remote sensing Article Synergistic Use of Hyperspectral UV-Visible OMI and Broadband Meteorological Imager MODIS Data for a Merged Aerosol Product Sujung Go 1,2 , Jhoon Kim 1,* , Sang Seo Park 3, Mijin Kim 1,4,5, Hyunkwang Lim 1, Ji-Young Kim 6, Dong-Won Lee 6 and Jungho Im 3 1 Department of Atmospheric Sciences, Yonsei University, Seoul 03722, Korea;
[email protected] (S.G.);
[email protected] (M.K.);
[email protected] (H.L.) 2 Joint Center for Earth Systems Technology, University of Maryland Baltimore County, Baltimore, MD 21250, USA 3 School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Korea;
[email protected] (S.S.P.);
[email protected] (J.I.) 4 Universities Space Research Association (USRA), Columbia, MD 21046, USA 5 NASA Goddard Space Flight Center (GSFC), Greenbelt, MD 20771, USA 6 National Institute of Environmental Research (NIER), Incheon 22689, Korea;
[email protected] (J.-Y.K.);
[email protected] (D.-W.L.) * Correspondence:
[email protected]; Tel.: +82-2-2123-5682; Fax: +82-2-365-5163 Received: 28 September 2020; Accepted: 1 December 2020; Published: 5 December 2020 Abstract: The retrieval of optimal aerosol datasets by the synergistic use of hyperspectral ultraviolet (UV)–visible and broadband meteorological imager (MI) techniques was investigated. The Aura Ozone Monitoring Instrument (OMI) Level 1B (L1B) was used as a proxy for hyperspectral UV–visible instrument data to which the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol algorithm was applied. Moderate-Resolution Imaging Spectroradiometer (MODIS) L1B and dark target aerosol Level 2 (L2) data were used with a broadband MI to take advantage of the consistent time gap between the MODIS and the OMI.