Dark Matter Observation Nearby and in Galaxies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Dark) Matter! Luminous Matter Is Concentrated at the Center
Cosmology Two Mysteries and then How we got here Dark Matter Orbital velocity law Derivable from Kepler's 3rd law and Newton's Law of gravity r v2 M = r G M : mass lying within stellar orbit r r: radius from the Galactic center v: orbital velocity From Sun's r and v: there are about 100 billion solar masses inside the Sun's orbit! 4 Rotation curve of the Milky Way: Speed of stars and clouds of gas (from Doppler shift) vs distance from center Galaxy: rotation curve flattens out with distance Indicates much more mass in the Galaxy than observed as stars and gas! Mass not concentrated at center5 From the rotation curve, inferred distribution of dark matter: The Milky Way is surrounded by an enormous halo of non-luminous (dark) matter! Luminous matter is concentrated at the center 6 We can make measurements for other galaxies Weighing spiral galaxies C Compare shifts of spectral lines (in atomic H gas clouds) as a function of distance from the center 7 Rotation curves for various spiral galaxies First measured in 1960's by Vera Rubin They all flatten out with increasing radius, implying that all spiral galaxies have vast haloes of dark matter – luminous matter 1/6th of mass 8 This mass is the DARK MATTER: It's some substance that interacts gravitationally (equivalent to saying that it has mass)... It neither emits nor absorbs light in any form (equivalent to saying that it does not interact electromagnetically) Dark matter might conceivably have 'weak' (radioactive force) interactions 9 Gaggles of Galaxies • Galaxy groups > The Local group -
A Case for Alternate Theories of Gravity C Sivaram Indian Institute Of
Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2020 doi:10.20944/preprints202006.0239.v1 Non-detection of Dark Matter particles: A case for alternate theories of gravity C Sivaram Indian Institute of Astrophysics, Bangalore, 560 034, India e-mail: [email protected] Kenath Arun Christ Junior College, Bangalore, 560 029, India e-mail: [email protected] A Prasad Center for Space Plasma & Aeronomic Research, The University of Alabama in Huntsville, Huntsville, Alabama 35899 email: [email protected] Louise Rebecca Christ Junior College, Bangalore - 560 029, India e-mail: [email protected] Abstract: While there is overwhelming evidence for dark matter (DM) in galaxies and galaxy clusters, all searches for DM particles have so far proved negative. It is not even clear whether only one particle is involved or a combination or particles, their masses not precisely predicted. This non-detectability raises the possible relevance of modified gravity theories – MOND, MONG, etc. Here we consider a specific modification of Newtonian gravity (MONG) which involves gravitational self-energy, leading to modified equations whose solutions imply flat rotation curves and limitations of sizes of clusters. The results are consistent with current observations including that involving large spirals. This modification could also explain the current Hubble tension. We also consider effects of dark energy (DE) in terms of a cosmological constant. 1 © 2020 by the author(s). Distributed under a Creative Commons CC BY license. Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 June 2020 doi:10.20944/preprints202006.0239.v1 Over the past few decades there have been a plethora of sophisticated experiments involving massive sensitive detectors trying to catch faint traces of the elusive Dark Matter (DM) particles. -
Modified Newtonian Dynamics, an Introductory Review
Modified Newtonian Dynamics, an Introductory Review Riccardo Scarpa European Southern Observatory, Chile E-mail [email protected] Abstract. By the time, in 1937, the Swiss astronomer Zwicky measured the velocity dispersion of the Coma cluster of galaxies, astronomers somehow got acquainted with the idea that the universe is filled by some kind of dark matter. After almost a century of investigations, we have learned two things about dark matter, (i) it has to be non-baryonic -- that is, made of something new that interact with normal matter only by gravitation-- and, (ii) that its effects are observed in -8 -2 stellar systems when and only when their internal acceleration of gravity falls below a fix value a0=1.2×10 cm s . Being completely decoupled dark and normal matter can mix in any ratio to form the objects we see in the universe, and indeed observations show the relative content of dark matter to vary dramatically from object to object. This is in open contrast with point (ii). In fact, there is no reason why normal and dark matter should conspire to mix in just the right way for the mass discrepancy to appear always below a fixed acceleration. This systematic, more than anything else, tells us we might be facing a failure of the law of gravity in the weak field limit rather then the effects of dark matter. Thus, in an attempt to avoid the need for dark matter many modifications of the law of gravity have been proposed in the past decades. The most successful – and the only one that survived observational tests -- is the Modified Newtonian Dynamics. -
Disk Galaxy Rotation Curves and Dark Matter Distribution
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Disk galaxy rotation curves and dark matter distribution by Dilip G. Banhatti School of Physics, Madurai-Kamaraj University, Madurai 625021, India [Based on a pedagogic / didactic seminar given by DGB at the Graduate College “High Energy & Particle Astrophysics” at Karlsruhe in Germany on Friday the 20 th January 2006] Abstract . After explaining the motivation for this article, we briefly recapitulate the methods used to determine the rotation curves of our Galaxy and other spiral galaxies in their outer parts, and the results of applying these methods. We then present the essential Newtonian theory of (disk) galaxy rotation curves. The next two sections present two numerical simulation schemes and brief results. Finally, attempts to apply Einsteinian general relativity to the dynamics are described. The article ends with a summary and prospects for further work in this area. Recent observations and models of the very inner central parts of galaxian rotation curves are omitted, as also attempts to apply modified Newtonian dynamics to the outer parts. Motivation . Extensive radio observations determined the detailed rotation curve of our Milky Way Galaxy as well as other (spiral) disk galaxies to be flat much beyond their extent as seen in the optical band. Assuming a balance between the gravitational and centrifugal forces within Newtonian mechanics, the orbital speed V is expected to fall with the galactocentric distance r as V 2 = GM/r beyond the physical extent of the galaxy of mass M, G being the gravitational constant. -
Chapter 5 Rotation Curves
Chapter 5 Rotation Curves 5.1 Circular Velocities and Rotation Curves The circular velocity vcirc is the velocity that a star in a galaxy must have to maintain a circular orbit at a specified distance from the centre, on the assumption that the gravitational potential is symmetric about the centre of the orbit. In the case of the disc of a spiral galaxy (which has an axisymmetric potential), the circular velocity is the orbital velocity of a star moving in a circular path in the plane of the disc. If 2 the absolute value of the acceleration is g, for circular velocity we have g = vcirc=R where R is the radius of the orbit (with R a constant for the circular orbit). Therefore, 2 @Φ=@R = vcirc=R, assuming symmetry. The rotation curve is the function vcirc(R) for a galaxy. If vcirc(R) can be measured over a range of R, it will provide very important information about the gravitational potential. This in turn gives fundamental information about the mass distribution in the galaxy, including dark matter. We can go further in cases of spherical symmetry. Spherical symmetry means that the gravitational acceleration at a distance R from the centre of the galaxy is simply GM(R)=R2, where M(R) is the mass interior to the radius R. In this case, 2 vcirc GM(R) GM(R) = 2 and therefore, vcirc = : (5.1) R R r R If we can assume spherical symmetry, we can estimate the mass inside a radial distance R by inverting Equation 5.1 to give v2 R M(R) = circ ; (5.2) G and can do so as a function of radius. -
A Comparison of the DC14 and Corenfw Dark Matter Halo Models on Galaxy Rotation Curves F
A&A 605, A55 (2017) Astronomy DOI: 10.1051/0004-6361/201730402 & c ESO 2017 Astrophysics Testing baryon-induced core formation in ΛCDM: A comparison of the DC14 and coreNFW dark matter halo models on galaxy rotation curves F. Allaert1, G. Gentile2, and M. Baes1 1 Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281, 9000 Gent, Belgium e-mail: [email protected] 2 Department of Physics and Astrophysics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium Received 6 January 2017 / Accepted 15 June 2017 ABSTRACT Recent cosmological hydrodynamical simulations suggest that baryonic processes, and in particular supernova feedback following bursts of star formation, can alter the structure of dark matter haloes and transform primordial cusps into shallower cores. To assess whether this mechanism offers a solution to the long-standing cusp-core controversy, simulated haloes must be compared to real dark matter haloes inferred from galaxy rotation curves. For this purpose, two new dark matter density profiles were recently derived 10 11 from simulations of galaxies in complementary mass ranges: the DC14 halo (10 < Mhalo=M < 8 × 10 ) and the coreNFW halo 7 9 (10 < Mhalo=M < 10 ). Both models have individually been found to give good fits to observed rotation curves. For the DC14 model, however, the agreement of the predicted halo properties with cosmological scaling relations was confirmed by one study, but strongly refuted by another. A next important question is whether, despite their different approaches, the two models converge to the same solution in the mass range where both should be appropriate. To investigate this, we tested the DC14 and coreNFW halo 9 10 models on the rotation curves of a selection of galaxies with halo masses in the range 4 × 10 M – 7 × 10 M and compared their 11 predictions. -
Possible Evidence for the Ejection of a Supermassive Black Hole from An
Mon. Not. R. Astron. Soc. 000, 000–000 (0000) Printed 4 June 2021 (MN LATEX style file v2.2) Possible evidence for the ejection of a supermassive black hole from an ongoing merger of galaxies Martin G. Haehnelt1⋆, Melvyn B. Davies2 and Martin J. Rees1 1Institute of Astronomy, Madingley Road, Cambridge, CB3 OHA 2Lund Observatory, Box 43, SE–221 00, Lund, Sweden 4 June 2021 ABSTRACT Attempts of Magain et al (2005) to detect the host galaxy of the bright QSO HE0450– 2958 have not been successful. We suggest that the supermassive black hole powering the QSO was ejected from the observed ULIRG at the same redshift and at 1.5 arcsec distance. Ejection could have either be caused by recoil due to gravitational wave emission from a coalescing binary of supermassive black holes or the gravitational slingshot of three or more supermassive black holes in the ongoing merger of galaxies which triggered the starburst activity in the ULIRG. We discuss implications for the possible hierarchical build-up of supermassive black holes from intermediate and/or stellar mass black holes, and for the detection of coalescing supermassive binary black holes by LISA. Key words: Black hole physics; Celestial mechanics, stellar dynamics; Binaries: general; Galaxies:nuclei 1 INTRODUCTION jevic & Merritt 2001). The further evolution is somewhat uncertain. Hardening by gravitational interaction with stars In their recent paper, Magain et al (2005) describe observa- passing close to the binary will be much slower than the typ- tions of the bright quasar HE0450–2958 which suggest that ical duration of the star formation bursts in ULIRGs. -
Physics Beyond the Standard Model and Dark Matter.Pdf
Physics Beyond the Standard Model and Dark Matter Elise Wursten CERN, RIKEN AVA School on Precision Physics 25th of March 2020 1 Contents • Standard Model • Introduction • Open issues & Beyond • Dark Matter • Why do we think it exists? • Dark Matter Candidates • Searches for Dark Matter 2 Standard Model 3 Standard Model Fundamental constants have to be determined by experiment 4 Standard Model – Open Issues & Beyond Fundamental constants have to be determined by experiment • The strong CP problem: CP violating θ- term in Lagrangian is suppressed by 9 orders of magnitude. Why? • Possible solution: There is a particle called the axion, which makes this parameter small because of a spontaneously broken symmetry (Peccei-Quinn) • Candidate for dark matter 5 Standard Model – Open Issues & Beyond Fundamental constants have to be determined by experiment • Hierarchy problem: why is the Higgs mass so low? • Quantum corrections would make the mass huge! • Proposed solution is supersymmetry: fermionic and bosonic loop corrections cancel each other out • Lightest SUSY particle is candidate for dark matter 6 Standard Model – Open Issues & Beyond Fundamental constants have to be determined by experiment • What about the neutrino masses? • Are these fundamental constants really constant? (see next talk) 7 Standard Model – Open Issues & Beyond • Why is there so much more matter than antimatter in the universe? Baryon asymmetry parameter: Observed: Standard Model prediction: 5 Standard Model – Open Issues & Beyond • Why is there so much more matter than antimatter in the universe? Baryon asymmetry parameter: Observed: Standard Model prediction: • Conditions for baryon asymmetry by Sakharov: • Baryon number violation • C and CP violation • Departure from local equilibrium (or CPT violation) [1] JETP Lett 5, 24-27 (1967). -
Turbulent Formation of Protogalaxies at the End of the Plasma Epoch: Theory and Observations
Turbulent formation of protogalaxies …, Nova Book, Galaxies: Dynamics, Formation and Evolution 1 Turbulent formation of protogalaxies at the end of the plasma epoch: theory and observations Rudolph E. Schild1,2 1 Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, USA 2 [email protected] and Carl H. Gibson 3,4 3 University of California San Diego, La Jolla, CA 92093-0411, USA [email protected], http://sdcc3.ucsd.edu/~ir118 ABSTRACT The standard model of gravitational structure formation is based on the Jeans 1902 acoustic theory, neglecting nonlinear instabilities controlled by viscosity, turbulence and diffusion. A linear insta- bility length scale equal to the sound speed times the gravitational freefall time emerges. Because the Jeans scale LJ for the hot primordial plasma is always slightly larger than the scale of causal connection ct, where c is the speed of light and t is the time after the big bang, it has been assumed that no plasma structures could form without guidance from a cold (so LJ CDM is small) collisionless cold-dark-matter CDM fluid to give condensations that gravitationally collect the plasma. Galaxies by this CDM model are therefore produced by gradual hierarchical-clustering of CDM halos to gal- axy mass over billions of years, contrary to observations showing that well formed galaxies existed much earlier. No observations exist of CDM halos. However, Gravitational instability is non- linear and absolute, controlled by viscous and turbulent forces or by diffusivity at Schwarz length scales smaller than ct. Because the universe during the plasma epoch is rapidly expanding, the first structures formed were at density minima by fragmentation when the viscous-gravitional scale LSV first matched ct at 30,000 years to produce protosupercluster voids and protosuperclusters. -
Explosion of the Science Modification of Newtonian Dynamics Via Mach's
Physics International Original Research Paper Explosion of the Science Modification of Newtonian Dynamics Via Mach’s Inertia Principle and Generalization in Gravitational Quantum Bound Systems and Finite Range of the Gravity-Carriers, Consistent Merely On the Bosons and the Fermions Mohsen Lutephy Faculty of Science, Azad Islamic University (IAU), South Tehran branch, Iran Article history Abstract: Newtonian gravity is modified here via Mach's inertia principle Received: 29-04-2020 (inertia fully governed by universe) and it is generalized to gravitationally Revised: 11-05-2020 quantum bound systems, resulting scale invariant fully relational dynamics Accepted: 24-06-2020 (mere ordering upon actual objects), answering to rotation curves and velocity dispersions of the galaxies and clusters (large scale quantum bound Email: [email protected] systems), successful in all dimensions and scales from particle to the universe. Against the Milgrom’s theory, no fundamental acceleration to separate the physical systems to the low and large accelerations, on the contrary the Newtonian regime of HSB galaxies sourced by natural inertia constancy there. All phenomenological paradigms are argued here via Machian modified gravity generalized to quantum gravity, especially Milgrom empirical paradigms and even we have resolved the mystery of missing dark matter in newly discovered Ultra Diffuse Galaxies (UDGs) for potential hollow in host galaxy generated by sub quantum bound system of the globular clusters. Also we see that the strong nuclear force (Yukawa force) is in reality, the enhanced gravity for limitation of the gravitational potential because finite-range of the Compton wavelength of hadronic gravity-carriers in the nucleuses, reasoning to resolve ultimately, one of the biggest questions in the physics, that is, so called the fine structure constant and answering to mysterious saturation features of the nuclear forces and we have resolved also the mystery of the proton stability, reasonable as a quantum micro black hole and the exact calculation of the universe matter. -
Cycle 15 Approved Programs
Cycle 15 Approved Programs As of 4/19/06 First Name Last Name Type Phase II ID Institution Country Science Category Title Alessandra Aloisi GO 10885 Space Telescope USA Unresolved Stellar Deep Photometry of NGC 1569: Science Institute - Populations Understanding the Closest and Strongest ESA Starburst of the Nearby Universe Scott Anderson GO 10907 University of USA Quasar Absorption Lines New Sightlines for the Study of Intergalactic Washington and IGM Helium: A Dozen High-Confidence, UV-Bright Quasars from SDSS/GALEX Jack Baldwin AR 10932 Michigan State USA AGN/Quasars Hard Ionizing Photons at High Redshift --- A University New Method for Measuring the QSO Continuum Shape Bruce Balick AR 10933 University of USA ISM and Circumstellar Planetary Nebula Image Catalogue: HST Washington Matter data Dinshaw Balsara AR 10934 University of Notre USA ISM and Circumstellar The Interaction of Supernova Remnant Dame Matter Shocks with Interstellar Clouds Nate Bastian GO 10785 University College UK Unresolved Stellar Luminosity Profiles of Extremely Massive London (UCL) Populations Clusters in NGC 7252 Dan Batcheldor GO 10839 Rochester Institute of USA AGN/Quasars The NICMOS Polarimetric Calibration Technology Dan Batcheldor AR 10935 Rochester Institute of USA AGN/Quasars Resolving the Critical Ambiguities of the M- Technology Sigma Relation Edo Berger GO 10908 Carnegie Institution USA Cosmology Gotcha! Using Swift GRBs to Pinpoint the of Washington Highest Redshift Galaxies Edwin Bergin GO 10810 University of USA Star Formation The Gas Dissipation -
Rotation and Mass in the Milky Way and Spiral Galaxies
Publ. Astron. Soc. Japan (2014) 00(0), 1–34 1 doi: 10.1093/pasj/xxx000 Rotation and Mass in the Milky Way and Spiral Galaxies Yoshiaki SOFUE1 1Institute of Astronomy, The University of Tokyo, Mitaka, 181-0015 Tokyo ∗E-mail: [email protected] Received ; Accepted Abstract Rotation curves are the basic tool for deriving the distribution of mass in spiral galaxies. In this review, we describe various methods to measure rotation curves in the Milky Way and spiral galaxies. We then describe two major methods to calculate the mass distribution using the rotation curve. By the direct method, the mass is calculated from rotation velocities without employing mass models. By the decomposition method, the rotation curve is deconvolved into multiple mass components by model fitting assuming a black hole, bulge, exponential disk and dark halo. The decomposition is useful for statistical correlation analyses among the dynamical parameters of the mass components. We also review recent observations and derived results. Full resolution copy is available at URL: http://www.ioa.s.u-tokyo.ac.jp/∼sofue/htdocs/PASJreview2016/ Key words: Galaxy: fundamental parameters – Galaxy: kinematics and dynamics – Galaxy: structure – galaxies: fundamental parameters – galaxies: kinematics and dynamics – galaxies: structure – dark matter 1 INTRODUCTION rotation curves of the Milky Way and spiral galaxies, respec- tively, and describe the general characteristics of observed rota- tion curves. The progress in the rotation curve studies will be Rotation of spiral galaxies is measured by spectroscopic ob- also reviewed briefly. In section 4 we review the methods to de- arXiv:1608.08350v1 [astro-ph.GA] 30 Aug 2016 servations of emission lines such as Hα, HI and CO lines from termine the mass distributions in disk galaxies using the rotation disk objects, namely population I objects and interstellar gases.