Reconsideration of Chlorpyrifos: 2019 Toxicology Update
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries
Historical Perspectives on Apple Production: Fruit Tree Pest Management, Regulation and New Insecticidal Chemistries. Peter Jentsch Extension Associate Department of Entomology Cornell University's Hudson Valley Lab 3357 Rt. 9W; PO box 727 Highland, NY 12528 email: [email protected] Phone 845-691-7151 Mobile: 845-417-7465 http://www.nysaes.cornell.edu/ent/faculty/jentsch/ 2 Historical Perspectives on Fruit Production: Fruit Tree Pest Management, Regulation and New Chemistries. by Peter Jentsch I. Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 Synthetic Pesticide Development and Use II. Influences Changing the Pest Management Profile in Apple Production Chemical Residues in Early Insect Management Historical Chemical Regulation Recent Regulation Developments Changing Pest Management Food Quality Protection Act of 1996 The Science Behind The Methodology Pesticide Revisions – Requirements For New Registrations III. Resistance of Insect Pests to Insecticides Resistance Pest Management Strategies IV. Reduced Risk Chemistries: New Modes of Action and the Insecticide Treadmill Fermentation Microbial Products Bt’s, Abamectins, Spinosads Juvenile Hormone Analogs Formamidines, Juvenile Hormone Analogs And Mimics Insect Growth Regulators Azadirachtin, Thiadiazine Neonicotinyls Major Reduced Risk Materials: Carboxamides, Carboxylic Acid Esters, Granulosis Viruses, Diphenyloxazolines, Insecticidal Soaps, Benzoyl Urea Growth Regulators, Tetronic Acids, Oxadiazenes , Particle Films, Phenoxypyrazoles, Pyridazinones, Spinosads, Tetrazines , Organotins, Quinolines. 3 I Historical Use of Pesticides in Apple Production Overview of Apple Production and Pest Management Prior to 1940 The apple has a rather ominous origin. Its inception is framed in the biblical text regarding the genesis of mankind. The backdrop appears to be the turbulent setting of what many scholars believe to be present day Iraq. -
Release of Melamine and Formaldehyde from Melamine-Formaldehyde Plastic Kitchenware
molecules Article Release of Melamine and Formaldehyde from Melamine-Formaldehyde Plastic Kitchenware , Ingo Ebner * y , Steffi Haberer, Stefan Sander, Oliver Kappenstein , Andreas Luch and Torsten Bruhn y Department of Chemical and Product Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589 Berlin, Germany; [email protected] (S.H.); [email protected] (S.S.); [email protected] (O.K.); [email protected] (A.L.); [email protected] (T.B.) * Correspondence: [email protected]; Tel.: +49-30-18412-27403 These authors contributed equally to this work. y Academic Editor: Roland Franz Received: 26 June 2020; Accepted: 31 July 2020; Published: 10 August 2020 Abstract: The release of melamine and formaldehyde from kitchenware made of melamine resins is still a matter of great concern. To investigate the migration and release behavior of the monomers from melamine-based food contact materials into food simulants and food stuffs, cooking spoons were tested under so-called hot plate conditions at 100 ◦C. Release conditions using the real hot plate conditions with 3% acetic acid were compared with conditions in a conventional migration oven and with a release to deionized water. Furthermore, the kinetics of the release were studied using Arrhenius plots giving an activation energy for the release of melamine of 120 kJ/mol. Finally, a correlation between quality of the resins, specifically the kind of bridges between the monomers, and the release of melamine, was confirmed by CP/MAS 13C-NMR measurements of the melamine kitchenware. Obviously, the ratio of methylene bridges and dimethylene ether bridges connecting the melamine monomers during the curing process can be directly correlated with the amount of the monomers released into food. -
Impact of Pesticide Use on Health in Developing Countries
Impact of pesticide use on health in developing countries Proceedings of a symposium held in Ottawa, Canada, 1 7-20 September 1990 IDRC CRDI International Development Research Centre Centre de recherches pour le devetoppement international 1 March 1993 Dear Reader/Librarian, IDRC is a public corporation created by the Canadian parliament in 1970 to help developing countries find viable solutions to their problems through research. At the 1992 Earth Summit, IDRC's mandate was broadened to emphasize sustainable development issues. As part of IDRC's strengthened commitment to global action and harüony, we are pleased to send you a complimentary copy of our most recent publication: The impact of pesticide use on health in developing countries (March 1993, 352 pages, 0-88936-560-1, $17.95). The first part of this book presents a brief survey of the global situation and the results of twelve epidemiological studies carried out by researchers from Africa, Latin America, Asia and the Middle East. These focus on poisonings resulting from organophosphates, herbicides, and pyrethroids. The second part illustrates the role of the process of development, production, spraying techniques and legislation in protecting the health of workers. A discussion of the benefits and modalities of access to pertinent information for the prevention of pesticide poisonings is provided in the third section. Finally, in the fourth section, consideration is given to the advantages and disadvantages of certain alternatives to the use of synthetic pesticides in agriculture and public health, such as botanical pesticides and integrated pest management strategies. We hope this book is a valuable addition to your collection. -
Da UNIVERSIDADE DA BEIRA INTERIOR
da UNIVERSIDADE DA BEIRA INTERIOR ANALYSIS OF ORGANOPHOSPHOROUS PESTICIDES IN POSTMORTEM BIOLOGICAL FLUIDS RAQUEL HELENA CARVALHO SILVA RAPOSO Covilhã, 2009 I UNIVERSIDADE DA BEIRA INTERIOR ANALYSIS OF ORGANOPHOSPHOROUS PESTICIDES IN POSTMORTEM BIOLOGICAL FLUIDS Dissertação apresentada à Universidade da Beira Interior para a obtenção do Grau de Mestre em Bioquímica RAQUEL HELENA CARVALHO SILVA RAPOSO Covilhã, 2009 II Trabalho elaborado sob a supervisão e orientação científica do Mestre Mário João Dias, Director do Serviço de Toxicolgia Forense da Delegação Sul do Instituto Nacional de Medicina Legal e da Prof. Doutora María Eugenia Gallardo Alba, Faculdade de Ciências da Saúde da Universidade da Beira Interior III TABLE OF CONTENTS List of Figures ........................................................................................................................................... VI List of Tables .......................................................................................................................................... VIII Abbreviations ............................................................................................................................................ X Abstract................................................................................................................................................... - 1 - Resumo ................................................................................................................................................... - 3 - Justification and Objectives -
Pedal Luring in the Leaf-Frog Phyllomedusa Burmeisteri (Anura, Hylidae, Phyllomedusinae)
Phyllomedusa 1(2):93-95, 2002 © 2002 Melopsittacus Publicações Científicas ISSN 1519-1397 Pedal luring in the leaf-frog Phyllomedusa burmeisteri (Anura, Hylidae, Phyllomedusinae) Jaime Bertoluci Departamento de Zoologia, Universidade Federal de Minas Gerais. Caixa Postal 486, Belo Horizonte, MG, Brazil, 31270-901. E-mail: [email protected]. Keywords - Phyllomedusa burmeisteri, Phyllomedusinae, Hylidae, Anura, pedal luring, prey capture, feeding behavior. Luring behavior as a strategy of prey cap- the frog was maintained in a 60 × 30 × 37-cm ture has evolved independently in several glass terrarium containing soil and a bromeliad. squamate lineages, including pygopodid lizards On the fourth day of acclimation at 2300 h and (Murray et al. 1991), and boid (Murphy et al. under dim light, pedal luring was observed in 1978, Radcliffe et al. 1980), viperid (Greene response to offering the frog an individual adult and Campbell 1972, Heatwole and Dawson cricket (Orthoptera); the same observations were 1976, Henderson 1970, Sazima 1991), elapid made the next night. During the next three days, (Carpenter et al. 1978), and colubrid snakes the frog fed on domestic cockroaches (Sazima and Puorto 1993). Bavetz (1994) (Blattaria), but pedal luring was not observed in reported pedal luring related to predation in these circumstances. Larval mealworms ambystomatid salamanders. In anurans, this (Tenebrio sp.) also were offered to the frog, but feeding behavior has been described only for the always were refused. terrestrial leptodactylid frogs Ceratophrys Phyllomedusa burmeisteri is a sit-and-wait calcarata (Murphy 1976) and C. ornata predator that typically perches with its hands (Radcliffe et al. 1986). Pedal luring apparently and feet firmly grasping the substrate while does not occur in the terrestrial leptodactylids searching for prey. -
INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA in a CHLORPYRIFOS RISK ASSESSMENT Julie E
Dose-Response: An International Journal Volume 11 | Issue 2 Article 8 6-2013 INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA IN A CHLORPYRIFOS RISK ASSESSMENT Julie E. Goodman Gradient, Cambridge, MA Robyn L. Prueitt Gradient, Cambridge, MA Lorenz R. Rhomberg Gradient, Cambridge, MA Follow this and additional works at: https://scholarworks.umass.edu/dose_response Recommended Citation Goodman, Julie E.; Prueitt, Robyn L.; and Rhomberg, Lorenz R. (2013) "INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA IN A CHLORPYRIFOS RISK ASSESSMENT," Dose-Response: An International Journal: Vol. 11 : Iss. 2 , Article 8. Available at: https://scholarworks.umass.edu/dose_response/vol11/iss2/8 This Article is brought to you for free and open access by ScholarWorks@UMass Amherst. It has been accepted for inclusion in Dose-Response: An International Journal by an authorized editor of ScholarWorks@UMass Amherst. For more information, please contact [email protected]. Goodman et al.: Low-Dose Epidemiology Data in a Chlorpyrifos Risk Assessment Dose-Response, 11:207–219, 2013 Formerly Nonlinearity in Biology, Toxicology, and Medicine Copyright © 2013 University of Massachusetts ISSN: 1559-3258 DOI: 10.2203/dose-response.12-022.Goodman INCORPORATING LOW-DOSE EPIDEMIOLOGY DATA IN A CHLORPYRIFOS RISK ASSESSMENT Julie E. Goodman, Robyn L. Prueitt, and Lorenz R. Rhomberg ᮀ Gradient, Cambridge, MA ᮀ USEPA assessed whether epidemiology data suggest that fetal or early-life chlorpyrifos exposure causes neurodevelopmental effects and, if so, whether they occur at exposures below those causing the current most sensitive endpoint, 10% inhibition of blood acetyl- cholinesterase (AChE). We previously conducted a hypothesis-based weight-of-evidence analysis and found that a proposed causal association between chlorpyrifos exposure and neurodevelopmental effects in the absence of AChE inhibition does not have a substantial basis in existing animal or in vitro studies, and there is no plausible basis for invoking such effects in humans at their far lower exposure levels. -
Mother/Child Organophosphate and Pyrethroid Distributions T ⁎ Natalia Bravoa, Joan O
Environment International 134 (2020) 105264 Contents lists available at ScienceDirect Environment International journal homepage: www.elsevier.com/locate/envint Mother/child organophosphate and pyrethroid distributions T ⁎ Natalia Bravoa, Joan O. Grimalta, , Darja Mazejb, Janja Snoj Tratnikb,c, Dimosthenis Andreas Sarigiannisd, Milena Horvatb,c a Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Department of Environmental Chemistry, Jordi Girona, 18, 08034 Barcelona, Catalonia, Spain b Department of Environmental Sciences, Jožef Stefan Institute, Jamova cesta 39, 1000 Ljubljana, Slovenia c International Postgraduate School Jožef Stefan, Jamova cesta 39, 1000 Ljubljana, Slovenia d Environmental Engineering Laboratory, Department of Chemical Engineering and HERACLES Research Centre on the Exposome and Health, Centre for Interdisciplinary Research and Innovation, Aristotle University of Thessaloniki University Campus, Bldg. D, Rm 201, 54124 Thessaloniki, Greece ARTICLE INFO ABSTRACT Handling Editor: Adrian Covaci The present study reports one of the few cases in which organophosphate (OP) and pyrethroid (PYR) pesticide Keywords: human exposure is evaluated in family contexts by the analysis of mother/child pair samples. Urinary con- Organophosphorus pesticides centrations of 6 organic metabolites of organophosphates and 2 pyrethroids were measured in mothers and their Pyrethroids 7-to 8-year-old children (n = 168) in a general population from the central area of Slovenia. The results were Human Biomonitoring adjusted for specific gravity and creatinine. Children The most abundant OP metabolite in children was 4-nitrophenol (PNP) (median 0.7 ng/ml) and in mothers Women (0.45 ng/ml), representing parathion exposure. 3-Phenoxibenzoic acid (3-PBA) (0.26 ng/ml), the general me- Child-mother pairs tabolite of pyrethroids, and 3,5,6-trichloro-2-pyridinol (TCPY) (0.16 ng/ml; chlorpyriphos) were the second most abundant compounds in children and mothers, respectively. -
Ortho-Cresyl-Phosphate Poisoning
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.25.3.234 on 1 August 1962. Downloaded from J. Neurol. Neurosurg. Psychiat., 1962, 25, 234 Toxic polyneuritis in Bombay due to ortho-cresyl-phosphate poisoning D. D. VORA, DARAB K. DASTUR, BEATRIZ M. BRAGANCA, L. M. PARIHAR, C. G. S. IYER, R. B. FONDEKAR, AND K. PRABHAKARAN From Lokmanya Tilak Municipal General Hospital, Sion, Neurology Unit, Indian Council of Medical Research, and Department of Enzyme Chemistry, Indian Cancer Research Centre, Bombay Since 1930 poisoning with ortho-cresyl-phosphate purchased food from the same grocer in their neigh- has been recognized as a cause of peripheral poly- bourhood. He also mentioned that others staying in neuritis (Smith, Elvove, and Frazier, 1930). Ortho- the same locality and consuming mustard oil, but cresyl-phosphate (O.C.P.) is widely used as a purchasing their food from other grocers, were not plasticiser and in the production of heat-stable affected. The examination of the other affected per- lubricating oils. Many cases of industrial poisoning sons revealed identical histories and clinical pictures. with O.C.P. have been reported since then but as a In this group there was no history of gastro-enteritis result of strict precautionary measures it has now or of febrile illness preceding the paralysis. These become a rarity. However, the occasional contamina- patients also asserted that all those who were buying is not uncommon. their food from the same grocer but who were not tion of food with O.C.P. Protected by copyright. Poisoning with O.C.P. -
WHO Guidelines for Indoor Air Quality : Selected Pollutants
WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest). -
The Effects of Occupational Exposure to Chlorpyrifos on the Peripheral
201 Occup Environ Med: first published as 10.1136/oem.2003.008847 on 25 February 2004. Downloaded from ORIGINAL ARTICLE The effects of occupational exposure to chlorpyrifos on the peripheral nervous system: a prospective cohort study J W Albers, D H Garabrant, S J Schweitzer, R P Garrison, R J Richardson, S Berent ............................................................................................................................... Occup Environ Med 2004;61:201–211. doi: 10.1136/oem.2003.008847 Aims: To determine whether chronic occupational exposure to chlorpyrifos at levels associated with various aspects of manufacturing produced a clinically evident or subclinical peripheral neuropathy. Methods: Clinical and quantitative nerve conduction study (NCS) examinations were performed on two occasions on chlorpyrifos manufacturing workers who had measurable chlorpyrifos exposure and a referent group. Baseline evaluations were performed on 53 of 66 eligible chlorpyrifos subjects and on 60 of 74 eligible referent subjects; one-year evaluations were completed on 111 of the 113 subjects evaluated at baseline. Results: Chlorpyrifos and referent groups differed significantly in measures of 3,5,6 trichloro-2-pyridinol excretion and plasma butyrylcholinesterase (BuChE) activity, indicating substantially higher exposures See end of article for authors’ affiliations among chlorpyrifos subjects. Few subjects had clinically important neurological symptoms or signs. NCS ....................... results were comparable to control values, and there were no significant group differences in NCS results at baseline, one year, or change over one year. No chlorpyrifos subject fulfilled conventional criteria for Correspondence to: Dr J W Albers, Department confirmed peripheral neuropathy at baseline or one-year examinations. The odds ratios for developing of Neurology, 1C325/ any diagnosable level of peripheral neuropathy among the chlorpyrifos subjects was not increased at 0032 University Hospital, baseline or at one year compared to referents at baseline. -
Ceratophrys Cranwelli) with Implications for Extinct Giant Frogs Scientific Reports, 2017; 7(1):11963-1-11963-10
PUBLISHED VERSION A. Kristopher Lappin, Sean C. Wilcox, David J. Moriarty, Stephanie A.R. Stoeppler, Susan E. Evans, Marc E.H. Jones Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs Scientific Reports, 2017; 7(1):11963-1-11963-10 © The Author(s) 2017 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. Originally published at: http://doi.org/10.1038/s41598-017-11968-6 PERMISSIONS http://creativecommons.org/licenses/by/4.0/ 19th of April 2018 http://hdl.handle.net/2440/110874 www.nature.com/scientificreports OPEN Bite force in the horned frog (Ceratophrys cranwelli) with implications for extinct giant frogs Received: 27 March 2017 A. Kristopher Lappin1, Sean C. Wilcox1,2, David J. Moriarty1, Stephanie A. R. Stoeppler1, Accepted: 1 September 2017 Susan E. -
Annexure Iii
ANNEXURE III DETAILS OF PRODUCTION AND MANUFACTURING PROCESS 1. RSF Intermediate Manufacturing process: Check and prepare a clean and dry vessel. Remove oxygen from the vessel with nitrogen flushing. Charge the required quantity of Formaldehyde into the clean vessel, followed by Urea and Glyoxal 40% and diethylene glycol. The temperature is increased to 60-80 C under constant stirring. The process is continued for 5-6 hours. Take sample for quality check and if required specifications are not meet, continue reaction further for 1 hour and again check for quality. If specification is reached fill product in containers, to be used for further formulations of finished product. Chemical Reaction Material Balance Input Output Formaldehyde 0.40 RSF Urea 0.20 Reaction Vessel 1.00 Intermediate Glyoxal 0.40 Total 1.00 Total 1.00 Process Flow Diagram M/S. Dystar India Pvt. Ltd., Plot No. 3002/A,GIDC Ankleshwar, Bharuch (GJ) 2. NFF-T Intermediate Manufacturing process: Check and prepare a clean and dry vessel. Remove oxygen from the vessel with nitrogen flushing. Charge the required quantity of glyoxal 40%and water into the clean vessel under constant stirring. Cool the vessel and add N, N-dimethyl urea until homogenous mixture is achieved. The temperature is maintained below ambient temperature and reaction is further continued for 2-4 hours under catalytic concentration of citric acid. Take sample for quality check and if required specifications are not meet, continue reaction further for 1 hour and again check for quality. If specification is reached fill product in containers, to be used for further formulations of finished product.