Tread-Softly (Cnidoscolus Stimulosus)

Total Page:16

File Type:pdf, Size:1020Kb

Tread-Softly (Cnidoscolus Stimulosus) Tread-softly (Cnidoscolus stimulosus) For definitions of botanical terms, visit en.wikipedia.org/wiki/Glossary_of_botanical_terms. Tread-softly is a perennial, low-growing herbaceous wildflower. Its brilliant white blooms are slightly deceiving in that they have no petals. Rather, the “flower” consists of five, petal-like sepals. Its alternately arranged leaves are deeply lobed and dark green with contrasting palmate veins. As its name suggests, one must tread softly around this plant or else risk being stung by the many stinging hairs that cover its leaves, stems, seeds and even flowers. The hairs contain an irritant that can cause a rash in some people. Despite its stinging hairs and its inclusion in the spurge family, Tread-softly is not a true nettle. It does, however, produce the milky sap common to other members of the Euphorbiaceae family. Tread-softly is known to flower year-round. It Photo by Stacey Matrazzo occurs naturally in sandhills, scrub, pine and scrubby flatwoods, and ruderal and disturbed areas. It attracts many butterflies and other pollinators. It’s easy to see how Tread-softly gets its common name, and its scientific name is just as telling. The genus Cnidoscolus is derived from the Greek cnid, meaning “nettle” and scolus, meaning “thorn.” The species epithet comes from the Latin stimul, meaning “to goad, prod or urge,” as in a “stimulus.” Family: Euphorbiaceae (Spurge family) Native range: nearly throughout Florida To see where natural populations of Tread-softly have been Note seed pod and stem in upper left, covered in stinging hairs. vouchered, visit www.florida.plantatlas.usf.edu. Photo by Stacey Matrazzo Hardiness: Zones 8–11 Soil: Sandy, well-drained soils Exposure: Full sun to minimal shade Growth habit: 1+’ tall, up to 1’ wide Propagation: Seed Garden tips: Its interesting foliage, potential for year-round blooms and relatively low maintenance requirements makes tread-soflty a nice addition to a wildflower garden. Caution: A severe allergic reaction may occur in some people if their skin comes in contact with the plant’s hairs. Use caution when working with this plant. Florida Wildflower Foundation • 225 S. Swoope Ave., Suite 110, Maitland, FL 32751 • 407-622-1606 • www.FlaWildflowers.org.
Recommended publications
  • Hamid Et Al.: Chemical Constituents, Antibacterial, Antifungal and Antioxidant Activities
    Ife Journal of Science vol. 18, no. 2 (2016) 561 CHEMICAL CONSTITUENTS, ANTIBACTERIAL, ANTIFUNGAL AND ANTIOXIDANT ACTIVITIES OF THE AERIAL PARTS OF Cnidoscolus aconitifolius Hamid, Abdulmumeen A.1*, Oguntoye, Stephen O.1, Negi, Arvind S.2, Ajao, Ajibola1, Owolabi, Nurudeen O.1. 1Department of Chemistry, University of Ilorin, Ilorin, Nigeria 2Central Institute of Medicinal and Aromatic Plants (CIMAP), Lucknow, India *Corresponding Author: Tel No: +2347035931646 E-mail: [email protected], [email protected] (Received: 3th March, 2016; Accepted: 8th June, 2016) ABSTRACT Preliminary phytochemical investigation of crude n-Hexane, ethyl acetate and methanol extracts of the aerial parts of Cnidoscolus aconitifolius revealed the presence of anthraquinones, glycosides, steroids, flavonoids, tannins, saponins and terpenoids. All the crude extracts gave a clear zone of inhibition against the growth of the test bacteria (Staphylococcus aureus, Escherichia coli, Bacillus subtilis, Pseudomonas aeruginosa, Salmonella typhi, Klebsiellae pneumonae) and fungi (Candida albicans, Aspergillus niger, penicillium notatum and Rhizopus stolonifer) at different concentrations, except ethyl acetate extract which showed no antifungal property on Rhizopus stolonifer. Ethyl acetate and methanol extracts exhibited significant antioxidant activities by scavenging DPPH free radicals with IC50 of 12.14 and 93.85 µg/ml respectively. GC-MS analysis of n-hexane and methanol extracts showed nine compounds each, while ethyl acetate extracts afforded ten compounds. Phytol is the most abundant constituent in n-hexane, ethyl acetate and methanol extracts with their corresponding percentage of abundance of 41.07%, 35.42% and 35.07%. Keywords: Cnidoscolus aconitifolius, Antioxidant activity, GC-MS analysis, Phytochemicals, Phytol. INTRODUCTION acne, and eye problems (Diaz-Bolio, 1975).
    [Show full text]
  • First Record of Cnidoscolus Obtusifolius Pohl (Euphorbiaceae) for Paraíba State, Northeastern Brazil
    Acta Brasiliensis 4(3): 187-190, 2020 Note http://revistas.ufcg.edu.br/ActaBra http://dx.doi.org/10.22571/2526-4338378 First record of Cnidoscolus obtusifolius Pohl (Euphorbiaceae) for Paraíba State, northeastern Brazil a i b i Maiara Bezerra Ramos h , Maria Gracielle Rodrigues Maciel h , José Iranildo Miranda de c i a,c i Melo h , Sérgio de Faria Lopes a Programa de Pós-Graduação em Etnobiologia e Conservação da Natureza, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. *[email protected] b Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. c Programa de Pós-Graduação em Ecologia e Conservação, Universidade Estadual da Paraíba, Campina Grande, 58429-500, Paraíba, Brasil. Received: April 29, 2020 / Acepted: June 26, 2020/ Published online: September 28, 2020 Abstract Cnidoscolus obtusifolius Pohl (Euphorbiaceae), species so far known from Minas Gerais, Bahia, Alagoas and Pernambuco States in Brazil is reported for the first time for the State of Paraíba, in the northeastern region of the country. Specimens of this taxon were collected in a fragmented area considered a Caatinga vegetation relict, where total annual precipitation is 700 mm on average and elevation of 644 m a.s.l. The records were made in September and October 2019, when the species was in fertile stage as it bore flowers and fruits. Here we provide a description of its morphology along with taxonomic comments, data on the geographical range and detailed images of the species. Keywords: Caatinga; diversity; floristics; Malpighiales. Primeiro registro de Cnidoscolus obtusifolius Pohl (Euphorbiaceae) no estado da Paraíba, nordeste do Brasil Resumo Cnidoscolus obtusifolius Pohl (Euphorbiaceae) espécie até então conhecida para os Estados de Minas Gerais (Sudeste), Bahia, Alagoas e Pernambuco (Nordeste), Brasil, está sendo registrada pela primeira vez no Estado da Paraíba, nordeste do Brasil.
    [Show full text]
  • Photosynthesis and Antioxidant Activity in Jatropha Curcas L. Under Salt Stress
    2012 BRAZILIAN SOCIETY OF PLANT PHYSIOLOGY RESEARCH ARTICLE Photosynthesis and antioxidant activity in Jatropha curcas L. under salt stress Mariana Lins de Oliveira Campos1, Bety Shiue de Hsie1, João Antônio de Almeida Granja1, Rafaela Moura Correia1, Jarcilene Silva de Almeida-Cortez1, Marcelo Francisco Pompelli1* 1Plant Ecophysiology Laboratory, Federal University of Pernambuco, Department of Botany, Recife, PE, Brazil. *Corresponding author: [email protected] Received: 11 August 2011; Accepted: 10 May 2012 ABSTRACT Biodiesel is an alternative to petroleum diesel fuel. It is a renewable, biodegradable, and nontoxic biofuel. Interest in the production of biodiesel from Jatropha curcas L. seeds has increased in recent years, but the ability of J. curcas to grow in salt-prone areas, such as the Caatinga semiarid region, has received considerably meager attention. The aim of this study was to identify the main physiological processes that can elucidate the pattern of responses of J. curcas irrigated with saline water, which commonly occurs in the semiarid Caatinga region. This study measured the activity of the antioxidant enzymes involved in the scavenging of reactive oxygen species, which include catalase (CAT) and ascorbate peroxidase (APX), as well as malondialdehyde (MDA) levels. The levels of chlorophyll (Chl), carotenoids, amino acids, proline, and soluble proteins were also analyzed. The net carbon assimilation rate (PN), stomata conductance (gs), and transpiration rate (E) decreased with salt stress. The activities of CAT and APX were decreased, while H2O2 and MDA levels as well as electrolyte leakage were significantly increased in salt-stressed plants compared to the untreated ones. These observations suggest that the ability of J.
    [Show full text]
  • Lyonia Preserve Plant Checklist
    Lyonia Preserve Plant Checklist Volusia County, Florida Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum Bitterweed Helenium amarum Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia Nolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia Cudweed Gnaphalium falcatum Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus Fireweed Erechtites hieracifolia Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) Ragweed Ambrosia artemisiifolia Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia Spanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra Sand Holly Ilex ambigua Bromeliaceae (Airplant) Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata Spanish Moss Tillandsia usneoides Arecaceae (Palm) Saw Palmetto Serenoa repens Cactaceae (Cactus) Scrub Palmetto Sabal etonia Prickly Pear Opuntia humifusa Asclepiadaceae (Milkweed) Caesalpinceae Butterfly Weed Asclepias
    [Show full text]
  • The Following PLANTS Are Representative of the Many Species Found in the Woods
    The following PLANTS are representative of the many species found in the Woods: Trees Muscadine (Vitis rotundifolia) Poison Ivy (Rhus radicans) Black Gum (Nyssa sylvatica) Wisteria* (Wisteria sinensis) Black Jack Oak (Q. marilandica) Yellow Jessamine (Gelsimium sempervirens) Blue Jack Oak (Q. incana) Dogwood (Cornus florida) Herbs Loblolly Pine (P. taeda) Longleaf Pine (Pinus palustris) Blazing Star (Liatris spp.) Magnolia (Magnolia grandiflora) Bloodroot (Sanguinaria canadensis) Red Bay (Persea borbonia) Blue‐Eyed Grass (Sisyrinchium arenicola) Red Cedar (Juniperus virginiana) Blue Star (Amsonia spp.) Red Maple (Acer Rubrum) Butterfly Weed (Asclepias tuberosa) Redbud (Cercis canadensis) Crane‐Fly Orchid (Tipularia discolor) Short‐Leaf Pine (P. echinata) Dwarf Iris (Iris verna) Scrub Pine (P. virginiana) Green‐and‐Gold (Chrysogonum virginianum) Sourwood (Oxydendrum arboreum) Henbit (Lamium amplexicaule) Sweet Bay (M. virginiana) Hepatica (Hepatica americana) Tulip Tree (Liriodendron tulipifera) Jack‐In‐The‐Pulpit (Arisaema triphyllum) Turkey Oak (Q. laevis) Jointweed (Polygonum spp.) White Oak (Quercus alba) Lizard’s Tail (Saururus cernuus) Lupine (Lupinus spp.) Shrubs Mistletoe (Phoradendron serotinum) Partridge Berry (Mitchella repens) Blueberry (Vaccinium spp.) Pipsissewa (Chimaphila maculate) French Mulberry (Callicarpa americana) Pucoon (Lithospermum caroliniense) Hearts‐A’Burstin With Love (Euonymus americanus) Spanish Moss (Tillandsia usneoides) Holly (Ilex spp.) Spiderwort (Tradescantia spp.) Horse Sugar (Symplocos tinctoria) Sticky
    [Show full text]
  • Understory Plant Community Response to Season of Burn in Natural Longleaf Pine Forests
    UNDERSTORY PLANT COMMUNITY RESPONSE TO SEASON OF BURN IN NATURAL LONGLEAF PINE FORESTS John S. Kush and Ralph S. Meldahl School of Forestry, 108 M. White Smith Hall, Auburn University, AL 36849 William D. Boyer U.S. Department of Agriculture, Forest Service, Southern Research Station, 520 Devall Street, Auburn, AL 36849 ABSTRACT A season of burn study· was initiated in 1973 on the EscambiaExperimental Forest, near Brewton, Alabama. All study plots were established in l4-year-old longleaf pine (Pinus palustris) stands. Treatments conSisted of biennial burns in winter, spring, and summer, plus a no-burn check. Objectives of the current study were to determine composition and structure of understory plant communities after 22 years of seasonal burning, identify changes since last sampling in 1982, arid assess the structure of the communities that stabilized under each treatment regime. There were 114 species on biennial winter~burned plots, compared to 104 on spring- and summer-burned and 84 with no burning. The woody understory biomass «1 centimeter diameter at breast height) increased with all treatments compared with 1982. Grass and legume biomass increased with winter and spring burning. Forb biomass decreased across treatments. keywords: biomass, longleaf pine, Pinus palustris, plant response, prescribed fire, south Alabama, understory. Citation: Kush, 1.S., R$. Meldahl, and W.D. Boyer. 2000. Understory plant community response to season of burn in natural longleaf pine forests. Pages 32-39 inW Keith Moser and Cynthia F. Moser (eds.). Fire and forest ecology: innovative silviculture and vegetation management. Tall Timbers Fire Ecology Conference Proceedings, No. 21. Tall Timbers Research Station, Tallahassee, FL.
    [Show full text]
  • Cnidoscolus Aconitifolius: Therapeutic Use and Phytochemical Properties
    446 Rev. Fac. Med. 2020 Vol. 68 No. 3: 446-52 REVIEW ARTICLE DOI: http://dx.doi.org/10.15446/revfacmed.v68n3.75184 Received: 20/10/2018 Accepted: 21/03/2019 Revista de la Facultad de Medicina Cnidoscolus aconitifolius: therapeutic use and phytochemical properties. Literature review Cnidoscolus aconitifolius: usos terapéuticos y propiedades fitoquímicas. Revisión de la literatura Verónica Bautista-Robles1, Gabriel Guerrero-Reyes1, Gabriel Isaac Sánchez-Torres1, Felipe de Jesús Parada-Luna1, Juan José Barrios-Gutiérrez1, Dehuí Vázquez-Cerero1, Gudelia Martínez-Sala1, José Isaías Siliceo-Murrieta1, Ruth Ana María González-Villoria1, Hady Keita1 . 1 Universidad de la Sierra Sur - Postgraduate Studies Division - Master’s in Public Health - Miahuatlán de Porfirio Díaz - Oaxaca - México. Corresponding autor: Hady Keita. Maestría en Salud Pública, División de Estudios de Postgrado, Universidad de la Sierra Sur. Guillermo Rojas Mijangos S/N Esquina Avenida Universidad, Col. Ciudad Universitaria, División de Estudios de Postgrado, oficina de la Maestría en Salud Pública. Telephone number: +52 1 5513658712. Miahuatlán de Porfirio Díaz, Oaxaca. México. Email: [email protected]. Abstract Introduction: Medicinal plants have been traditionally used to cure or alleviate infectious Bautista-Robles V, Guerrero-Reyes G, and non-infectious diseases. They are widely accepted due to their low cost and low toxicity Sánchez-Torres GI, Parada-Luna FJ, Barrios-Gutiérrez JJ, Vázquez-Cerero indexes. These plants are frequently used in cases involving skin irritation, superficial wounds, D, et al. Cnidoscolus aconitifolius: the- insect bites, and snake bites. rapeutic use and phytochemical pro- Objective: To compile available evidence on the main therapeutic uses and phytochemical perties. Literature review. Rev.
    [Show full text]
  • Lyonia Preserve Plant Checklist
    I -1 Lyonia Preserve Plant Checklist Volusia County, Florida I, I Aceraceae (Maple) Asteraceae (Aster) Red Maple Acer rubrum • Bitterweed Helenium amarum • Blackroot Pterocaulon virgatum Agavaceae (Yucca) Blazing Star Liatris sp. B Adam's Needle Yucca filamentosa Blazing Star Liatris tenuifolia BNolina Nolina brittoniana Camphorweed Heterotheca subaxillaris Spanish Bayonet Yucca aloifolia § Cudweed Gnaphalium falcatum • Dog Fennel Eupatorium capillifolium Amaranthaceae (Amaranth) Dwarf Horseweed Conyza candensis B Cottonweed Froelichia floridana False Dandelion Pyrrhopappus carolinianus • Fireweed Erechtites hieracifolia B Anacardiaceae (Cashew) Garberia Garberia heterophylla Winged Sumac Rhus copallina Goldenaster Pityopsis graminifolia • § Goldenrod Solidago chapmanii Annonaceae (Custard Apple) Goldenrod Solidago fistulosa Flag Paw paw Asimina obovata Goldenrod Solidago spp. B • Mohr's Throughwort Eupatorium mohrii Apiaceae (Celery) BRa gweed Ambrosia artemisiifolia • Dollarweed Hydrocotyle sp. Saltbush Baccharis halimifolia BSpanish Needles Bidens alba Apocynaceae (Dogbane) Wild Lettuce Lactuca graminifolia Periwinkle Catharathus roseus • • Brassicaceae (Mustard) Aquifoliaceae (Holly) Poorman's Pepper Lepidium virginicum Gallberry Ilex glabra • Sand Holly Ilex ambigua Bromeliaceae (Airplant) § Scrub Holly Ilex opaca var. arenicola Ball Moss Tillandsia recurvata • Spanish Moss Tillandsia usneoides Arecaceae (Palm) • Saw Palmetto Serenoa repens Cactaceae (Cactus) BScrub Palmetto Sabal etonia • Prickly Pear Opuntia humifusa Asclepiadaceae
    [Show full text]
  • Natural Resource Condition Assessment Horseshoe Bend National Military Park
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science Natural Resource Condition Assessment Horseshoe Bend National Military Park Natural Resource Report NPS/SECN/NRR—2015/981 ON THE COVER Photo of the Tallapoosa River, viewed from Horseshoe Bend National Military Park Photo Courtesy of Elle Allen Natural Resource Condition Assessment Horseshoe Bend National Military Park Natural Resource Report NPS/SECN/NRR—2015/981 JoAnn M. Burkholder, Elle H. Allen, Stacie Flood, and Carol A. Kinder Center for Applied Aquatic Ecology North Carolina State University 620 Hutton Street, Suite 104 Raleigh, NC 27606 June 2015 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service. The series supports the advancement of science, informed decision-making, and the achievement of the National Park Service mission. The series also provides a forum for presenting more lengthy results that may not be accepted by publications with page limitations. All manuscripts in the series receive the appropriate level of peer review to ensure that the information is scientifically credible, technically accurate, appropriately written for the intended audience, and designed and published in a professional manner.
    [Show full text]
  • Nutraceutical Potential of Cnidoscolus Aconitifolius
    ARC Journal of Nutrition and Growth Volume 3, Issue 2, 2017, PP 27-30 ISSN No. (Online) 2455-2550 DOI: http://dx.doi.org/10.20431/2455-2550.0302005 www.arcjournals.org Nutraceutical Potential of Cnidoscolus aconitifolius Ivan Moises Sanchez-Hernandez, Carla Patricia Barragan-Alvarez, Omar Ricardo Torres- Gonzalez, Eduardo Padilla-Camberos* Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of Jalisco.Normalistas 800, Guadalajara, Mexico *Corresponding Author: Eduardo Padilla-Camberos, Unit of Medical and Pharmaceutical Biotechnology, Center for Research and Assistance in Technology and Design of Jalisco. Normalistas 800, Guadalajara, Mexico. Email: [email protected] Abstract: The genus Cnidoscolus belongs to the family of the Euphorbiaceae. The plant traditionally known as Chaya, is used in traditional medicine for fight cancer, as a treatment to lose weight, for high blood pressure, ulcers, diabetes mellitus, as well as kidney affections. This article is a review of the main chemical composition and biological activity reported with respect to the nutraceutical potential of Cnidoscolus aconitifolius Mill. Keywords: Cnidoscolus aconitifolius, biological activity, phytochemicals 1. INTRODUCTION antimutagenic, antioxidant, hypoglycemic, anti- inflammatory, antiprotozoal and antibacterial.[4- In Mexico exist two known species with the 6]. common name of Chaya: Cnidoscolus- chayamansa and Cnidoscolus aconitifolius, both However, there are not many reports of have been used as an ornamental and medicinal biological activity of the second variety C. plant as well as food. They belong to the family aconitifolius, some properties are the Euphorbiaceae, it is composed of 50 species hepatoprotective effect, modulation of lipid and distributed in tropical areas, mainly in profile and insulin levels, anti-inflammatory and deciduous forest and xerophytic scrub [1].
    [Show full text]
  • Population Genetics of Manihot Esculenta
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication This is a postprint version of a paper published in Journal of Biogeography (2011) 38:1033-1043; doi: 10.1111/j.1365-2699.2011.02474.x and available on the publisher’s website. EVOLUTIONARY BIOGEOGRAPHY OF MANIHOT (EUPHORBIACEAE), A RAPIDLY RADIATING NEOTROPICAL GENUS RESTRICTED TO DRY ENVIRONMENTS Anne Duputié 1, 2, Jan Salick 3, Doyle McKey 1 Aim The aims of this study were to reconstruct the phylogeny of Manihot, a Neotropical genus restricted to seasonally dry areas, to yield insight into its biogeographic history and to identify the closest wild relatives of a widely grown, yet poorly known, crop: cassava (Manihot esculenta). Location Dry and seasonally dry regions of Meso- and South America. Methods We collected 101 samples of Manihot, representing 52 species, mostly from herbaria, and two outgroups (Jatropha gossypiifolia and Cnidoscolus urens). More than half of the currently accepted Manihot species were included in our study; our sampling covered the whole native range of the genus, and most of its phenotypic and ecological variation. We reconstructed phylogenetic relationships among Manihot species using sequences for two nuclear genes and a noncoding chloroplast region. We then reconstructed the history of traits related to growth form, dispersal ecology, and regeneration ability. Results Manihot species from Mesoamerica form a grade basal to South American species. The latter species show a strong biogeographic clustering: species from the cerrado form well-defined clades, species from the caatinga of northeastern Brazil form another, and so do species restricted to forest gaps along the rim of the Amazon basin.
    [Show full text]
  • The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama
    The Vascular Flora of the Red Hills Forever Wild Tract, Monroe County, Alabama T. Wayne Barger1* and Brian D. Holt1 1Alabama State Lands Division, Natural Heritage Section, Department of Conservation and Natural Resources, Montgomery, AL 36130 *Correspondence: wayne [email protected] Abstract provides public lands for recreational use along with con- servation of vital habitat. Since its inception, the Forever The Red Hills Forever Wild Tract (RHFWT) is a 1785 ha Wild Program, managed by the Alabama Department of property that was acquired in two purchases by the State of Conservation and Natural Resources (AL-DCNR), has pur- Alabama Forever Wild Program in February and Septem- chased approximately 97 500 ha (241 000 acres) of land for ber 2010. The RHFWT is characterized by undulating general recreation, nature preserves, additions to wildlife terrain with steep slopes, loblolly pine plantations, and management areas and state parks. For each Forever Wild mixed hardwood floodplain forests. The property lies tract purchased, a management plan providing guidelines 125 km southwest of Montgomery, AL and is managed by and recommendations for the tract must be in place within the Alabama Department of Conservation and Natural a year of acquisition. The 1785 ha (4412 acre) Red Hills Resources with an emphasis on recreational use and habi- Forever Wild Tract (RHFWT) was acquired in two sepa- tat management. An intensive floristic study of this area rate purchases in February and September 2010, in part was conducted from January 2011 through June 2015. A to provide protected habitat for the federally listed Red total of 533 taxa (527 species) from 323 genera and 120 Hills Salamander (Phaeognathus hubrichti Highton).
    [Show full text]