , dt 2 with frequency gl/ , that is, time of one oscillation T 2 l / g .
    [Show full text]
  • Conical Pendulum – Linearization Analyses
    European J of Physics Education Volume 7 Issue 3 1309-7202 Dean et al. Conical Pendulum – Linearization Analyses Kevin Dean1 Jyothi Mathew2 Physics Department The Petroleum Institute Abu Dhabi, PO Box 2533 United Arab Emirates [email protected] [email protected] (Received: 08.02.2017, Accepted: 13.02.2017) Abstract A theoretical analysis is presented, showing the derivations of seven different linearization equations for the conical pendulum period T, as a function of radial and angular parameters. Experimental data obtained over a large range of fixed conical pendulum lengths (0.435 m – 2.130 m) are plotted with the theoretical lines and demonstrate excellent agreement. Two of the seven derived linearization equations were considered to be especially useful in terms of student understanding and relative mathematical simplicity. These linear analysis methods consistently gave an agreement of approximately 1.5% between the theoretical and experimental values for g, the acceleration due to gravity. An equation is derived theoretically (from two different starting equations), showing that the conical pendulum length L appropriate for a second pendulum can only occur within a defined limit: L [ g / (4 2)]. It is therefore possible to calculate the appropriate circular radius R or apex angle (0 / 2) for any length L in the calculated limit, so that the conical pendulum will have a one second period. A general equation is also derived for the period T, for periods other than one second. Keywords: Conical pendulum, theoretical linearization, experimental results INTRODUCTION The physics of an oscillating pendulum (simple and conical) can often be considered as somewhat challenging for pre-university students (Czudková and Musilová, 2000), but should not pose a significant problem for typical undergraduates.
    [Show full text]
  • Measuring the Mass of the Earth Using a Simple Pendulum
    Name _________________________________________________________ Section ____________ Measuring the Mass of the Earth Using a Simple Pendulum Foucault's Pendulum in its original setting, the Pantheon building in Paris Objective To measure the mass of the Earth by deriving the local acceleration due to gravity acting on a simple pendulum. Materials • stopwatch • meter stick Introduction A simple pendulum is one that can be considered to be a point mass suspended from a string or rod of negligible mass. For small amplitudes, the period of such a pendulum can be approximated by: where T represents the period in seconds, L is the length of the string in meters, and g is 2 = π L the acceleration due to gravity measured in meters per second . This expression for the T 2 period is reasonably accurate for angles of a few degrees, and we will assume the swing g angle is small for our purposes. The treatment of the large amplitude pendulum is much more complex (and thus not worried about here). Take a few moments to study this equation. How would the period change (for a constant g) if the length of the string were made longer? Shorter? How would the period change (keeping the length constant) if we were to do the experiment on the Moon where g is smaller? Jupiter, where g is larger? Does this all make sense? Think about how one might adjust an old grandfather clock if it were running too fast or too slow. π 2 So, where does this leave us? Well, we can measure the length of the pendulum and = 2 we can measure the period of oscillation, and thus calculate the value of g.
    [Show full text]
  • The Dynamics of the Elastic Pendulum
    MATH MODELING MIDTERM REPORT MATH 485, Instructor: Dr. Ildar Gabitov, Mentor: Joseph Gibney THE DYNAMICS OF THE ELASTIC PENDULUM A group project proposal with preliminary research by Corey Zammit, Nirantha Balagopal, Zijun Li, Shenghao Xia, and Qisong Xiao 1. An Introduction to the System Considered The system of the elastic pendulum consists of a spring, connected to a pivot, suspending a mass. This spring can have many different properties among these are stiffness which can be considered a constant in some practical cases, so the spring has a linear reaction force when extended and compressed. Typically a spring that one would find in real-life applications is either an extension spring or a compression spring (and this will be discussed in greater detail in section 5) however for simplified models and preliminary research we find it practical to consider the case where this spring behaves in a Hookian manor in both extension and compression. This assumption, however, does beg this question among others: Does the spring bend as shown in Figure 1 when compressed ever, and how would this effect the behavior of the system? One way to answer this question is to acknowledge that assumptions such as the ones that follow need to be made to analyze this system, and in any case, behaviors such as these are not easy to analyze and would involve making many more assumptions that could be equally unsatisfying. We will be considering two regimes of this system in our preliminary research with the same assumptions and will pose questions for further research with suggestions for different assumptions.
    [Show full text]