Probenecid Reduces Alcohol Drinking in Rodents. Is Pannexin1 a Novel Therapeutic

Total Page:16

File Type:pdf, Size:1020Kb

Probenecid Reduces Alcohol Drinking in Rodents. Is Pannexin1 a Novel Therapeutic Alcohol and Alcoholism, 2019, 54(5) 497–502 doi: 10.1093/alcalc/agz054 Article Article Probenecid Reduces Alcohol Drinking in Rodents. Is Pannexin1 a Novel Therapeutic Target for Alcohol Use Disorder? Downloaded from https://academic.oup.com/alcalc/article/54/5/497/5571632 by guest on 23 September 2021 Brendan J. Tunstall1,†, Irene Lorrai2,3,†, Sam A. McConnell1, Katrina L. Gazo1, Lia J. Zallar1,4, Giordano de Guglielmo5, Ivy Hoang2, Carolina L. Haass-Koffler6, Vez Repunte-Canonigo2, George F. Koob1, Leandro F. Vendruscolo1,‡, and Pietro Paolo Sanna2,‡* 1National Institute on Drug Abuse, Intramural Research Program, National Institutes of Health, Baltimore, MD, USA, 2Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA, 3Department of Biomedical Sciences, University of Cagliari, Monserrato, Cagliari, Italy, 4National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA, 5Department of Psychiatry, University of California San Diego, La Jolla, CA, USA, and 6Center for Alcohol and Addiction Studies; Department of Psychiatry and Human Behavior; Department of Behavioral and Social Sciences, Brown University, Providence, RI, USA *Corresponding author: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, USA. E-mail: [email protected] †Contributed equally. ‡Co-Senior authors. Received 10 May 2019; Revised 3 June 2019; Editorial Decision 4 June 2019; Accepted 2 July 2019 Abstract Aims: The development of novel and more effective medications for alcohol use disorder (AUD) is an important unmet medical need. Drug repositioning or repurposing is an appealing strategy to bring new therapies to the clinic because it greatly reduces the overall costs of drug development and expedites the availability of treatments to those who need them. Probenecid, p-(di-n-propyl- sulfamyl)-benzoic acid, is a drug used clinically to treat hyperuricemia and gout due to its activity as an inhibitor of the kidneys’ organic anion transporter that reclaims uric acid from urine. Probenecid also inhibits pannexin1 channels that are involved in purinergic neurotransmission and inflammation, which have been implicated in alcohol’s effects and motivation for alcohol. Therefore, we tested the effects of probenecid on alcohol intake in rodents. Methods: We tested the effects of probenecid on operant oral alcohol self-administration in alcohol-dependent rats during acute withdrawal as well as in nondependent rats and in the drinking-in-the-dark (DID) paradigm of binge-like drinking in mice. Results: Probenecid reduced alcohol intake in both dependent and nondependent rats and in the DID paradigm in mice without affecting water or saccharin intake, indicating that probenecid’s effect was selective for alcohol and not the result of a general reduction in reward. Conclusions: These results raise the possibility that pannexin1 is a novel therapeutic target for the treatment of AUD. The clinical use of probenecid has been found to be generally safe, suggesting that it can be a candidate for drug repositioning for the treatment of AUD. © The Author(s) 2019. Medical Council on Alcohol and Oxford University Press. All rights reserved. 497 498 Alcohol and Alcoholism, 2019, Vol. 54, No. 5 INTRODUCTION testing. Male C57BL/6 J mice, 7 weeks old upon arrival (The Jackson Laboratory, Bar Harbor, ME, USA), were individually Alcohol is the most prevalent substance misused in the United States housed in standard plastic cages and kept under a reverse 12 h/12 h (SAMHSA, 2013). Approved medications for alcohol use disorder light/dark cycle with ad libitum access to food and water except dur- (AUD) have efficacy but are prescribed for fewer than 10% of US ing behavioral testing. The room was controlled for temperature patients with AUD (Jonas et al., 2014). Thus, the development of and humidity. novel and more efficacious medications for AUD is a pressing med- All procedures adhered to the National Institutes of Health ical need (Litten et al., 2012). Guide for the Care and Use of Laboratory Animals (8th edition) and Drug repositioning or repurposing is an appealing strategy to were approved by the Institutional Animal Care and Use Committee bring new therapies to the clinic because it greatly reduces the over- of The Scripps Research Institute and the National Institute on Drug all costs of drug development and expedites the availability of treat- Abuse Intramural Research Program. ments to those who need them (Nosengo, 2016). We recently observed that the glycyrrhetinic acid derivative carbenoxolone β Drugs (CBX; 3 -hydroxy-11-oxoolean-12-en-30-oic acid 3-hemisuccinate), Downloaded from https://academic.oup.com/alcalc/article/54/5/497/5571632 by guest on 23 September 2021 a medication used to treat gastritis and peptic ulcer (Bertaccini and Probenecid (Sigma Aldrich, St. Louis, MO) was administered in a Coruzzi, 1985), reduced both dependent and nondependent alcohol Latin-square design at doses previously shown to be effective in intake in rodents (Sanna et al., 2016). CBX inhibits 11β-hydroxy- studies targeting the central nervous system in mice (Dossi et al., steroid dehydrogenase (11β-HSD) isozymes, shaping cellular 2018) and rats (Mousseau et al., 2018). responses to glucocorticoids (Chapman et al., 2013), which are functionally involved in alcohol dependence in rats and AUD in Operant alcohol self-administration and alcohol vapor humans (Vendruscolo et al., 2012, 2015; Repunte-Canonigo et al., exposure 2015). In particular, 11β-HSD1 is broadly expressed in brain Oral alcohol self-administration experiments were conducted as regions relevant to alcohol’s reinforcing properties, such as the previously described using standard operant chambers (Med amygdala (Pelletier et al., 2007). CBX also inhibits pannexin1 chan- Associates, St. Albans, VT) fittedwith2retractableleversanda nels that contribute to adenosine triphosphate (ATP) release into the dual-cup liquid receptacle (Vendruscolo and Roberts, 2014). After extracellular space (Dahl, 2015). Because probenecid was also initial training to acquire operant responding for alcohol shown to inhibit pannexin1 channels (Silverman et al., 2008), we reinforcement, rats were split into 2 groups matched for alcohol tested its effect on alcohol intake, with the hypothesis that pannex- consumption. In the next phase (vapor exposure) and for the in1 channel blockade may contribute to reducing alcohol drinking. remainder of these experiments, one group of rats (nondependent In the extracellular space, ATP is hydrolyzed to adenosine group) was exposed to air without alcohol, whereas the other diphosphate (ADP) and adenosine, which contribute to the activation group of rats (dependent group) was exposed to alcohol vapor in of purinergic receptors and neuroinflammation (Silverman et al., daily cycles designed to cause intoxication (14 h vapor ‘on’; 2009; Velasquez and Eugenin, 2014). Alcohol has been shown to 200 mg/dl target blood alcohol levels [BALs]) and withdrawal increase adenosine in the extracellular space, and adenosine neuro- (10 h vapor ‘off’) to induce alcohol dependence (Vendruscolo and transmission contributes to alcohol intoxication and reinforcement Roberts, 2014). During initial training and during the vapor (Ruby et al., 2010). ATP that is released into the extracellular space exposure phase, rats in both groups were allowed 30-min operant in turn inhibits pannexin1 channel opening (Dahl, 2015). Despite sessions to lever press for alcohol (10%, w/v; 0.1 ml) and water their controlled opening, pannexin1 channels have been shown to (0.1 ml) on separate levers according to a concurrent fixed-ratio 1 promote neuronal excitability after N-methyl-D-aspartate (NMDA) (FR1) schedule of reinforcement (i.e. each lever press on each lever glutamate receptor activation (Thompson et al., 2008) and seizure resulted in fluid delivery). Operant alcohol self-administration ses- activity (Dossi et al., 2018). sions were conducted 2–3 sessions per week during the 10 h ‘off’ Probenecid is a medication used in the clinic primarily to period, 6–8 h into withdrawal. After each training session, the liquid increase uric acid excretion in the urine in hyperuricemic conditions, receptacle and surrounding area were inspected to confirm the con- such as gout, through its activity as a competitive substrate for sumption of earned reinforcers. Probenecid was injected acutely organic anion transporters (OATs) in the kidney (Pascale et al., intraperitoneally 60 min prior to behavioral testing. 1952). We observed that, similarly to CBX, probenecid reduced alcohol intake both in dependent and nondependent rats and in the drinking-in-the-dark (DID) paradigm of binge-like drinking in mice Non-drug reinforcement: saccharin self-administration (Rhodes et al., 2005). These results suggest that probenecid, a gener- in rats ally safe medication that has long been used in humans, is a candi- Rats were trained to self-administer saccharin (0.1% w/v) in 30 min date drug for repositioning for AUD and indicate that pannexin1 sessions (FR1) until all rats responded over 100 times per session on may be a potential therapeutic target for the treatment of AUD. two occasions. Next, all rats were given a baseline session of sac- charin self-administration, followed by testing a range of probenecid doses administered in a Latin-square design on consecutive days. METHODS Animals Mouse drinking-in-the-dark paradigm Male Wistar rats (Charles River, Kingston, NY), weighing 225
Recommended publications
  • Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation
    Inosine binds to A3 adenosine receptors and stimulates mast cell degranulation. X Jin, … , B R Duling, J Linden J Clin Invest. 1997;100(11):2849-2857. https://doi.org/10.1172/JCI119833. Research Article We investigated the mechanism by which inosine, a metabolite of adenosine that accumulates to > 1 mM levels in ischemic tissues, triggers mast cell degranulation. Inosine was found to do the following: (a) compete for [125I]N6- aminobenzyladenosine binding to recombinant rat A3 adenosine receptors (A3AR) with an IC50 of 25+/-6 microM; (b) not bind to A1 or A2A ARs; (c) bind to newly identified A3ARs in guinea pig lung (IC50 = 15+/-4 microM); (d) lower cyclic AMP in HEK-293 cells expressing rat A3ARs (ED50 = 12+/-5 microM); (e) stimulate RBL-2H3 rat mast-like cell degranulation (ED50 = 2.3+/-0.9 microM); and (f) cause mast cell-dependent constriction of hamster cheek pouch arterioles that is attenuated by A3AR blockade. Inosine differs from adenosine in not activating A2AARs that dilate vascular smooth muscle and inhibit mast cell degranulation. The A3 selectivity of inosine may explain why it elicits a monophasic arteriolar constrictor response distinct from the multiphasic dilator/constrictor response to adenosine. Nucleoside accumulation and an increase in the ratio of inosine to adenosine may provide a physiologic stimulus for mast cell degranulation in ischemic or inflamed tissues. Find the latest version: https://jci.me/119833/pdf Inosine Binds to A3 Adenosine Receptors and Stimulates Mast Cell Degranulation Xiaowei Jin,* Rebecca K. Shepherd,‡ Brian R. Duling,‡ and Joel Linden‡§ *Department of Biochemistry, ‡Department of Molecular Physiology and Biological Physics, and §Department of Medicine, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908 Abstract Mast cells are found in the lung where they release media- tors that constrict bronchiolar smooth muscle.
    [Show full text]
  • Adenosine Challenge Information for Patients Your Doctor Has Recommended That You Have an Adenosine Challenge
    Adenosine challenge Information for patients Your doctor has recommended that you have an adenosine challenge. The purpose of this test is to see if you have an accessory pathway called ‘Wolff-Parkinson-White (WPW) syndrome’. What is an accessory pathway? This is an extra electrical connection between the top chambers (atria) and bottom chambers (ventricles) of the heart. This extra electrical connection may allow electrical signals to bypass the normal route in your heart and form a short circuit. This can result in your heart beating abnormally fast for periods of time, which is called supra-ventricular tachycardia (SVT). This is not usually dangerous, but can cause unpleasant symptoms, such as a racing heart (palpitations), dizziness, chest pain, shortness of breath or, rarely, may cause you to collapse. Although the extra connection is present from birth (congenital), symptoms may not develop until later in life. In some cases, WPW syndrome may be life-threatening, particularly if it occurs alongside a type of irregular heartbeat called atrial fibrillation. However, this is rare and treatment can completely remove this risk. page 2 How is an accessory pathway diagnosed? Adenosine is the drug used in this test. It belongs to a group of medicines called anti-arrhythmics. Adenosine blocks electrical signals through the atrio-ventricular (AV) node. This means signals cannot travel from the top to the bottom chambers of the heart for a few seconds, until the drug effects wear off. If an accessory pathway (extra connection) is present, the electrical signals can still travel down to the ventricles, and this will show up on the ECG.
    [Show full text]
  • Lethality of Adenosine for Cultured Mammalian Cells by Interference with Pyrimidine Biosynthesis
    J. Cell Set. 13, 429-439 (i973) 429 Printed in Great Britain LETHALITY OF ADENOSINE FOR CULTURED MAMMALIAN CELLS BY INTERFERENCE WITH PYRIMIDINE BIOSYNTHESIS K. ISHII* AND H. GREEN Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, U.S.A. SUMMARY Adenosine at low concentration is toxic to mammalian cells in culture. This may escape notice because some sera (such as calf or human) commonly used in culture media, contain adenosine deaminase. In the absence of serum deaminase, adenosine produced inhibition of growth of a number of established cell lines at concentrations as low as 5 x io~* M, and killed at 2 x io~5 M. This effect required the presence of cellular adenosine kinase, since a mutant line deficient in this enzyme was 70-fold less sensitive to adenosine. The toxic substance is therefore derived from adenosine by phosphorylation, and is probably one of the adenosine nucleotides. The toxic effect of adenosine in concentrations up to 2 x io~* M was completely prevented by the addition of uridine or of pyrimidines potentially convertible to uridine, suggesting that the adenosine was interfering with endogenous synthesis of uridylate. In the presence of adenosine, the conversion of labelled aspartate to uridine nucleotides was reduced by 80-85 %> and labelled orotate accumulated in both the cells and in the culture medium. The lethality of adenosine results from inhibition by one of its nucleotide products of the synthesis of uridylate at the stage of phosphoribosylation of orotate. INTRODUCTION Though adenosine is not an intermediate on the endogenous pathway of purine biosynthesis, it can be efficiently utilized through the purine salvage pathways as the sole purine source in cultured mammalian cells whose endogenous purine synthesis is blocked by aminopterin (Green & Ishii, 1972).
    [Show full text]
  • Inosine in Biology and Disease
    G C A T T A C G G C A T genes Review Inosine in Biology and Disease Sundaramoorthy Srinivasan 1, Adrian Gabriel Torres 1 and Lluís Ribas de Pouplana 1,2,* 1 Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; [email protected] (S.S.); [email protected] (A.G.T.) 2 Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain * Correspondence: [email protected]; Tel.: +34-934034868; Fax: +34-934034870 Abstract: The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post- transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health. Keywords: inosine; deamination; adenosine deaminase acting on RNAs; RNA modification; translation Citation: Srinivasan, S.; Torres, A.G.; Ribas de Pouplana, L. Inosine in 1. Introduction Biology and Disease. Genes 2021, 12, 600. https://doi.org/10.3390/ Inosine was one of the first nucleobase modifications discovered in nucleic acids, genes12040600 having been identified in 1965 as a component of the first sequenced transfer RNA (tRNA), tRNAAla [1].
    [Show full text]
  • The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies
    International Journal of Molecular Sciences Article The Interaction of Selective A1 and A2A Adenosine Receptor Antagonists with Magnesium and Zinc Ions in Mice: Behavioural, Biochemical and Molecular Studies Aleksandra Szopa 1,* , Karolina Bogatko 1, Mariola Herbet 2 , Anna Serefko 1 , Marta Ostrowska 2 , Sylwia Wo´sko 1, Katarzyna Swi´ ˛ader 3, Bernadeta Szewczyk 4, Aleksandra Wla´z 5, Piotr Skałecki 6, Andrzej Wróbel 7 , Sławomir Mandziuk 8, Aleksandra Pochodyła 3, Anna Kudela 2, Jarosław Dudka 2, Maria Radziwo ´n-Zaleska 9, Piotr Wla´z 10 and Ewa Poleszak 1,* 1 Chair and Department of Applied and Social Pharmacy, Laboratory of Preclinical Testing, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.B.); [email protected] (A.S.); [email protected] (S.W.) 2 Chair and Department of Toxicology, Medical University of Lublin, 8 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (M.H.); [email protected] (M.O.); [email protected] (A.K.) [email protected] (J.D.) 3 Chair and Department of Applied and Social Pharmacy, Medical University of Lublin, 1 Chod´zkiStreet, PL 20–093 Lublin, Poland; [email protected] (K.S.);´ [email protected] (A.P.) 4 Department of Neurobiology, Polish Academy of Sciences, Maj Institute of Pharmacology, 12 Sm˛etnaStreet, PL 31–343 Kraków, Poland; [email protected] 5 Department of Pathophysiology, Medical University of Lublin, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; [email protected] Citation: Szopa, A.; Bogatko, K.; 6 Department of Commodity Science and Processing of Raw Animal Materials, University of Life Sciences, Herbet, M.; Serefko, A.; Ostrowska, 13 Akademicka Street, PL 20–950 Lublin, Poland; [email protected] M.; Wo´sko,S.; Swi´ ˛ader, K.; Szewczyk, 7 Second Department of Gynecology, 8 Jaczewskiego Street, PL 20–090 Lublin, Poland; B.; Wla´z,A.; Skałecki, P.; et al.
    [Show full text]
  • Adenosine A1 Receptor-Mediated Activation of Phospholipase C in Cultured Astrocytes Depends on the Level of Receptor Expression
    The Journal of Neuroscience, July 1, 1997, 17(13):4956–4964 Adenosine A1 Receptor-Mediated Activation of Phospholipase C in Cultured Astrocytes Depends on the Level of Receptor Expression Knut Biber,1,2 Karl-Norbert Klotz,3 Mathias Berger,1 Peter J. Gebicke-Ha¨ rter,1 and Dietrich van Calker1 1Department of Psychiatry, University of Freiburg, D-79104 Freiburg, Germany, 2Institute for Biology II, University of Freiburg, D-79104 Freiburg, Germany, and 3Institute for Pharmacology and Toxicology, University of Wu¨ rzburg, D-97078 Wu¨ rzburg, Germany Adenosine A1 receptors induce an inhibition of adenylyl cyclase dependent on the expression level of A1 receptor, and (4) the via G-proteins of the Gi/o family. In addition, simultaneous potentiating effect on PLC activity is unrelated to extracellular stimulation of A1 receptors and of receptor-mediated activation glutamate. of phospholipase C (PLC) results in a synergistic potentiation of Taken together, our data support the notion that bg subunits PLC activity. Evidence has accumulated that Gbg subunits are the relevant signal transducers for A1 receptor-mediated mediate this potentiating effect. However, an A1 receptor- PLC activation in rat astrocytes. Because of the lower affinity of mediated increase in extracellular glutamate was suggested to bg, as compared with a subunits, more bg subunits are re- be responsible for the potentiating effect in mouse astrocyte quired for PLC activation. Therefore, only in cultures with higher cultures. We have investigated the synergistic activation of PLC levels of adenosine A1 receptors is the release of bg subunits by adenosine A1 and a1 adrenergic receptors in primary cul- via Gi/o activation sufficient to stimulate PLC.
    [Show full text]
  • The Effects of Adenosine Antagonists on Distinct Aspects of Motivated Behavior: Interaction with Ethanol and Dopamine Depletion
    Facultat de Ciències de la Salut Departament de Psicologia Bàsica, Clínica i Psicobiologia The effects of adenosine antagonists on distinct aspects of motivated behavior: interaction with ethanol and dopamine depletion. PhD Candidate Laura López Cruz Advisor Dr. Mercè Correa Sanz Co-advisor Dr. John D.Salamone Castelló, May 2016 Als meus pares i germà A Carlos AKNOWLEDGEMENTS This work was funded by two competitive grants awarded to Mercè Correa and John D. Salamone: Chapters 1-4: The experiments in the first chapters were supported by Plan Nacional de Drogas. Ministerio de Sanidad y Consumo. Spain. Project: “Impacto de la dosis de cafeína en las bebidas energéticas sobre las conductas implicadas en el abuso y la adicción al alcohol: interacción de los sistemas de neuromodulación adenosinérgicos y dopaminérgicos”. (2010I024). Chapters 5 and 6: The last 2 chapters contain experiments financed by Fundació Bancaixa-Universitat Jaume I. Spain. Project: “Efecto del ejercicio físico y el consumo de xantinas sobre la realización del esfuerzo en las conductas motivadas: Modulación del sistema mesolímbico dopaminérgico y su regulación por adenosina”. (P1.1B2010-43). Laura López Cruz was awarded a 4-year predoctoral scholarship “Fornación de Profesorado Universitario-FPU” (AP2010-3793) from the Spanish Ministry of Education, Culture and Sport. (2012/2016). TABLE OF CONTENTS ABSTRACT ...................................................................................................................1 RESUMEN .....................................................................................................................3
    [Show full text]
  • Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues
    International Journal of Molecular Sciences Review Guanosine-Based Nucleotides, the Sons of a Lesser God in the Purinergic Signal Scenario of Excitable Tissues 1,2, 2,3, 1,2 1,2, Rosa Mancinelli y, Giorgio Fanò-Illic y, Tiziana Pietrangelo and Stefania Fulle * 1 Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; [email protected] (R.M.); [email protected] (T.P.) 2 Interuniversity Institute of Miology (IIM), 66100 Chieti, Italy; [email protected] 3 Libera Università di Alcatraz, Santa Cristina di Gubbio, 06024 Gubbio, Italy * Correspondence: [email protected] Both authors contributed equally to this work. y Received: 30 January 2020; Accepted: 25 February 2020; Published: 26 February 2020 Abstract: Purines are nitrogen compounds consisting mainly of a nitrogen base of adenine (ABP) or guanine (GBP) and their derivatives: nucleosides (nitrogen bases plus ribose) and nucleotides (nitrogen bases plus ribose and phosphate). These compounds are very common in nature, especially in a phosphorylated form. There is increasing evidence that purines are involved in the development of different organs such as the heart, skeletal muscle and brain. When brain development is complete, some purinergic mechanisms may be silenced, but may be reactivated in the adult brain/muscle, suggesting a role for purines in regeneration and self-repair. Thus, it is possible that guanosine-50-triphosphate (GTP) also acts as regulator during the adult phase. However, regarding GBP, no specific receptor has been cloned for GTP or its metabolites, although specific binding sites with distinct GTP affinity characteristics have been found in both muscle and neural cell lines.
    [Show full text]
  • Purine Metabolism in Adenosine Deaminase Deficiency* (Immunodeficiency/Pyrimidines/Adenine Nucleotides/Adenine) GORDON C
    Proc. Nati. Acad. Sci. USA Vol. 73, No. 8, pp. 2867-2871, August 1976 Immunology Purine metabolism in adenosine deaminase deficiency* (immunodeficiency/pyrimidines/adenine nucleotides/adenine) GORDON C. MILLS, FRANK C. SCHMALSTIEG, K. BRYAN TRIMMER, ARMOND S. GOLDMAN, AND RANDALL M. GOLDBLUM Departments of Human Biological Chemistry and Genetics and Pediatrics, The University of Texas Medical Branch and Shriners Burns Institute, Galveston, Texas 77550 Communicated by J. Edwin Seegmiller, June 1, 1976 ABSTRACT Purine and pyrimidine metabolites were MATERIALS AND METHODS measured in erythrocytes, plasma, and urine of a 5-month-old infant with adenosine deaminase (adenosine aminohydrolase, Subject. A 5-month-old boy born on December 5, 1974 with EC 3.5.4.4) deficiency. Adenosine and adenine were measured severe combined immunodeficiency was investigated. Physical using newly devised ion exchange separation techniques and examination revealed enlarged costochondral junctions and a sensitive fluorescence assay. Plasma adenosine levels were sparse lymphoid tissue (5). The serum IgG (normal values in increased, whereas adenosine was normal in erythrocytes and parentheses) was 31 mg/dl (263-713); IgM, 8 mg/dl not detectable in urine. Increased amounts of adenine were (34-138); found in erythrocytes and urine as well as in the plasma. and IgA was less than 3 mg/dl (13-71). Clq was not detectable Erythrocyte adenosine 5'-monophosphate and adenosine di- by double immunodiffusion. The blood lymphocyte count was phosphate concentrations were normal, but adenosine tri- 200-400/mm3 with 2-4% sheep erythrocyte (E)-rosettes, 12% phosphate content was greatly elevated. Because of the possi- sheep erythrocyte-antibody-complement (EAC)-rosettes, 10% bility of pyrimidine starvation, pyrimidine nucleotides (py- IgG bearing cells, and no detectable IgA or IgM bearing cells.
    [Show full text]
  • Sex Differences in the Neurobiology of Alcohol Use Disorder
    Alcohol Res. 2020;40(2):04 • https://doi.org/10.35946/arcr.v40.2.04 Published: 8 October 2020 Sex Differences in the Neurobiology of Alcohol Use Disorder Annabelle Flores-Bonilla1 and Heather N. Richardson2 1Neuroscience and Behavior Program, University of Massachusetts, Amherst, Massachusetts 2Department of Psychological and Brain Sciences at the University of Massachusetts, Amherst, Massachusetts Sex differences may play a critical role in modulating how chronic or heavy alcohol use impacts the brain to cause the development of alcohol use disorder (AUD). AUD is a multifaceted and complex disorder driven by changes in key neurobiological structures that regulate executive function, memory, and stress. A three-stage framework of addiction (binge/intoxication; withdrawal/negative affect; preoccupation/anticipation) has been useful for conceptualizing the complexities of AUD and other addictions. Initially, alcohol drinking causes short-term effects that involve signaling mediated by several neurotransmitter systems such as dopamine, corticotropin releasing factor, and glutamate. With continued intoxication, alcohol leads to dysfunctional behaviors that are thought to be due in part to alterations of these and other neurotransmitter systems, along with alterations in neural pathways connecting prefrontal and limbic structures. Using the three-stage framework, this review highlights examples of research examining sex differences in drinking and differential modulation of neural systems contributing to the development of AUD. New insights addressing the role of sex differences in AUD are advancing the field forward by uncovering the complex interactions that mediate vulnerability. KEY WORDS: alcohol use disorder; animal models; sex differences; stress; adolescence; alcohol; brain BACKGROUND Addiction is a chronic relapsing disorder and Statistical Manual of Mental Disorders characterized by continued substance misuse (DSM-5), published by the American Psychiatric despite harmful consequences.
    [Show full text]
  • NIH Public Access Author Manuscript Nucleosides Nucleotides Nucleic Acids
    NIH Public Access Author Manuscript Nucleosides Nucleotides Nucleic Acids. Author manuscript; available in PMC 2010 July 26. NIH-PA Author ManuscriptPublished NIH-PA Author Manuscript in final edited NIH-PA Author Manuscript form as: Nucleosides Nucleotides Nucleic Acids. 2009 May ; 28(5): 614±632. doi:10.1080/15257770903091904. CONTRASTING BEHAVIOR OF CONFORMATIONALLY LOCKED CARBOCYCLIC NUCLEOSIDES OF ADENOSINE AND CYTIDINE AS SUBSTRATES FOR DEAMINASES Victor E. Marquez1, Gottfried K. Schroeder2, Olaf R. Ludek1, Maqbool A. Siddiqui1, Abdallah Ezzitouni1, and Richard Wolfenden2 1Laboratory of Medicinal Chemistry, Center for Cancer Research, National Cancer Institute at Frederick, National Institutes of Health, Frederick, MD 21703, USA 2Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, NC, 27599, USA Abstract In addition to the already known differences between adenosine deaminase (ADA) and cytidine deaminase (CDA) in terms of their tertiary structure, the sphere of Zn+2 coordination, and their reverse stereochemical preference, we present evidence that the enzymes also differ significantly in terms of the North/South conformational preferences for their substrates and the extent to which the lack of the O(4’) oxygen affects the kinetics of the enzymatic deamination of carbocyclic substrates. The carbocyclic nucleoside substrates used in this study have either a flexible cyclopentane ring or a rigid bicyclo[3.1.0]hexane scaffold. Keywords Adenosine deaminase; cytidine deaminase; carbocyclic nucleosides; bicyclo[3.1.0]hexane nucleosides INTRODUCTION Adenosine deaminase (ADA) and cytidine deaminase (CDA) catalyze the deamination of adenosine and cytidine, respectively, via the formation of unstable hydrated intermediates. [1,2] ADA catalyzes the hydration of the purine ring during the conversion of adenosine to inosine and CDA catalyzes the hydration of the pyrimidine ring during the conversion of cytidine to uridine (Figure 1).
    [Show full text]
  • Crystal Structure of the Adenosine A2A Receptor Bound to an Antagonist Reveals a Potential Allosteric Pocket
    Crystal structure of the adenosine A2A receptor bound to an antagonist reveals a potential allosteric pocket Bingfa Suna, Priti Bachhawata, Matthew Ling-Hon Chua, Martyn Woodb, Tom Ceskac, Zara A. Sandsd, Joel Mercierd, Florence Lebond, Tong Sun Kobilkaa, and Brian K. Kobilkaa,e,1 aConfometRx, Inc., Santa Clara, CA 95054; bDiscovery Biology, New Medicines, UCB Pharma, B-1420 Braine-l’Alleud, Belgium; cDepartment of Structural Biology, New Medicines, UCB Pharma, Slough SL1 3WE, United Kingdom; dDiscovery Chemistry, New Medicines, UCB Pharma, B-1420 Braine-l’Alleud, Belgium and eDepartment of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305 Contributed by Brian K. Kobilka, December 29, 2016 (sent for review October 17, 2016; reviewed by Oliver P. Ernst and Nagarajan Vaidehi) The adenosine A2A receptor (A2AR) has long been implicated in for longer than when administered separately at the same dose in a cardiovascular disorders. As more selective A2AR ligands are being rodent model of PD (6). In an effort to identify a dual compound ’ identified, its roles in other disorders, such as Parkinson s disease, displaying A2AR as well as NR2B receptor antagonist activities, are starting to emerge, and A2AR antagonists are important drug Cmpd-1 was designed and synthesized. The compound binds to both candidates for nondopaminergic anti-Parkinson treatment. Here receptors with high affinity (Table 1). To understand the structure– we report the crystal structure of A2A receptor bound to com- activity relationship around the chemical series for the A2ARand N pound 1 (Cmpd-1), a novel A2AR/ -methyl D-aspartate receptor facilitate further optimization, we sought to obtain the crystal subtype 2B (NR2B) dual antagonist and potential anti-Parkinson structure of the A2AR in complex with Cmpd-1.
    [Show full text]