Quick viewing(Text Mode)

Phylogenetic Diversity and Ecophysiology Of

Phylogenetic Diversity and Ecophysiology Of

Phylogenetic Diversity and Ecophysiology of

Alphaproteobacterial Glycogen Accumulating Organisms in

Enhanced Biological Phosphorus Removal Activated Sludge

Systems

Submitted by

Simon Jon McIlroy

Bachelor of Applied Science (Honours)

La Trobe University

A thesis submitted in total fulfilment

of the requirements for the degree of

Doctor of Philosophy

School of Molecular Sciences

Faculty of Science Technology and Engineering

La Trobe University,

Bendigo, Victoria, 3552

Australia

December 2010

Table of contents

Abbreviations xiv Summary xvii Statement of authorship xix List of publications xx Acknowledgements xxiv 1.0 Introduction 1

1.1 The requirement for nutrient removal in the treatment of wastewater ...... 1 1.2 The application of activated sludge to the treatment of wastewater...... 2 1.2.1 Enhanced biological phosphorus removal ...... 2 1.2.2 Nitrogen removal ...... 6 1.3 The need for microbiological studies on P removal ...... 7 1.4 Biochemical models of EBPR and PAO metabolism...... 7 1.4.1 Anaerobic metabolism of the PAO...... 8 1.4.1.1 The uptake of volatile fatty acids (VFAs)...... 8 1.4.1.2 The source of anaerobic reducing equivalents...... 10 1.4.2 Aerobic metabolism of the PAO...... 11 1.4.3 The need for microbiological data in PAO modelling...... 11 1.5 How do we study the complex communities in EBPR systems?...... 12 1.5.1 Culture dependent methods...... 12 1.5.2 Culture independent methods: The ‘Full rRNA cycle’ approach ...... 14 1.5.2.1 Obtaining 16S rRNA gene sequence information from EBPR systems ...... 14 1.5.2.2 In situ analysis of populations...... 18 1.5.2.3 The functional phylogenetic unit: limitations of the 16S rRNA gene?...... 19 1.6 Which are the important PAO in EBPR systems? ...... 20 1.6.1 The putative gammaproteobacterial PAO...... 20 1.6.1.1 The acinetobacterial PAO...... 20 1.6.1.2 Stentrophomonas sp. EBPR-1...... 23 1.6.2 The betaproteobacterial PAO...... 23 1.6.2.1 Lampropedia hyalina...... 23 1.6.2.2 Candidatus ‘Accumulibacter phosphatis’...... 28 1.6.2.2.1 Intraphylotypic diversity among ‘Accumulibacter’ ...... 28 1.6.2.2.2. Anaerobic metabolism of ‘Accumulibacter’...... 30 1.6.2.2.3. Aerobic metabolism of ‘Accumulibacter’...... 32 1.6.2.2.4 Can ‘Accumulibacter’ denitrify?...... 33 1.6.2.3 Are members of the Dechloromonas PAO? ...... 35 i 1.6.3 Actinobacterial-related PAO...... 36 1.6.3.1 Microlunatus phosphovorus...... 36 1.6.3.2 Tetrasphaera-related PAO...... 37 1.6.3.2.1 Metabolism of the Tetrasphaera PAO...... 38 1.6.4 Other possible PAO ...... 39 1.7 The glycogen accumulating organisms (GAOs)...... 40 1.7.1 The anaerobic metabolism of the GAO ...... 41 1.7.2 Aerobic metabolism of the GAO ...... 42 1.8 The phylogenetic identity of the GAO...... 42 1.8.1 The gammaproteobacterial GAO - Candidatus ‘Competibacter phosphatis’...... 43 1.8.1.1 Anaerobic metabolism of the ‘Competibacter’...... 45 1.8.1.2 Aerobic/anoxic metabolism of the ‘Competibacter’...... 45 1.8.2 Alphaproteobacterial-related GAO...... 48 1.8.2.1 Amaricoccus sp...... 48 1.8.2.2 Sphingomonas-related GAO ...... 48 1.8.2.3 Defluviicoccus-related GAO...... 49 1.8.2.3.1 Anaerobic metabolism of the Defluviicoccus-related GAO ...... 50 1.8.2.3.2 Aerobic metabolism of the Defluviicoccus-related GAO ...... 51 1.8.3 Other putative GAO...... 52 1.9 Competition between the PAO and GAO populations in EBPR ...... 53 1.9.1 Carbon source ...... 53 1.9.2 pH...... 57 1.9.3 Temperature ...... 59 1.9.4 Carbon to phosphorus ratio (C:P)...... 60 1.9.5 Sludge retention time (SRT) ...... 60 1.9.6 Dissolved oxygen (DO) levels...... 61 1.10 Aims of this study ...... 62

2.0 Flow cytometry assisted identification of GAO in lab-scale EBPR systems...... 63

2.1 Introduction...... 63 2.2 Materials and methods ...... 65 2.2.1 Operation of the EPBR SBR reactors ...... 65 2.2.2 Cell fixation ...... 66

ii 2.2.3 Fluorescence in situ hybridisation (FISH) ...... 66 2.2.4 Fluorescence microscopy...... 67 2.2.5 Quantitative FISH (qFISH)...... 67 2.2.6 Flow cytometry ...... 69 2.2.6.1 FISH labelling of cells ...... 69 2.2.6.2 Sorting of ...... 70 2.2.6.3 Sorting of ‘Competibacter’...... 70 2.2.7 Extraction of DNA from FACS sorted biomass ...... 70 2.2.8 16S rRNA gene clone library construction...... 72 2.2.8.1 16S rRNA gene clone library PCR ...... 72 2.2.8.2 Ligation and transformation...... 72 2.2.8.3 Plasmid extraction ...... 74 2.2.8.4 Colony PCR ...... 74 2.2.8.5 DNA electrophoresis ...... 75 2.2.8.6 Sequencing and phylogenetic analysis ...... 75 2.3 Results and discussion ...... 76 2.3.1 SBR community compositions ...... 76 2.3.2 Flow cytometry sorting of the Alphaproteobacteria ...... 78 2.3.3 Clone library analysis of ALF968 FACS sorted cells ...... 78 2.3.4 Could FACS also assist in uncovering further diversity among the ‘Competibacter’? ...... 81 2.4 Conclusions ...... 84

3.0 Developing methods for nucleic acid extraction from activated sludge samples which reflect community population diversity ...... 86 3.1 Introduction...... 86 3.2 Materials and methods ...... 88 3.2.1 Sampling ...... 88 3.2.1.1 Pure cultures ...... 88 3.2.1.2 Lab-scale EBPR activated sludge samples ...... 88 3.2.1.3 Full-scale EBPR activated sludge samples ...... 89 3.2.2 Nucleic acid extractions ...... 89 3.2.2.1 NaTCA method (MI) ...... 90 3.2.2.2 Method of Corgié et al. (2006) (CR) ...... 91 3.2.2.3 Metho d of Costa et al. (2004) (CS) ...... 91

iii 3.2.2.4 Method of Griffiths et al. (2000) (GR) ...... 91 3.2.2.5 Method of McVeigh et al. (1996) (MV)...... 92 3.2.2.6 Method of Orsini and Romano-spica (2001) (OR)...... 92 3.2.2.7 Method of Tillett and Neilan (2000) (TN)...... 93 3.2.2.8 Method of Yu and Mohn (1999) (YM)...... 93 3.2.2.9 Method of MoBIO© Soil DNA Kit (MO)...... 93 3.2.3 Post-extraction biomass lysis assessment using SYBR Gold© staining ...... 94 3.2.3.1 In situ nuclease treatment of controls ...... 94 3.2.4 Electrophoresis...... 95 3.2.4.1 DNA electrophoresis...... 95 3.2.4.2 RNA electrophoresis...... 95 3.2.4.3 SDS-polyacrylamide gel electrophoresis (SDS-PAGE) ...... 95 3.2.4.4 Gel visualisation...... 96 3.2.5 Estimating nucleic acid concentration ...... 96 3.2.6 Spectrophotometry...... 96 3.2.7 Restriction digest inhibition assessment ...... 96 3.2.8 Denaturing gradient gel electrophoresis (DGGE)...... 97 3.2.8.1 PCR cycling conditions...... 97 3.2.8.2 Electrophoresis...... 97 3.2.9 Reverse transcription PCR (RT-PCR) ...... 98 3.2.10 PCR of marker population phylotypes...... 98 3.2.11 Real-time qPCR conditions...... 99 3.2.12 Clone library construction...... 101 3.2.12.1 16S rRNA gene clone library PCR ...... 101 3.2.12.2 Cloning, sequencing and phylogenetic analysis ...... 101 3.2.13 FISH...... 102 3.3 Results and discussion ...... 102 3.3.1 Optimisation of the NaTCA extraction method...... 102 3.3.2 Comparison of all methods for nucleic acid isolation ...... 105 3.3.2.1 Comparison of nucleic acid yields...... 105 3.3.2.2 Comparison of nucleic acid purity...... 106 3.3.2.3 Nucleic acid integrity...... 106 3.3.2.4 Effects of homogenisation on biomass integrity...... 110

iv 3.3.2.5 Assessing cell lysis efficiency using target populations ...... 111 3.3.2.6 Application of these observations...... 117 3.4 Conclusions...... 117

4.0 Elucidating further phylogenetic diversity among the Defluviicoccus-related GAO in activated sludge ...... 119

4.1 Introduction...... 119 4.2 Materials and methods ...... 121 4.2.1 Biomass samples...... 121 4.2.2 Clone library construction...... 121 4.2.3 Cell sorting-RT-PCR...... 123 4.2.4 FISH analyses ...... 123 4.2.5 FISH probe design ...... 123 4.2.6 Optimisation of hybridisation conditions for FISH probes...... 126 4.2.7 FISH-MAR ...... 126 4.2.7.1 Incubations...... 126 4.2.7.2 Fixation and storage...... 127 4.2.7.3 Scintillation counting of MAR incubated biomass...... 127 4.2.7.4 FISH analysis of MAR samples...... 128 4.2.8 Histochemical staining...... 128 4.2.8.1 DAPI staining for polyP granule inclusions ...... 128 4.2.8.2 Nile blue A staining for PHA granule inclusions ...... 128 4.2.9 PHA cycling experiments ...... 129 4.2.10 Enzyme-labelled fluorescence (ELF)...... 129 4.2.11 Microsphere adhesion to cells (MAC)...... 130 4.3 Results...... 130 4.3.1 FISH survey of Bendigo biomass ...... 130 4.3.2 16S rRNA sequence analyses of the Bendigo biomass ...... 130 4.3.3 Probe design against clones of interest ...... 136 4.3.4 Retrieval of 16S rRNA sequences by micromanipulation and RT-PCR of the dominant ‘Nostocoida limicola’ morphotype in the Bendigo WWTP ...... 136 4.3.5 Ecophysiology of cluster III Defluviicoccus in the Bendigo EBPR plant ...... 137 4.3.6 Ecophysiology of cluster III Defluviicoccus in other Australian EBPR plants. .. 138

v 4.3.7 Carbon cycling by cluster III Defluviicoccus...... 142 4.3.8 MAC and ELF analysis...... 142 4.3.9 Further phylogenetic diversity among Defluviicoccus-related organisms...... 143 4.3.10 Ecophysiology of cluster IV Defluviicoccus...... 145 4.3.11 Distribution of Defluviicoccus-related organisms in full-scale EBPR plants.... 145 4.3.12 The distribution of Amaricoccus sp. in wastewater treatment systems ...... 148 4.4 Discussion...... 152 4.4.1 Description of clusters III and IV of the Defluviicoccus-related organisms...... 152 4.4.2 The ecophysiology of clusters III and IV Defluviicoccus in EBPR systems...... 152 4.4.3 Distribution of Defluviicoccus GAO in full-scale systems...... 154 4.4.4 Other alphaproteobacterial GAO ...... 155

5.0 Resolving the identity of the ‘Sphingomonas-related’ putative GAO in EBPR...... 156

5.1 Introduction...... 156 5.2 Materials and methods ...... 158 5.2.1 Pure cultures...... 158 5.2.2 DNA extraction...... 158 5.2.3 Clone library construction...... 158 5.2.4 FISH...... 159 5.2.4.1 Pre-permeabilisation of cells for FISH ...... 159 5.2.4.2 In situ RNAse treatment...... 162 5.2.5 Dissociation temperature (Tm) determination ...... 162 5.2.6 Thermodynamic stability of single nucleotide insertions and deletions...... 162 5.2.7 Detecting non-target single base insertions and deletions sites in FISH probes.. 163 5.3 Results...... 163 5.3.1 The SBR9-1 putative GAO 16S rRNA clone sequence is a chimera ...... 163 5.3.2 Where does the SBR9-1a probe bind to this chimeric 16S rRNA sequence?...... 164 5.3.3 Is the SBR9-1a FISH probe binding to the RNA?...... 167 5.3.4 To what other 16S rRNA sequences does this SBR9-1a probe bind? ...... 167 5.3.5 Investigating the possibility that bulge FISH probes can still hybridise with their target sites ...... 171 5.3.6 The conundrum of the SBR9-1b probe...... 173 5.3.7 The absence of SBR9-1a positive cells in other studies ...... 173

vi 5.3.8 Does the problem of binding to non-target sites containing insertions or deletions occur with other FISH probes? ...... 173 5.3.9 Can the binding efficiency of FISH probes to non-target sites containing insertion or deletions be predicted from theoretical free energy calculations?...... 179 5.3.10 Are non-target sites containing insertions and deletions commonly found for existing FISH probes?...... 180 5.3.11 Screening for non-target sites containing single nucleotide insertions and deletions and predicting the likelihood of FISH probe binding...... 180 5.3.12 A case study of the presence of a non-target single nucleotide insertion site resulting in a FISH false positive...... 186 5.4 Discussion...... 188 5.5 Concluding remarks...... 190

6.0 The influence of pH on the microbial community present in a laboratory scale EBPR...... 191

6.1 Introduction...... 191 6.2 Material and methods...... 192 6.2.1 Reactor operation ...... 192 6.2.2 Chemical analysis ...... 193 6.2.3 FISH analyses ...... 194 6.2.4 Histochemical staining...... 194 6.2.5 FISH-MAR ...... 194 6.2.6 Electron microscopic analysis of granules...... 195 6.2.7 DNA extraction...... 195 6.2.8 DGGE analysis...... 195 6.3 Results...... 199 6.3.1 Effect of pH on EBPR Performance ...... 199 6.3.2 Effect of operating pH on reactor chemical profiles...... 200 6.3.3 Effect of operating pH on microbial community structure and ecophysiology... 202 6.3.4 Effect of operating pH on biomass organisation...... 220 6.4 Discussion...... 233 6.5 Concluding remarks...... 238

7.0 Conclusions and Future Directions ...... 240

vii 7.1 Conclusions...... 240 7.2 Future work...... 242

8.0 Appendices...... 244

Appendix 1: Assessment of probe defined ‘Competibacter’ phylotype diversity...... 244 Appendix 2: Defluviicoccus-related probe coverage assessment...... 251 Appendix 3: Preparation protocol for 4.5 M NaTCA ...... 257 Appendix 4: Cluster IV Defluviicoccus probe optimisation ...... 258 Appendix 5: Media composition...... 259 Appendix 6: Publications forming chapters in this thesis...... 260

9.0 References...... 261

viii List of figures

Figure 1.1: Schematic diagrams of activated sludge treatment systems...... 3 Figure 1.2: Diagrammatic representation of the structure and composition of the organic fraction of an activated sludge floc...... 5 Figure 1.3: Summary of basic ‘important’ transformations of EBPR sludge...... 9 Figure 1.4: Schematic of major anaerobic and aerobic features of the proposed metabolic models...... 10 Figure 1.5: Diagrammatic representation of the steps involved in the ‘Full-rRNA cycle’ approach to the identification of an organism in a mixed environmental communities...... 15 Figure 1.6: Maximum likelihood phylogenetic tree of sequences of putative PAO...... 22 Figure 1.7: Phylogenetic trees for ‘Accumulibacter’-related 16S rRNA gene and ppk gene sequences...... 31 Figure 1.8: Important membrane transport mechanisms in characterised PAO and GAO..... 34 Figure 1.9: Proposed alternate anaerobic metabolic pathways for ‘Accumulibacter’ ...... 35 Figure 1.10: Maximum likelihood phylogenetic tree of sequences of putative GAO ...... 44 Figure 2.1: FACS sorting plots for LS1 and LS2 ...... 71 Figure 2.2: Micrographs of FACS sorted biomass samples ...... 77 Figure 2.3: Maximum likelihood tree of the complete sequences obtained from the LS1 ALF968 FACS sorted community ...... 79 Figure 2.4: Maximum likelihood tree of the complete sequences obtained from the LS2 FACS sorted community...... 82 Figure 3.1: Gel electrophoresis of the total nucleic acid extracted from different organisms using the different extraction protocols ...... 105 Figure 3.2: Semi-quantitative comparison of total DNA and RNA yields from each sample source for each extraction method...... 107 Figure 3.3: Electrophoresis gel of total nucleic acid extracts from LS1 for all extraction methods...... 110 Figure 3.4: Micrographs of SYBR Gold© stained post-extraction LS1 biomass...... 112 Figure 3.5: Maximum likelihood tree of the complete sequences obtained from the LS2 using the MI and MV extraction methods...... 114

ix Figure 3.6: DGGE of DNA extracts from the FS1 sample using several extraction methods ...... 116 Figure 4.1: FISH CLSM micrographs of the ‘Nostocoida limicola’-like, cluster III ‘Defluviicoccus’ in the Bendigo EBPR plant...... 132 Figure 4.2: FISH CLSM micrographs showing the effect of the DF988 competitor on DF988 binding to the ‘Nostocoida limicola’-like organisms in the Bendigo EBPR plant...... 133 Figure 4.3: Maximum likelihood tree of all available complete Defluviicoccus vanus-related sequences...... 134 Figure 4.4: FISH-MAR micrographs measuring 14C labelled acetate assimilation of cluster III Defluviicoccus...... 139 Figure 4.5: FISH-MAR micrographs measuring 14C labelled propionate assimilation of cluster III Defluviicoccus...... 140 Figure 4.6: FISH-MAR micrographs measuring 3H labelled glutamte assimilation of cluster III Defluviicoccus...... 141 Figure 4.7: Micrographs of the cluster III Defluviicoccus-related organisms in the Bendigo EBPR plant...... 144 Figure 4.8: FISH CLSM micrographs of cluster IV Defluviicoccus-related organisms...... 146 Figure 4.9: FISH micrographs for ecophysiological studies of cluster IV Defluviicoccus- related organisms ...... 147 Figure 4.10: FISH micrographs of putative alphaproteobacterial GAO...... 151 Figure 5.1: Diagrammatic representation of the chimeric nature of the SBR9-1 16S rRNA clone sequence ...... 165 Figure 5.2: Maximum-likelihood phylogenetic tree of the SBR9-1 sequence ...... 166 Figure 5.3: Phase and corresponding FISH micrographs for competitor probe experiments with bulge probes...... 169 Figure 5.4: FISH micrographs of SBR9 biomass and Bendigo WWTP with the SBR91a and DF218 probes...... 172 Figure 5.5: Diagrammatic representation of the SBR9-1a FISH probe forming a loop out to hybridise to the Defluviicoccus-related sequences...... 172 Figure 5.6: FISH micrographs for bulge probe experiments with synthesised bulge probe variants...... 177 Figure 5.7: Formamide dissociation curves for selected FISH probes and their ‘bulge’ variants...... 181

x Figure 5.8: Box plot analysis of bulge mismatches for selected FISH probe sequences...... 185 Figure 5.9: FISH micrographs of Rhodococcus sp. J71 cells ...... 187 Figure 6.1: Daily effluent P concentrations at the end of anaerobic and aerobic stages of the SBR under different operational pH conditions...... 199 Figure 6.2: Typical profiles of the EBPR chemical transformations occurring in the SBR under different operational pH conditions ...... 201 Figure 6.3: Community composition profile with changing operational pH in the lab-scale reactor (LS2) ...... 204 Figure 6.4: Composite CLSM FISH micrographs of populations of interest in the LS2 lab- scale reactor...... 205 Figure 6.5: DGGE analysis of the lab-scale reactor EBPR community over time ...... 206 Figure 6.6: Maximum likelihood tree of the complete sequences obtained from the LS2 reactor community ...... 207 Figure 6.7: Linear regression analysis of operational pH against total cluster II Defluviicoccus, and ‘Chloroflexi’, population size determined by qFISH ...... 209 Figure 6.8: FISH-MAR micrographs for anaerobic 14C acetate uptake experiments for the ‘Accumulibacter’...... 210 Figure 6.9: Micrographs of Nile blue A stained ‘Accumulibacter’ PAO ...... 212 Figure 6.10: FISH-MAR micrographs for aerobic 33P phosphate uptake experiments ...... 213 Figure 6.11: Micrographs of DAPI stained ‘Accumulibacter’...... 215 Figure 6.12: Micrographs of DAPI stained populations of interest in LS2...... 216 Figure 6.13: Linear regression analysis of total ‘Accumulibacter’ cell biovolume against the concentration of supernatant P at the end of the anaerobic phase ...... 217 Figure 6.14: Linear regression analysis of operational pH against total ‘Accumulibacter’ cell biovolume and the concentration of supernatant P at the end of the anaerobic phase...... 218 Figure 6.15: Electron microscope micrographs of granules from LS2...... 218 Figure 6.16: Composite CLSM FISH micrographs of cluster II Defluviicoccus...... 219 Figure 6.17: Composite CLSM FISH micrographs of ‘Competibacter’...... 221 Figure 6.18: FISH-MAR micrographs for anaerobic 14C acetate uptake experiments for the ‘Defluviicoccus’ ...... 222 Figure 6.19: FISH-MAR micrographs for anaerobic 14C acetate uptake experiments for the ‘Competibacter’ ...... 224 Figure 6.20: Micrographs of Nile blue A stained cluster II ‘Defluviicoccus’...... 226

xi Figure 6.21: Micrographs of Nile blue A stained ‘Competibacter’...... 227 Figure 6.22: FISH micrographs of LS2 biomass structure...... 229 Figure 6.23: CLSM Fluorescent images of sections of granules produced in the LS2 reactor ...... 231 Figure 6.24: Comparison of the total community composition of the LS2 reactor with that present in the granules alone...... 233

xii List of tables

Table 1.1: Summary of suggested PAO/GAO populations selected biochemical properties. 24 Table 1.2: FISH probes and distribution summary for putative PAO populations...... 26 Table 1.3: FISH probes and distribution summary for putative GAO populations ...... 46 Table 1.4: FISH-MAR summary of available data for in situ uptake of different substrates. 56 Table 2.1: FISH probes applied in Chapter 2 ...... 68 Table 2.2: Required Na+ concentration for FISH wash buffer...... 69 Table 2.3: Filter sets for Nikon Eclipse 800 ...... 69 Table 2.4: Primer sequences used in Chapter 2 ...... 73 Table 2.5: Quantitative FISH results ...... 76 Table 3.1: Overview of the lysis step in each extraction method...... 90 Table 3.2: PCR primers applied in Chapter 3...... 100 Table 3.3: FISH probes applied in Chapter 3...... 103 Table 3.4: Summary of comparison data of extraction methods assessed in Chapter 3...... 108 Table 3.5: Comparison of FISH quantitative data for LS2 biomass...... 113 Table 4.1: Details of activated sludge plants sampled in Chapter 4 ...... 122 Table 4.2: FISH probes applied in Chapter 4...... 124 Table 4.3: Mismatches in target sites between FISH probes and selected 16S rRNA sequences ...... 135 Table 4.4: Summary of FISH-MAR data...... 138 Table 4.5: Distribution of GAO and PAO in Australian wastewater treatment plants...... 149 Table 5.1: Organisms and culture conditions used in Chapter 5 ...... 158 Table 5.2: Oligonucleotide sequences used in Chapter 5 ...... 160 Table 5.3: Mismatches in target sites between FISH probes and selected 16S rRNA sequences ...... 168 Table 5.4: Summary of data for variations in binding energies for bulge FISH probes...... 175 Table 5.5: Survey data showing the frequency of single base insertions/deletions for selected FISH probe sequences...... 182 Table 6.1: List of oligonucleotide FISH probes used in Chapter 6 ...... 196 Table 6.2: qFISH data for reactor ...... 202

xiii

Abbreviations

ADP Adenosine diphosphate ATP Adenosine triphosphate BOD Biochemical oxygen demand bp DNA base pair CLSM Confocal laser scanning microscope CoA Coenzyme A COD Chemical oxygen demand CRISPR Clustered regularly interspaced short palindromic repeats CTAB Hexadecyltrimethylammonium bromide Cy3 Indocarbocyanine Cy5 Indodicarbocyanine DAPI 4ƍ-Diamidino-2-phenylindole dihydrochloride DEPC Diethylpyrocarbonate DGGE Denaturing gradient gel electrophoresis DMSO Dimethyl sulphoxide DNA Deoxyribonucleic acid dNTP Deoxynucleotide triphosphate DO Dissolved oxygen DPAO Denitrifying polyphosphate accumulating organisms DTT Dithiothreitol EBPR Enhanced biological phosphorus removal ED Entner-Doudoroff EDTA Ethylenediaminetetraacetic acid ELF Enzyme linked fluorescence EMP Embden-Meyerhoff Parnas EPS Exopolysaccharide [FA] Formamide concentration [FA]m Melting formamide concentration FACS Fluorescence activated cell sorter

xiv FISH Fluorescence in situ hybridisation FLUOS 5(6)-carboxyfluorescein-N-hydroxy-succinimide ester GAO Glycogen accumulating organism HPLC High performance liquid chromatography IDEA Intermittently decanted extended aeration IPTG ,VRSURS\Oȕ-D-1-thiogalactopyranoside ITS Internally transcribed spacer region LB Luria-Bertani MAC Microsphere adhesion to cells MAR Microautoradiography MLSS Mixed liquor suspended solids mRNA Messenger ribosomal ribonucleic acid MUCT Modified University of Cape Town N Nitrogen NAD+ Nicotinamide adenine dinucleotide (oxidised form)

NADH2 Nicotinamide adenine dinucleotide (reduced form) NaTCA Sodium trichloroacetate NMR Nuclear magnetic resonance OTU Operational taxonomic unit P Phosphorus PAGE Polyacrylamide gel electrophoresis PAO Polyphosphate accumulating organism PBS Phosphate buffered saline P:C Phosphorus to carbon ratio PCR Polymerase chain reaction PFA Paraformaldehyde PHA Poly-ȕ-hydroxyalkanoate phaC Poly-ȕ-hydroxyalkanoate synthase gene PHB Poly-ȕ-hydroxybutyrate PHV Poly-ȕ-hydroxyvalerate Pit Phosphate inorganic transport pmf Proton motive force PolyP Polyphosphate

xv ppk Polyphosphate kinase gene Pst Phosphate specific transport PVP Polyvinylpyrrolidone PVPP Poly(vinylpolypyrrolidone) qFISH Quantitative fluorescence in situ hybridisation qPCR Quantitative polymerase chain reaction RBCOD Readily biodegradable chemical oxygen demand RDPII Ribosomal database project II RFU Relative fluorescence units RNA Ribonucleic acid rRNA Ribosomal ribonucleic acid RT-PCR Reverse transcriptase polymerase chain reaction SBR Sequencing batch reactor SDS Sodium dodecyl sulphate SEM Scanning electron microscope SIP Stable isotope probing smf Sodium membrane potential SRT Sludge retention time SS Suspended solids TAE Tris/sodium acetate/EDTA TCA Trichloroacetic acid TCA cycle Tricarboxylic acid cycle TE Tris/EDTA TEM Transmission electron microscope TEMED N’,N’,N’,N’-tetramethylethylenediamine TFO Tetrad forming organism Tm Melting temperature T-RFLP Terminal restriction fragment length polymorphism Tris Tris(hydroxymethyl)aminomethane WWTP Wastewater treatment plant VFA Volatile fatty acid X-Gal 5-Bromo-4-chloro-3-indolyl ȕ-D-galactopyranoside

xvi Summary

This study investigated the phylogenetic diversity among the alphaproteobacterial Defluviicoccus-related glycogen accumulating organisms (GAO), populations thought to compete with the phosphate accumulating organisms (PAO) in enhanced biological phosphorus (P) removal (EBPR) activated sludge systems for substrates in the anaerobic feed stage. As these GAO do not accumulate large amounts of P, their dominance in plants is thought to lead to decreases in P-removal capacity and even process failure. A summary of the major findings of this work are as follows:

x The apparent bias against representation of Defluviicoccus-related organisms in constructed clone libraries from communities where they are highly abundant arises partly from DNA extraction problems with them and can be overcome with novel extraction protocols and/or FISH assisted flow cytometry.

x 16S rRNA clone library data and fluorescence in situ hybridization (FISH) analysis was applied to identify two novel phylogenetic clusters of Defluviicoccus (clusters III and IV). Members of cluster III contained filamentous ‘Nostocoida limicola II’ like morphotypes, known to cause bulking/settling problems in activated sludge plants.

x Application of histochemical staining and microautoradiography (MAR) together with FISH indicated cluster III and IV members possessed the GAO phenotype in situ.

x The previously described Sphingomonas-related alphaproteobacterial GAO were revealed in this study as artifacts where their initial identification was based on a chimeric rRNA sequence. The FISH probe published for it in fact targets members of cluster I Defluviicoccus. Problems with interpretation of FISH data arising from bulge-out probes was also described for the first time in relation to these Defluviicoccus, and shown to be of much wider importance.

xvii x Contrary to many other studies, quantitative FISH (qFISH) analysis of an EBPR SBR system showed that ‘Accumulibacter’ PAO dominated numerically the GAO over the pH range 6.5-7.5, forming large granular aggregates, and apparently shifting their phenotype from a PAO closer to that of a GAO, at the lower pH (6.5).

xviii Statement of authorship

Except where reference is made in the text of the thesis, this thesis contains no material published elsewhere or extracted in whole or in part from a thesis for any other degree or diplomas.

No other person’s work has been used without due acknowledgement in the main text of this thesis.

This thesis has not been submitted for the award for any degree or diploma in any other tertiary institution.

Signed:

Date:

xix List of publications

Publications forming chapters of this thesis (included in Appendix 6)

McIlroy, S.J., Hoefel, D., Schroeder, S., Ahn, J., Tillett, D., Saint, C., and Seviour, R. (2008) FACS enrichment and identification of floc-associated alphaproteobacterial tetrad-forming organisms in an activated sludge community. FEMS Microbiol Lett 285: 130-135.

Seviour, R.J., and McIlroy, S.J. (2008) The microbiology of phosphorus removal in activated sludge processes- the current state of play. J Microb 46: 115-124.

McIlroy, S.J., Porter, K., Seviour, R.J., and Tillett, D. (2008) Simple and safe method for simultaneous isolation of microbial RNA and DNA from problematic populations. Appl Environ Microbiol 96: 593-605.

Ahn, J., McIlroy, S.J., Schroeder, S., and Seviour, R.J. (2009) Biomass granulation in an aerobic:anaerobic-enhanced biological phosphorus removal process in a sequencing batch reactor with varying pH. J Ind Microbiol Biotechnol 36: 885-893.

Nittami, T., McIlroy, S.J., Seviour, E.M., Schroeder, S., and Seviour, R.J. (2009) Candidatus Monilibacter spp., common bulking filaments in activated sludge, are members of Cluster III Defluviicoccus. Syst Appl Microbiol 32: 480-489.

McIlroy, S.J., Porter, K., Seviour, R.J., and Tillett, D. (2009) Extracting nucleic acids from activated sludge which reflect community population diversity. Antonie van Leeuwenhoek 96: 593-605.

McIlroy, S.J., and Seviour, R.J. (2009) Elucidating further phylogenetic diversity among the Defluviicoccus-related glycogen-accumulating organisms in activated sludge. Environ Microbiol Rep 1: 563-568.

xx McIlroy, S.J., Nittami, T., Seviour, E., and Seviour, R.J. (2010) Filamentous members of cluster III Defluviicoccus have the in situ phenotype expected of a glycogen accumulating organism in activated sludge. FEMS Microbiol Ecol 74: 248-256

McIlroy, S.J., Tillett, D., Petrovski, S., and Seviour, R.J. (In press) Non-target sites with single nucleotide insertions or deletions are frequently found in 16S rRNA sequences and can lead to false positives in fluorescence in situ hybridization (FISH). Environ Microbiol DOI: 10.1111/j.1462-2920.2010.02306.x

Additional publications

Ahn, J., Schroeder, S., Beer, M., McIlroy, S.J., Bayly, R.C., May, J.W. et al. (2007) Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl Environ Microbiol 73: 2257-2270.

Martin, K., McDougall, B.M., McIlroy, S.J., Chen, J., and Seviour, R.J. (2007) Biochemistry and molecular biology of exocellular fungal beta-(1,3)- and beta-(1,6)-glucanases. FEMS Microbiol Rev 31: 168-192.

Speirs, L., Nittami, T., McIlroy, S.J., Schroeder, S., and Seviour, R.J. (2009) Filamentous bacterium Eikelboom type 0092 in activated sludge plants in Australia is a member of the phylum Chloroflexi. Appl Environ Microbiol 75: 2446-2452.

Schroeder, S., Petrovski, S., Campbell, B., McIlroy, S.J., and Seviour, R.J. (2009) Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge. FEMS Microb Lett 297: 157-163.

Nielsen, P.H., Nguyen, H.T.T., McIlroy, S.J., Mielczarek, A.T., and Seviour, R.J. (2009) Identification of polyphosphate-accumulating and glycogen-accumulating organisms by FISH. In FISH handbook for biological wastewater treatment. Nielsen, P.H., Daims, H., and Lemmer, H. (eds). London: IWA Publishing, pp. 25-31.

xxi McIlroy, S.J., and Porter, K. (2010) DNA and RNA extraction. In Microbial ecology of activated sludge. Seviour, R.J., and Nielsen, P.H. (eds). London: IWA Publishing, pp. 343- 349.

Seviour, E.M., McIlroy, S.J., and Seviour, R.J. (2010) Descriptions of activated sludge organisms. In Microbial ecology of activated sludge. Seviour, R.J., and Nielsen, P.H. (eds). London: IWA Publishing, pp. 453-487.

Speirs, L., McIlroy, S.J., Petrovski, S., and Seviour, R.J. (In press) The activated sludge bulking filament Eikelboom Type 0914 is a member of the Chloroflexi. Environ Microbiol Rep DOI: 10.1111/j.1758-2229.2010.00201.x

Petrovski, S., Dyson, Z.A., Quill, E.S., McIlroy, S.J., Tillett, D., and Seviour, R.J. (Accepted) An examination of the mechanisms for stable foam formation in activated sludge systems. Water Res.

Conference presentations

McIlroy, S.J., Ahn, J., Schroeder, S., and Seviour, R.J. (2008) The long term influence of pH on the microbiological community of a lab-scale SBR EBPR system. Poster presentation. 12th

International Symposium on Microbial Ecology (ISME 12). Cairns, Australia.

Schroeder, S., McIlroy, S.J., and Seviour, R.J. (2008) Diversity of Candidatus ‘Accumulibacter phosphatis’ in aerated lab-scale and anaerobic: aerobic full-scale biological phosphorus removal systems by PCR-DGGE analysis. Poster presentation. 12th International Symposium on Microbial Ecology (ISME 12). Cairns, Australia.

McIlroy, S.J., Nittami, T., and Seviour, R.J. (2009) The extent of phylogenetic diversity amongst the Defluviicoccus related organisms in activated sludge. Poster presentation. 5th IWA Activated Sludge Population Dynamics Conference (ASPD5), Aalborg, Denmark.

xxii Speirs, L., Nittami, T., McIlroy, S.J., Schroeder, S., and Seviour R.J. (2009) Identification of the Eikelboom filamentous bacterium type 0092, found in activated sludge. Poster presentation. 5th IWA Activated Sludge Population Dynamics Conference (ASPD5), Aalborg, Denmark.

Schroeder S., Petrovski, S., Campbell, B., McIlroy, S.J., and Seviour, R.J. (2009) Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge. Platform presentation. 5th IWA Activated Sludge Population Dynamics Conference (ASPD5), Aalborg, Denmark.

McIlroy, S.J., Petrovski, S., Tillett, D., and Seviour, R.J. (2009) ‘Sphingomonas-related’ glycogen accumulating organisms in activated sludge processes removing phosphate - a reassessment of their identity. Platform presentation. 5th IWA Activated Sludge Population Dynamics Conference (ASPD5), Aalborg, Denmark.

xxiii Acknowledgements

For the privileged opportunity I have had to begin and complete PhD studies I have many people to express my appreciation to.

Firstly to my supervisor, Professor Robert Seviour, for the time that he invested into both my thesis work and my personal development as a research scientist. His genuine enthusiasm and passion for research, accompanied by his generosity and tenacious support for his students, has led to many opportunities for me during my PhD studies and likely many more.

Thanks also to my co-supervisor Dr Daniel Tillett for his advice and willingness to assist when I reached an impasse in my research. We were not always on the same page, but the discussion opened up some new and interesting directions for my project.

Thanks to Drs Barbara McDougall and Steve Petrovski, for very kindly proof reading my thesis and to Bianca Gifford for helping to put the document together.

Thanks to all the technical staff in the Departments of Pharmacy, Microbiology and Biochemistry for all their assistance, especially to David Osborne, Rod Lindrea, John Hamilton, Sue Mullins and Dot Andison.

An enormous thank you to Barb Udale for dealing with most of the logistical problems created with my working in Melbourne.

Thanks to Drs Chris Saint and Daniel Hoefel at South Australia Water, for allowing me to work in their laboratory and for helping me with the FACS sorting method. Thanks also to Kathryn Eales and Frank Schmid for accommodating me during this time.

Thank you to the people that I had the pleasure of working closely with. To Dr Johwan Ahn for operating the ‘pH reactor’, Dr Kate Porter for her assistance with the nucleic acid protocol validation and Dr Tadashi Nittami who worked with me on the cluster III work presented in this thesis.

xxiv Thank you also to Drs Sarah Schroeder, Kate Porter, Michael Beer and Kathryn Eales, and Ms Beth Seviour, for their time and patience in teaching me basic techniques when I first started in the lab.

Thank you to all members of the Pharmacy and Microbiology Departments of La Trobe University, especially the members of the Plasmid Lab and the Biotechnology Research Centre, for helping to create a pleasant working environment.

Thanks to Holly and the Loughran family for all of their support, and, along with Harry and Leanne Putting, for generously sharing their homes with me when I had limited options for accommodation during my time in Melbourne.

I would also like to express my appreciation to my wonderful family, including its newest members. Throughout my studies, despite the very difficult personal hardship the family has endured, your support never wavered. You always provided me with everything I needed to go in what ever direction I chose and it is that continued support that led me to the start, and now the end, of my PhD studies.

To my beautiful fiancée Bianca, thank you for all the love, support, patience you gave to me during this time, and for the personal sacrifices that it often involved for you.

xxv

For my sister Kristy, who endured so much yet, continues to give. Her inspirational courage and approach to life keeps everything in perspective.

1.0 Introduction 1.1Therequirementfornutrientremovalinthetreatmentofwastewater Humanpopulationgrowth,pollutionandglobalwarmingareincreasinglyimpactingonwater supplythroughouttheworld.Estimatesindicatethatoverhalfoftheglobalpopulationwill havelimitedaccesstocleanwaterbythe year2050,makingitsavailabilityandtherefore treatmentefficacyforreuseofparamountimportance(Tchobanoglousetal.,2003;Jimenez andAsano,2008). Massivevolumesofwastewateraregenerateddailyfromdomestic(municipal)andindustrial sources.Thiswasteisacomplex,highlyvariablemixtureoforganicandinorganicmaterials, beingrichincarbohydrates,proteinsandlipids(Gray,2005;Seviour,2010).Theprimary roleoftreatmentistoreducesuspendedsolidsandthebiochemical/chemicaloxygendemand (BOD/COD) of the waste before its eventual release into a receiving water body, thus reducingitsecologicalimpactontheenvironmentandthepotentialspreadofwaterborne disease(TheronandCloete,2002;Gray,2005).Ofadditionalconcernistheremovalofthe nutrientsnitrogen(N)andphosphorus(P),ashighdischargelevelshavepotentiallysevere ecological consequences, causing nutrient overenrichment (eutrophication) in receiving waterbodiesthatcanleadtotheproliferationof Cyanobacteria(Phlips,2002;Smithand Schindler,2009).Theseoutbreaksor‘blooms’ reduceavailableoxygenandlightinthese systems. Furthermore, some Cyanobacteria produce carcinogenic hepato and neurotoxic compoundsthatpresentaserioushealthhazardtohumansandotheranimals(Burkholder, 2002; Falconer, 2002). Limiting P release levels is thought to be more critical than controlling N discharges into freshwater systems, since some Cyanobacteria can fix atmospheric N. However, placing stringent requirements on both is considered the most reliablepreventativemeasureagainstepisodesofeutrophication(Conley,2000;Burkholder, 2002;Paerl,2008).

1 1.2Theapplicationofactivatedsludgetothetreatmentofwastewater Conventionalactivatedsludgesystemsconsistofanaeratedtankwhereorganismsarekeptin intimatecontactwithcarbonaceouscompoundsbysubmergedaeratorsormechanicalmixers. In the presence of oxygen these organic compounds are oxidised by chemoorganoheterotrophic , releasing CO2 gas (Lindrea and Seviour, 2002) (Fig. 1.1).Sludgefromtheaerationtankpassesintoaclarifierwheresolidsareallowedtosettle, separatingthebiomassorsludgefromtheeffluentliquidsupernatant.Atthisstagemicrobes associatedwithflocsareadvantagedasflocculationenhancesbiomasssettleability(Toerien et al., 1990; Nielsen, 2002). These flocs are made up predominantly of organic material consistingofmicrobialcellsandexopolymericsubstances(EPS),thelatterconsistingmainly of protein is thought to act as an adhesive ‘glue’, with filamentous bacteria possibly providingaskeletalstructuralmatrix(Fig.1.2)(Nielsen,2002;Jenkinsetal.,2004;Seviour andNielsen,2010b).Theprincipleoftheactivatedsludgeprocessisthereturnofsomeofthe settled biomass, termed ‘activated sludge’, to reinoculate fresh untreated waste (Fig. 1.1) (Ardern and Lockett, 1914). This ensures that the specialist organisms suited to the breakdownofcompoundscomingintotheplantareretainedinthesystemandensuresmore rapid treatment compared to the original treatment systems where all the biomass was discarded(ArdernandLockett,1914;Seviour,2010). 1.2.1Enhancedbiologicalphosphorusremoval(EBPR) InAustralianmunicipalwastesinfluentPlevelsaretypicallyaround1015mgl1,theprimary sourcesbeingfaecesandhouseholddetergents(Argaman,1991;Blackalletal.,2002).The highratioofPtocarboninthesewastesmeansthattheformer,likeN,isoftenpresentin excessofbacterialgrowthrequirements,andso,onlyafractionisremovedbyconventional treatmentsystems(Gray,2005).Plantsdesignedforthedeliberatemicrobiologicalreduction ofPareknownasenhancedbiologicalphosphorusremoval(EBPR)systemsandareclaimed to achieve totalP effluent levels as low as 0.10.2mg l1 (Blackall et al., 2002). Limits imposedonPreleasevarywithcountryandreceivingwaterbodytype,butarebecoming increasingly stringent from elevated environmental awareness, making treatment optimisationandefficiencyahighpriority(BarnardandSteichen,2006). 2

3 Figure1.1:Schematicdiagramsofactivatedsludgetreatmentsystemsa.Schematicofaconventionalactivatedsludgetreatmentplant(Seviour,2010)and b.asimplifiedmapoftheconceptualnutrientflowthroughtheaerobicplant.c.BasicschematicofaplantdesignedforNandPremoval(EBPR)(Seviour et al., 2010); d. simplified map of the conceptual nutrient flow through the EBPR plant. ANA = Anaerobic; ANX = Anoxic; AER = Aerobic; N = Nitrogen;P=Phosphorus;C=Carbon.Pi=inorganicphosphate;PolyP=internallystoredpolyphosphate.

4

Figure1.2:Diagrammaticrepresentationofthea.structureandb.approximatecompositionofthe organicfractionofanactivatedsludgefloc(adapatedfromSeviourandNielsen(2010b)andNielsen (2002),respectively). The principal conditions for EBPR are the cycling of the biomass through alternating ‘FEAST:FAMINE’conditions.IntraditionalEBPRthisisachievedwithananaerobiczone where readily biodegradable COD (RBCOD) are available (the ‘FEAST’ phase) and subsequent aerobic conditions where RBCOD is limiting (the ‘FAMINE’ phase) (Barnard, 1974,1975;Toerienetal.,1990).However,completelyaeratedsystemshavebeenoperated stably for several months where the ‘FEAST:FAMINE’ regime is created by temporal separationofcarbonandPadditions(Ahnetal.,2007). Inthe‘FEAST’ phasespecialised organisms, known collectively as the polyphosphate accumulating organisms (PAO), use 5 energy obtained from the hydrolysis and release of stored polyphosphate (polyP) for the uptake and storage of substrates (RBCOD). Then in the subsequent ’FAMINE’ phase, the PAO accumulate excessive amounts (more than is required for their growth) of P as intracellular polyP granules. Net P removal is achieved when this polyP rich biomass is wastedfromthesystem(Fig.1.1c.d.)(Toerienetal.,1990;Minoetal.,1998). ChemicalprecipitationmethodscanalsobeusedtoremovePfromwastewaterandareoften requiredtopolishtheeffluentofinefficientorunreliableEBPRplants.However,theseadd expenseandhavetheir ownenvironmentalproblems,whichincludeincreasingsalinityof receiving water bodies and producing large amountsof chemical sludge that is difficult to disposeof(Kortsteeetal.,1994;Blackalletal.,2002).Converselythehighsettleabilityand nutrientcontentofEPBRsludgeareidealpropertiesforapplicationasafertiliser,making biologicalremovalaparticularlyenvironmentallyattractiveprocess(McMahonetal.,2010). 1.2.2Nitrogenremoval PremovalisrarelyaddressedindependentlyofNremovalsinceplantsdesignedtoremoveP alsoremoveN.Withtheinclusionofananoxictankor‘zone’1,thehighlevelsofnitrate (NO3 )releasedfromtheoxidationofammonia(NH3)bythenitrifyingbacteriaintheaerobic zone, are reduced to dinitrogen gas by the denitrifying bacteria there, thus ensuring a net removalofNfromthesystemandlimitingthenitratelevelsenteringtheanaerobiczone(see Fig1.1.c.d.)(Argaman,1991;DaimsandWagner,2010).Thisisconsideredimportantfor successful EBPR as denitrifiers in the anaerobic zone may use any nitrate present as a terminalelectronacceptor,competingwiththePAOforcarbon,thusreducingtheirselective advantage(Tchobanoglousetal.,2003). Interestingly,somePAOsappeartobecapableofusingnitrateinsteadofoxygenasterminal electronacceptorandareknowncollectivelyasdenitrifyingPAOs(DPAOs).Theseallowa muchmoreefficientuseoftheoftenlimitinglevelsofavailablecarbon,potentiallyreducing aeration costs and resulting in less sludge production for disposal (Kuba et al., 1996; McMahonetal.,2010)(seeFig1.1.c.d.). 1 Atermusedtodescribetheconditionofhighlevelsofnitrate(NO3 )withlimitedoxygen. 6 1.3TheneedformicrobiologicalstudiesonPremoval WhilemanyadvanceshavebeenmadeinthedesignofEBPRplants(reviewedbyToerienet al.,1990;van Loosdrecht et al., 1997; Tchobanoglous et al., 2003; Oehmen et al., 2007; Seviour et al.,2010),verylittleisknownofthemicrobiologicalmechanismsinvolvedin EBPR, with advances in process efficiency being largely empirical and engineering based (Seviour et al.,2003). Thesesystems areoftensubjectto failureorprolongedperiodsof operationalinefficiency.AmorecompleteknowledgeofthecomplexmicrobiologyofEBPR islikelytoincreasemarkedlyourabilitytocontrolthesesystems,increasingtheirefficiency and perhaps paving the way for the design of more innovative treatment processes that maximisethemetabolicpotentialoftheseorganismsfortreatmentpurposes(Seviouretal., 2003;McMahonetal.,2007a;McMahonetal.,2010). 1.4BiochemicalmodelsofEBPRandPAOmetabolism TheconstructionofmetabolicmodelsforEBPRbiomasshasbeenclaimedtoleadtoabetter understandingofthebiochemicaltransformationsinvolved,andapotentialimprovementin processcontrol,aswellasprovidinganinsightintothemicrobiologyofthePAO(Oehmenet al.,2007;Oehmenetal.,2010b).IntheabsenceofpureculturesofthePAO,earliermodels werebasedonobservationsofgrossbiochemicaltransformationscarriedoutbyacomplex mixed microbial community (see Fig. 1.3). The applicationof realtime nuclearmagnetic resonance(NMR)carbontracerexperimentsanddirectedinhibitionofpostulatedkeyPAO metabolic enzymes have also assisted in clarifying which are their important metabolic pathways(Liuetal.,1994;Pereiraetal.,1996;Louieetal.,2000).However,withthelatter approach,thespecificityofsomeofthesemetabolicinhibitorsisunclear,anditisfeasible thatalternativepathwaysmayreplacethosebeinginhibited(Burowetal.,2007;Oehmenet al.,2010b;Zhouetal.,2010). ThefirstconvincingmodelstoexplainPAOmetabolismwerethoseofComeauandWentzel (Comeauetal.,1986;Wentzeletal.,1986)(Fig.1.3a.)andMino(Minoetal.,1987)(Fig. 1.3b.).Manymodifiedversionsofthesemodelshavesincebeenproposed(Oehmenetal.,

7 2007).Althoughtheysharemanycoresimilarities,someaspectsofPAOmetabolismarestill thesubjectofmuchdebateandcontroversy.Abriefoverviewofthesemodelsispresented next. 1.4.1AnaerobicmetabolismofthePAO 1.4.1.1Theuptakeofvolatilefattyacids(VFAs) MostPAOmetabolicmodelsarebasedonacetateasthesolecarbonsourceforthePAO, givenitsabundanceinactivatedsludgeandcommonuseinlaboratorybasedexperiments. However,afewstudieshaveinvestigatedEBPRbasedonothercarbonsourcesandproposed models incorporating their metabolism (Oehmen et al., 2007). While the different models suggesteitheractivetransportorpassivediffusionattheexpenseofaprotonmotiveforce (pmf) (Schuler and Jenkins, 2003a), there is an assumed universal reliance on polyP hydrolysis to supply the required energy or to directly maintain the required membrane potential (Comeau et al.,1986;SchulerandJenkins,2003b;McMahon et al., 2010). It is generallyacceptedthatacetateisfirstactivatedtoacetylCoA,consumingATPsourcedfrom thehydrolysisofpolyP,althoughtheMinomodel(Fig.1.4b.)alsoassumesapartialATP supply from glycolysis (Comeau et al., 1986; Wentzel et al., 1986; Mino et al., 1987; Oehmen et al., 2007). The role of polyP as an energy source for substrate uptake and synthesisasstoragepolymersrepresentsthekeymetabolicfeatureofthePAOthatenable themtooutcompeteotherchemoorganoheterotrophicorganismsanaerobicallywhereinfluent carbonisavailable(Maraisetal.,1983).

8

Figure 1.3: a. Summary of basic ‘important’transformations of EBPR sludge (seeMarais et al., 1983;Wentzeletal.,1991;Minoetal.,1998;McMahonetal.,2010). Anaerobictransformations: • Inthepresenceofsubstrate,biomasspolyPlevelsdecreasewithanincreaseinPinthebulk liquid • Shortchainvolatilefattyacids(VFA)inthebulkliquiddecreasewithanincreaseinbiomass polyβhydroxyalkanoates(PHA)levels • Biomasspolysaccharides(glycogen)levelsdecreaseduringVFAuptake Aerobictransformations: • PinthebulkliquidisassimilatedaspolyP • BiomassPHAlevelsdecrease • Biomasspolysaccharide(glycogen)levelsincrease b. Example of a typical chemical profile of an anaerobic: aerobic labscale EBPR reactor. Pi = phosphorus;Ac=Acetate;PHB=polyβhydroxybutyrate.

9

Figure1.4:Schematicofmajoranaerobic(left)andaerobic(right)featuresoftheproposedmetabolic models(McMahonetal.,2010):a.TheComeauWentzelmodel(Comeauetal.,1986;Wentzelet al.,1986);b.Minomodel(Minoetal.,1987;Arunetal.,1988). 1.4.1.2Thesourceofanaerobicreducingequivalents Whilethereisgeneralagreementthatacetateisusedtosynthesisepolyβhydroxyalkanoates (PHA),thesuggestedoriginofthereducingequivalentsrequiredforitsproductionisstilla majorpointofdebate(Zhouetal.,2010).TheComeauWentzelmodel(Fig.1.4a.)proposes thatananaerobicoperationoftheTCAcycleprovidesthese,whiletheMinobasedmodels (Fig.1.4b.)suggestthehydrolysisofglycogenaloneisthesource,inordertoexplaintheir observedfluctuationsofglycogenlevelsduringanaerobic:aerobicbiomasscycling(Minoet al., 1987). The additional ATP provided from anaerobic glycolysis also provides the

10 theoreticalenergyshortfallfortheactivationofacetatetoacetylCoAwhenpolyPistheonly energysourceconsidered(Smoldersetal.,1994a).Glycogenexhaustionhasalsobeenfound to limit anaerobic substrate uptake, despite the availability still of biomass polyP stores (Brdjanovicetal.,1998d). Perrieraetal.(1996)used13ClabelledacetateandNMRtotracecarbonfromacetatetoPHA anaerobically,toglycogeninthesubsequentaerobicphase,andthentoPHAagaininthe following anaerobic phase, and confirmed a direct role for glycogen catabolism in ATP supply. However their model required an additional source of anaerobic reducing equivalents, and they concluded that at least some are supplied through the anaerobic operationoftheTCAcycle.Theseoutcomessuggestthatacombinationofthetwopopular metabolic models (Fig. 1.4) may best describe metabolism of the PAO, a suggestion supportedbymostofthelaterstudies(Hesselmannetal.,2000;SchulerandJenkins,2003c, a;Oehmenetal.,2007). 1.4.2AerobicmetabolismofthePAO ThereisgeneralconsensusonthemajormetabolictransformationsbythePAOintheaerobic phase.CatabolismofPHAoccursthroughtheTCAcyclewhereenergyandcarbonareused predominatelyforbiomassgrowthand,inthecaseofMinobasedmodels,forreplenishing theglycogenstoresdepletedduringtheanaerobicstage.Aerobicrespirationisalsothoughtto providetheATPforPuptakeanditspolymerisationaspolyP(Fig.1.4)(Minoetal.,1995; Smoldersetal.,1995;Oehmenetal.,2007). 1.4.3TheneedformicrobiologicaldatainPAOmodelling Althoughthisearlymodellingworkbasedonwholecommunitychemicalprofilinghasbeen crucial in developing an understanding of EBPR systems, the models which emerged assumed that the characteristic EBPR transformations were performed by a single PAO population.Innocasewasanyattemptmadetoanalysethecompositionofthecommunities responsibleforthesechemicaltransformations(SchulerandJenkins,2003c;Seviouretal., 2003). As discussed later, the PAO are now known to be phylogenetically and

11 physiologicallydiverseandmorethanonePAOpopulationarelikelytocoexistinthesame community.Characterisationofthemicrobialcommunity,theuseofhighlyenrichedcultures of defined PAO populations and the ultimate attainment of pure cultures, will make interpretation of these profile data more meaningful (Seviour et al., 2003; Oehmen et al., 2007), leading to models that account for their physiological diversity now known to be present(Oehmenetal.,2010b). 1.5HowdowestudythecomplexcommunitiesinEBPRsystems? Becauseofthecomparativesimplicityofbacterialmorphology,unequivocalidentificationof individualpopulationsincomplexmicrobialcommuntiescannotbebasedonmorphology based characters, as is the case with higher plants and animals (Amann et al., 1995). For example, although microscopic characteristics are still widely used by plant operators for ‘identification’offilamentousbacteriainbulkingandfoamingactivatedsludge(Eikelboom, 1975; Jenkins et al., 2004), members of a single filament morphotype can be phylogeneticallyverydiverse(Nielsenetal.,2009a),andtheirmorphologycanchangewith environmentalconditions(McKenzie et al., 2006). Therefore, a thorough understanding of microbial community composition must rely on more precise methods of identification (Kragelundetal.,2009;Nielsenetal.,2009a). 1.5.1Culturedependentmethods EarlyattemptstoidentifythePAOreliedonisolatingorganismsfromEBPRprocessesinto purecultureandtheirsubsequentphenotypiccharacterisation.Initiallyeffortwasdirectedat culturing isolates that then showed the same biological transformations as seen in EBPR biomass samples (Seviour et al., 2003). However, since less than one percent of the suggestedbacterialdiversityinnatureisthoughttobeculturable,thisapproachiscertainto generateahighlybiasedviewofcommunitycomposition,favouringthoseorganismsableto growbestundertheconditionschosenforisolation(Amannetal.,1995;Hugenholtzetal., 1998;Pace,2009),asillustratedlater(Section1.6.1.1).

12 Conventionalculturebasedapproaches generally favourthefaster growingorganisms,and thereisarecognisedneednowformorerationaldirectapproachestoculturingorganismsof interest(vanLoosdrechtetal.,1997).Insituphysiologydatamayassist,althoughthishas been of limited value thus far (Seviour and Nielsen, 2010b). Flow cytometry and micromanipulation may aid in the enrichment of key populations for their subsequent isolation(Amann,1995;Porteretal.,1996)andsuccesswiththelatterapproach,hasledto theisolationoffilamentousandtetradformingmorphotypesfromactivatedsludge.Those obtainedinpurecultureincludeputativePAOandtheirpotentialcompetitors(Duncanetal., 1988;Beachametal.,1990;Bradfordetal.,1996;Maszenanetal.,1997;Christenssonetal., 1998;Maszenanetal.,1999a;Maszenanetal.,1999b;Blackalletal.,2000;Maszenanetal., 2000b;Beeretal.,2002;Maszenanetal.,2002;Snaidretal.,2002;Strattonetal.,2002; Levantesietal.,2004;Maszenanetal.,2005;Levantesietal.,2006;McKenzieetal.,2006; Kragelundetal.,2007a;Kragelundetal.,2008).Densitycentrifugationmethodshavealso beenappliedtoenrichforthePAO,basedontheirtheoreticallyhighercelldensitiesfrom their abilities to accumulate intracellular PHA and polyP inclusions (Suresh et al., 1985; Hungetal.,2002;Schuleretal.,2002;Zillesetal.,2002a). ItisdifficulttoconfirmordenythetruePAOstatusofisolatesfrompureculture/ex situ studiesalone,givenourlackofunderstandingofthesecomplexsystemsandourinabilityto replicatestrictlytheconditionsofEBPRandpossiblepopulationinteractionsoccurringthere (Brodisch,1985;Yeetal.,1988;vanLoosdrechtetal.,1997;Minoetal.,1998;Chaffronet al.,2010;Slateretal.,Inpress).Theculturesisolatedmayalsonotrepresentthoseoriginally present in situ, slowly evolving to adapt to the very different axenic laboratory culture conditions they are maintained in (Caldwell et al., 1997). Therefore in situ analyses of putative PAO abundance and ecophysiology are essential. However they do not replace totallytheadvantagesinbeingabletostudypurecultures,asonlyasnapshotoftheirbasic metabolicpropertiesisgainedwithinsitumethodslikefluorescenceinsituhybridisation microautoradiography (FISHMAR). Although whole genome sequence information has beenobtainedforthe‘Accumulibacter’fromametagenomicstudyonenrichedPAOcultures (GarcíaMartín et al., 2006), pure cultures are a much preferred way of obtaining this information,whichthenpavesthewayforgenomic,transcriptomic,andproteomicstudies. Togethertheseareessentialinuncoveringallthemetaboliccapabilitiesoftheseorganisms (Forbesetal.,2009;McMahonetal.,2010).

13 1.5.2Cultureindependentmethods:The‘FullrRNAcycle’approach TheimplementationofrRNAgenesinbacterial,particularlythoseencodingthe 16Sribosomalsubunit,hasnowresolvedmanyofthephylogeneticrelationshipswhichexist between bacteria, and allowed a characterisation of the previously inaccessible uncultured majority (Woese et al., 1990; von Wintzingerode et al., 1997; Hugenholtz et al., 1998; AmannandLudwig,2000;Schleifer,2004;Zengler,2009;Coleetal.,2010).Thisgeneisan attractivephylogeneticmarkerasitisubiquitousinbacteria,highlyconserved,independant ofselectionpressuresandshowslimitedevidenceofhorizontalgenetransfer(Amannetal., 1995;Kurlandetal.,2003).Anyvariationsinthelevelsofsequenceconservationalongthe genealsopermitsthedesignofrRNAtargetedprobesandprimersthatcantargetgroupsat different phylogenetic levels (Amann et al., 1995; Head et al., 1998). The approach to studying complex environmental microbial community composition is known as the ‘Full rRNAcycle’approach.ThisissummarisedinFig.1.5anditsmaincomponentsarebriefly discussedinthefollowingsections.Amoredetaileddiscussionofthesetechniquesisgiven (where relevant) in later chapters and they have also frequently been critically reviewed (Amannetal.,1995;vonWintzingerodeetal.,1997;Headetal.,1998;TheronandCloete, 2000;Rochelle,2001;Wagneretal.,2003;Kowalchuketal.,2004;OsbornandSmith,2005; AmannandFuchs,2008;McMahonetal.,2009;Prosseretal.,2010;SeviourandNielsen, 2010a). 1.5.2.1Obtaining16SrRNAgenesequenceinformationfromEBPRsystems Although eliminating much of the bias associated with the culturedependent approach, cultureindependent methods are themselves subject to considerable bias that can be introducedatalmosteverystepinrRNAbasedcommunityanalysis(HugenholtzandGoebel, 2001).

14 Figure 1.5: Diagrammatic representation of the steps involved in the ‘FullrRNA cycle’ approach to the identification of an organism in a mixed environmentalcommunity(takenfromSeviourandNielsen,2010b).GenomicDNAisextractedfromtheenvironmentalsampleandaclonelibraryof16S rRNA sequences prepared. FISH probes are then designed against sequences of interest and applied to the original sample to study the organisms representedbythese16SrRNAgenesinsitu.Inthisexample,differentpopulationsarerepresentedbysquares,trianglesandcirclesandtheFISHprobeis designedforthe‘square’population.

15 Criticaltothesuccessofcultureindependentanalysesofactivatedsludgecommunitiesisthe isolationofhighqualitynucleicacids.Theextractionmethodusedmayresultinconsiderable bias, where some populations yield up their nucleic acids more readily than others (von Wintzingerode et al., 1997; RooseAmsaleg et al., 2001). Selecting a suitable extraction methodisessentialasorganismsresistanttothelysismethodchosenwillbeeitherunder representedinsubsequentanalysesorcompletelyexcludedfromthem,producingaskewed startingpointforallfurtherexplorations(vonWintzingerodeetal.,1997;Headetal.,1998). Thissusceptibilityofdifferentpopulationstolysisprotocols(Frostegårdetal.,1999;Krsek andWellington,1999;Mooreetal.,2004)canbeexacerbatedinstudiesonactivatedsludge communitiesbytheformationofheavilyencapsulatedcellaggregatesorflocs(Watanabeet al.,1998;Bourrainetal.,1999;YuandMohn,1999;Ahnetal.,2007)(seeChapter3). ThePCRamplificationstepisalsoasourceofconsiderablebias(vonWintzingerodeetal., 1997;Headetal.,1998).‘Universal’primersitemismatches,templateconcentrations,PCR cycling conditions and differences in template melting temperatures (Tm) reflecting differences in their G+Cmol %, may all contribute to differential amplification of heterogeneous 16S rRNA gene templates (Reysenbach et al., 1992; Chandler et al., 1997; Suzuki et al., 1998; Ishii and Fukui, 2001; Kurata et al., 2004; Sipos et al., 2007). Compounded by nucleic acid extraction biases, these probably explain the often reported absence or under representation of dominant populations in community profile studies of activatedsludge(Snaidretal.,1997;Wallneretal.,1997;Crocettietal.,2000;Liuetal., 2001;Ahnetal.,2002;Nielsenetal.,2004;Meyeretal.,2006;Ahnetal.,2007;Wongand Liu,2007).Consequently,methodsinvolvingDNAextractionandPCRbasedprofilingareof questionablequantitativevalue. Further complicating rRNA based methods are the generation of sequence artifacts, predominantlytheformationofchimericsequencesandincorporationofincorrectbasesby the DNA polymerase during PCR amplification. Both can lead to an overestimation of communitydiversity(Acinasetal.,2005;Ashelfordetal.,2005;RölingandHead,2005). Chimeric sequences are produced when incomplete fragments of heterogeneous sequences annealinsharedregionsofhomologyduringthePCRannealingstep,andareextendedinall subsequentextensionstepstoformacomplete‘chimeric’artificial16SrRNAgenesequence

16 thatwasnotpresentinitiallyinthecommunity(Liesacketal.,1991;RölingandHead,2005). Thesechimerasareacommonoccurence,showntoconstituteupto30%ofthetotalcloned rRNAgenesequencesfromanysinglecommunitystudy(WangandWang,1997).Alackof adequatescreeningprotocolshasresultedinatleast9%ofsuchsequencesheldintheNCBI database being artifacts (Ashelford et al., 2006). Software programs are available for their detection,andtheseincludeBellerophon(DeSantisetal.,2006),Mallard(Ashelfordetal., 2006)andPintail(Ashelfordetal.,2005).However,theseprogramsareonlyguidesbecause chimeras are notoriously difficult to detect unequivocally, especially for closely related or novel sequences that show low similarities to all others held in public databases. Large databases of screened ‘clean’ sequences like Greengenes (DeSantis et al., 2006), SILVA (Pruesseetal.,2007)andtheRibosomalDatabaseProjectII(RDII)(Coleetal.,2009)are available, to ensure the impact of sequence artifacts on phylogenetic analysis, including probeandPCRprimerdesign,islimited. Despite the pitfalls of such methods, their application has meant that advances in our understanding of the activated sludge community have been immense as clearly demonstratedinSection1.6.Identifyingtheimportantbacterialmembersinactivatedsludge communitiesismadepossiblebytheconstructionofPCRclonelibrariesofindividual16S rRNA gene sequences from DNA extracts, especially in detection of novel populations (HugenholtzandGoebel,2001;WagnerandLoy,2002).Thesecanservetocataloguethe phylogeneticdiversityofanentirecommunity(Bondetal.,1995;WagnerandLoy,2002; Kongetal.,2007)ordeliberatelytargetsequencesofgroupsofinterestafterpriorpopulation enrichments(Levantesietal.,2004;Thomsenetal.,2004).PriorenrichmentofPAOusing density gradientseparation(seeSection1.5.2.1)andtargetingthosestainingpositivelyfor polyPstoragewithflowcytometryhavebothbeenusedtogenerateclonelibrariesofputative PAOsequences(Kawaharasakietal.,1999;Hungetal.,2002;Kawaharasakietal.,2002; Zillesetal.,2002a;Zillesetal.,2002b;Güntheretal.,2009).Otherfunctionallyimportant phenotypicgroupscanbeidentifiedwithtechniqueslikestableisotopeprobing(SIP),where selected stable isotope labelled substrates (ie. 13C and 15N) are tracked into nucleic acids underdefinedconditions,connectingpopulationfunctionwithphylogeneticidentity(Neufeld etal.,2007;Whiteleyetal.,2007;Ginige,2010).

17 However,clonelibraryconstructionisslowandexpensiveandsoothercommunityprofiling techniques,likePCRdenaturinggradientgelelectrophoresis(DGGE)(Muyzeretal.,1993) andPCRterminalrestrictionfragmentlengthpolymorphism(TRFLP)(Liuetal.,1997a)are often used to generate community fingerprints (Liu et al., 1997a; Watanabe et al., 1998; Nielsenetal.,1999;LaParaetal.,2000;Liuetal.,2000b;Boonetal.,2002;Eschenhagenet al.,2003;Okabeetal.,2003;Ahnetal.,2007;Schroederetal.,2008).Theseallowmany samples to be analysed simultaneously, and so are more suitable to study changes in communitycompositionovertimeand/orinresponsetochangingconditions(Muyzerand Smalla,1998;Nockeretal.,2007;Smallaetal.,2007).Eachband/peakgeneratedinthese profilesisconsideredtorepresentasinglepopulation,anassumptionwhichisnotalways sustainable.Identifyingindividualbands/peaksistediousandoftenunsuccessful,andmaking meaningful comparisons between different profiles is complicated (Nocker et al., 2007; Prosseretal.,2010). 1.5.2.2Insituanalysisofpopulations Onetechniquethathascontributedsubstantiallytoourunderstandingofmicrobialecology, in both qualitative and quantitative terms, is fluorescence in situ hybridisation (FISH) (Amann,1995;Wagneretal.,2003;AmannandFuchs,2008).FluorescentlylabelledDNA oligonucleotides are hybridised in situ to target specific sequences contained within the rRNA of populations of interest, providing information about their morphology, relative abundanceandspatialarrangementatthelevelofasinglecell(DeLongetal.,1989;Amann, 1995; Amann and Fuchs, 2008). In combination with other techniques like histochemical staining(OstleandHolt,1982;Kawaharasakietal.,1999;Serafimetal.,2002a)andMAR (Leeetal.,1999;NielsenandNielsen,2005),FISHcanallowtheinsituecophysiologyofa population to be resolved at the resolution of a single cell and, by linking phylogeny to functions in situ, has been crucially important in allowing the identity of organisms participatinginthemicrobiologyofPremovalinactivatedsludge(Leeetal.,1999;Wagner et al., 2003; Nielsen et al., 2010a; Nielsen et al.,2010b).FISHalsoavoidsthebiasesof preferentialnucleicacidextractionandPCRamplificationprotocols,makingitsuitablefor semiquantitativeanalysis(Daimsetal.,2001b;2005;2006).

18 However, as with other molecular ecological methods, well documented problems exist whichneedtobeacknowledged.Forexample,cellpermeability(Carretal.,2005),rRNA levels(Pernthaleretal.,2002)andprobeinaccessibilitytoregionsofthetargetrRNAarising from its secondary structure (Fuchs et al., 1998) may lead to low fluorescence signal intensities,andoftenfalsenegatives(AmannandFuchs,2008).Falsepositivesarisingfroma lack of FISH probe specificity are particularily challenging to address, and emphasise the need for careful probe design and validation of the hybridisation protocol (Yilmaz et al., 2008).Theexponentialgrowthofdatabasescontaining16SrRNAsequenceshasencouraged the requirement for continuing FISH probe specificity reassessment (Amann et al., 2001). SoftwarepackageslikePRIMROSE(Ashelfordetal.,2002),PROBE(PozhitkovandTautz, 2002)andARB(Ludwigetal.,2004)allowforthedesignandscreeningofpotentialFISH probesequences. 1.5.2.3Thefunctionalphylogeneticunit:limitationsofthe16SrRNAgene? While the use of the 16S rRNA gene has revolutionised our understanding of bacterial ecology,therearemanyoftenignoredpitfallsinitsuse.Asimilaritylevelof<97%isused frequently to delineate individual bacterial species (Stackebrandt and Goebel, 1994), although many believe this should be increased to >98.599 % (Stackebrandt and Ebers, 2006;Coleetal.,2010).Onepotentialproblemwithincreasingstringentspeciesor‘cluster’ cutoffvaluesisthatinteroperondiversitybetween16SrRNAgenesinthesamecellmay exceed these values (Pei et al., 2010). Such interoperon diversity can lead to an overestimationofspeciesdiversityincommunityprofilingtechniques(Peietal.,2010). Frommetagenomicstudiesofhabitats,itisbecomingincreasinglyevidentthatanindividual phylotype can embrace considerable genomic diversity (Wilmes et al., 2009). Organisms indistinguishablebyrRNAbasedmethodscanoccupydifferentecologicalniches(Coleman etal.,2006;IvarsMartinezetal.,2008;Peñaetal.,2010).Itisunclearhowandwhysimilar organismscoinhabitthesameniche,butthismayresultfromeitherselectionsweepsbeing insufficientlyweaktopurge‘neutral’diversity(Acinasetal.,2004),micronichesbasedon increasing micropartitioning of resources within the system (Hunt et al., 2008), or viral predationcontrolling‘breakaway’dominantstrains(ThingstadandLignell,1997;Wilmeset al.,2009).Forthisreasonthe‘ecotype’isproposedtobetterdefineabacterialspecies,with 19 thecurrentlyrecognisedspeciessuggestedtomorelikelyrepresentindividualgenera(Cohan, 2002;CohanandKoeppel,2008).Fromapracticalpointofviewhowmuchofthisdiversity isfunctionallyrelevantneedstobedetermined,asdoesthemostmeaningfulfunctionalunit tostudy,withanunderstandingoftheroleandimpactofthisdiversitybeingessentialtoour understandingofthesesystems(McMahonetal.,2007a;Wilmesetal.,2009;Oehmenetal., 2010b). No single gene has adequate information to reveal this diversity alone, and so a multilocus approach is required (Cohan, 2002; Pace, 2009; Cole et al., 2010), like the suggesteduseofthepolyphosphatekinase(ppk)genetoresolveadditionaldiversityamong the‘Accumulibacter’PAO(Heetal.,2007)(seeSection1.6.2.2.1).Thechallengewiththe unculturedmajorityislinkingthephylogenyofalternativegenecandidateswiththatofthe traditionallyapplied16SrRNAgene(He etal.,2007).Metagenomics(Nelsonetal.,2010), enrichmentsoftargetorganismswithflowcytometryofrRNAFISHlabelledcells(Miyauchi etal.,2007)orusingFISHtosimultaneouslytargettherRNAandthemRNAofcandidate genes (Pernthaler and Amann, 2004; Moraru et al., In press) or the 16S23S internally transcribedspacerregion(ITS)(Schmidetal.,2001),mayassistwiththis. 1.6WhicharetheimportantPAOinEBPRsystems? Many putative PAO have been described in the literature. The evidence to support their importanceinPremovalinEBPRsystemsisdiscussedinthefollowingsections,andtheir phylogeneticdiversity,distributionandmetaboliccharacterisationaresummarisedinFig.1.6 andTables1.1and1.2. 1.6.1TheputativegammaproteobacterialPAO 1.6.1.1TheacinetobacterialPAO InearlyEBPRmicrobiologicalworkanumberoforganismswiththeabilitytoaccumulateP aerobicallycouldbeisolatedreadilyfromEBPRcommunities.Themajorityofthesewere identified phenotypically as members of the genus Acinetobacter with A. johnsonii particularlycommon (FuhsandChen,1975;Deinema et al., 1980; Lawson and Tonhazy, 1980;Buchan,1983; LötterandMurphy,1985; Suresh et al., 1985; Duncan et al., 1988;

20 Beachametal.,1990;Streichanetal.,1990;Barketal.,1993;Knightetal.,1995;Kimet al.,1997)(Fig.1.6).TheirpredominanceamongculturedEBPRisolatesledmanytobelieve that these were the important PAO there (Seviour et al., 2003). Although many of these isolatesshowedhighlevelsofaerobicpolyPandPHAaccumulation,nonecouldaccumulate substrateslikeactetateandstorethemanaerobicallyasPHA(seeTable1.1).AnaerobicP releasewasalsomuchlowerthanthatreported forEBPRbiomasses,andwasnotlinked causallytothepresenceofsubstrate(JenkinsandTandoi,1991;Tandoietal.,1998;Seviour etal.,2003) SubsequentapplicationofcultureindependentmethodstoEBPRcommunitiesrevealedthat the dominance, and therefore importance of Acinetobacter in P removal had been overestimated substantially by these culture dependent approaches (Seviour et al., 2003). Direct comparisonbetween FISH andculturedependent communityprofilingshowedthat the latter heavily favoured the Gammaproteobacteria (Wagner et al., 1993; Manz et al., 1994;Wagneretal.,1994b;Kämpferetal.,1996). ThefirstcultureindependentanalysisofEBPRcommunitiesindicatedthatthepresenceof Acinetobacter populations was generally low, a view which has been confirmed often subsequently(CloeteandSteyn,1988b,a;Hiraishietal.,1989;Aulingetal.,1991;Wagner etal.,1993;Manzetal.,1994;Bondetal.,1995;Kämpferetal.,1996;Bondetal.,1998) (Table1.2).Theseneverexceeded2%ofthetotalbiomassinafullscaleEBPRplantwith high P removal efficiency (Wagner et al.,1994b).CellsrespondingtotheACA23aFISH probe targeting Acinetobacter (Wagner et al., 1994b), also stain negatively for polyP granulesinsitu(Wagneretal.,1994b;Kämpfer etal.,1996;Beeretal.,2006).Although AcinetobactermaybecontributingtoasmallextenttoPremoval,andthecoverageofthe ACA23aprobemayunderestimatetheirtrueabundance,itisnowabundantlyclearthatthese BacteriaareatbestnotimportantPAO,andalsothatthephenotypicallydefinedPAOgroup aremuchmorediversethaninitiallythought(Minoetal.,1998;Seviouretal.,2003).

21

Figure 1.6: Maximum likelihood phylogenetic tree of sequences of putative PAO and related organisms.AllsequenceswerealignedusingtheARBprogram(Ludwig et al., 2004) and wereat least 1200 bp long. * Indicates partial sequences (<1200 bp) added later using the ‘quick add’ functioninARB.Probecoverageisindicatedbybrackets,wherebrokenlinesindicatetheabsenceof sequenceinformationattheprobesite.PAOmix(a)=PAO462,PAO651andPAO846(Crocettietal., 2000); PAOmix(b) = PAO462b, PAO651 and PAO846b (Zilles et al., 2002a). See Table 1.2 for further probe details. Phylogenetic affiliations are indicated in the boxes to the far left and broad groupsarealsocolourcoded.Thescalebarcorrespondsto0.1substitutionspernucleotideposition.

22 1.6.1.2Stentrophomonassp.EBPR1 Ghoshetal.(2005)describedagammaproteobacterialisolate,designatedStentrophomonas sp.EBPR1,thatdoesconformstrictlytotheproposedPAOmodels(Table1.1),butmaybe theonlyPAOisolatedfromactivatedsludgesofarthatfitsthemetabolicmodelrequirements discussedearlier(Ghoshetal.,2005).ApplyingaFISHprobedesignedforStentrophomonas sp.(Sten445)showedthatitmadeup34%ofthetotalcellnumbersintwofullscaleEBPR plantcommunities(Ghoshetal.,2005)andZillesetal.(2002b)havedetecteditspresencein aclonelibrarypreparedfromabiomasssampleenrichedforpolyPstained(DAPI)cellsfrom a fullscale plant. Further characterisation of this Stentrophomonas sp. EBPR1 isolate, together with the application of the Sten445 probe (Table 1.2) to more fullscale EBPR communitiesisclearlyrequired. 1.6.2ThebetaproteobacterialPAO While the data from culture independent methods questioned the role of GammaproteobacteriainEBPR,muchoftheaccumulatingevidencefavouredmembersof the.Forexample,quinoneprofiling(Hiraishietal.,1989;Hiraishietal., 1998),clonelibrarydata(Bondetal.,1995;Snaidretal.,1997)andearlyFISHbasedstudies (Manzetal.,1994;Wagneretal.,1994b;Kämpferetal.,1996;Snaidretal.,1997;Bondet al.,1999a),allsuggestedthatorganismsinthissubphylumdominatedEBPRcommunities. Leeetal.(1999;2002)alsoappliedFISHMARtoshowthatitsmemberscouldassimilateP aerobicallyinEBPRsystems. 1.6.2.1Lampropediahyalina Stanteetal.(1997)isolatedanorganism,lateridentifiedasLampropediahyalina(Leeetal., 2004),thatbehavesaccordingtotheproposedPAOmodels(Table1.1),butwithmuchlower levels of P cycling than shown by an EBPR biomass. Although a FISH probe is now availableforitsdetection(Leeetal.,2004),itsinsituimportancehasnotbeenconfirmed.

23 Table1.1:SummaryofsuggestedPAO/GAOpopulationsselectedbiochemicalproperties Aerobic Anaerobic b e Organism Morphology a c d Cuptake PolyP↑ PHA PolyP↓ Glycogen PutativePAOsf + + + + + Gammaproteobacteria Acinetobacterspp.1 Rods/cocci/filaments + ND + –¥ – Stentrophomonassp.EBPR12 Rods + ND + + + Betaproteobacteria Lampropediahyalina3 Cocciinsheets + ND + + + granosa4 Rods + ND ND – ND Quatrionicoccusaustraliensis5 Cocciintetrads + ND ND –¥ ND Candidatus‘Accumulibacterphosphatis’6 Rods/cocci + + + + + Bet135PAO7 Cocci + ND ND + + Actinobacteria Tetrasphaerajaponica;Tetrasphaeraaustraliensis8 Cocciintetrads + ND ND – ND Tetrasphaeraelongata9 Coccibacilli/rods + ND + – + Tetrasphaerajenkinsii;Tetrasphaeravanveenii;Tetrasphaera.veronensis10 Filamentous + ND ND –¥ ND Microlunatusphosphovorus11 Cocci + – + + + Tessarococcusbendigoensis12 Cocciintetrads + ND ND – ND Friedmanniellaspumicola;Friedmanniellacapsulata13 Cocci + ND ND – ND Actino658;Actino221PAO14 Cocciintetrads;rods + –* + – + Gemmatimonadetes Gemmatimonasaurantiaca15 Rods + ND ND ND ND

24 PutativeGAOsg – + – + + Gammaproteobacteria Candidatus‘Competibacterphosphatis’16 Coccibaccilli – + – + + Gam445GAO7 Rodsinclusters – ND – + + Betaproteobacteria Bet65GAO7 Rodsinclusters – ND – + + Alphaproteobacteria Amaricoccussp.17 Cocciintetrads – ND – –¥ – Sphingomonasrelated18 Cocciintetrads – + – + + Defluviicoccusrelated19 Cocciintetrads – + – + + Actinobacteria Microsphaeramultipartita20 Cocci – + – ND ND Micropruiniaglycogenica21 Cocciinclusters – + – + + Kineosphaeralimosa22 Cocci – + – + + KSBR532GAO23 Cocciinclusters – ND – + + Summaryofthecurrentunderstanding:basedonoftenequivocalresultsobtainedunderspecificconditions. aExcesspolyPstorage;baerobiccarbohydrate accumulation,‘*’indicatesinferencefrominhibitorstudiesinsitu;canaerobicPrelease;danaerobicPHAstorage,‘¥’indicatingaerobicstorageability;e abilitytoassimilatecarbonanaerobicallyduringanaerobic:aerobiccycling.fandgsuggestedbyrespectivemodels.ND=Notdetermined.122References:1 (JenkinsandTandoi,1991;vanLoosdrechtetal.,1997;Tandoietal.,1998;Seviouretal.,2003);2(Ghoshetal.,2005);3(Stanteetal.,1997;Leeetal., 2004); 4(Springetal.,2005); 5(Maszenanetal.,2002); 6(Hesselmannetal.,1999;Crocettietal.,2000;Kongetal.,2004); 7(Kongetal.,2007); 8 (Kataokaetal.,1996;Maszenanetal.,2000b);9(Hanadaetal.,2002;OndaandTakii,2002);10(Blackalletal.,2000;McKenzieetal.,2006);11(Ubakata andTakii,1994;KawaharasakiandNakamura,1995;Nakamuraetal.,1995a;1995b;UbakataandTakii,1998;Santosetal.,1999;Akaretal.,2006);12 (Maszenanetal.,1999b);13(Maszenanetal.,1999a);14(Kongetal.,2005);15(Zhangetal.,2003);16(Crocettietal.,2002;Kongetal.,2002a;Konget al.,2006);17(Blackalletal.,1997;Maszenanetal.,1997;Falvoetal.,2001);18(Beeretal.,2004);19(Maszenanetal.,2005;Meyeretal.,2006;Burow etal.,2007;WongandLiu,2007);20(Yoshimietal.,1996);21(Shintanietal.,2000;Kongetal.,2001);22(Liuetal.,2000a;2002);23(Kongetal.,2001).

25 Table1.2:FISHprobesanddistributionsummaryforputativePAOpopulations Lab Fullscale * Probe Targetgroup Reference Scale No.plants Range Avg. (%)¶ analysed¥ (%) (%)§ Gammaproteobacteria ACA23A Acinetobactersp. (Wagneretal.,1994b) <51 142,3 <9 2.8 Sten455 Stentrophomonassp.EBPR1 (Ghoshetal.,2005) <3.54 24 <4 <4 Betaproteobacteria LAMP444 Lampropediahyalina (Leeetal.,2004) NA NA NA NA RHC439 SomeRhodocyclusinc.‘Accumulibacter’ (Hesselmannetal.,1999) PAO462 Most‘Accumulibacter’ (Crocettietal.,2000) PAO462b Most‘Accumulibacter’(extended) (Zillesetal.,2002a) <964,5 1113,612 <24 7.5 PAO651 Most‘Accumulibacter’ (Crocettietal.,2000) PAO846 Most‘Accumulibacter’ (Crocettietal.,2000) PAO846b Most‘Accumulibacter’(extended) (Zillesetal.,2002a) AccI444 SomecladeImembers‘Accumulibacter’ (Flowersetal.,2009) <7113 2512 <4.6 1.5 AccII444 SomecladeIImembers‘Accumulibacter’ (Flowersetal.,2009) <8214 2512 <3.2 1.1 Bet135 PutativePAOcluster (Kongetal.,2007) NA 2010 <3 1.3 Actinobacteria Actino_1011 SomeTetrasphaerasp.,inc.T.japonica (Liuetal.,2001) <16.715 123,8 <10 1.5 TET63 SomeTetrasphaerasp.,inc.T.japonicaandT.elongata (cited in Kong et al., ND16 113,7,8 <8 1.6 2001) NLIMII175 SomeTetrasphaerasp.,inc.T.jenkinsiiandT.veronensis (LiuandSeviour,2001) NA NA NA NA Actino221 TetrasphaerarelatedPAO (Kongetal.,2005) 723,7,9,10,12,18,19 <30 5.6 <4.117† Actino658 TetrasphaerarelatedPAO (Kongetal.,2005) 633,7,9,10,12,19 <14 4.3 MIC179 Micolunatusphosphovorus (citedinLeeetal.,2003a) MIC429 Micolunatusphosphovorus (citedinLeeetal.,2003a) <320 93 <5 1.8 MP2 Micolunatusphosphovorus (Kawaharasaki et al., 1998)

26 *Probesareconsideredinsetswheretheyareappliedasamixoranalternativetotargetthesamegroupoforganisms;¶Highestenrichmentobtainedina labscaleEBPRreactor;¥Numberoffullscaleplantscontributingtotheanalyses,onlyvaluesdeterminedbyquantitativeFISHmethodswereincludedin theanalysis;§Averagefromallstudies.Whererangesaregiventhemiddleofthesevaluesisconsideredforcalculations; †CombinedtotalforActino221 andActino658appliedtoaerobicgranularsludge;NA=Notavailable;ND=Notdetected;120References:1(Eschenhagenetal.,2003);2(Wagneretal., 1994b;Kämpferetal.,1996);3(Beeretal.,2006);4(Ghoshetal.,2005);5(PerezFeitoetal.,2006);6(Zillesetal.,2002a;2002b;Saundersetal.,2003; Kongetal.,2004;Chuaetal.,2006;Heetal.,2006;Burowetal.,2007;Thomsenetal.,2007;Heetal.,2008;MorganSagastumeetal.,2008;Hesselsoe etal.,2009);7(Kongetal.,2005);8(Wongetal.,2005);9(Kongetal.,2006);10(Kongetal.,2007);11(LopezVazquezetal.,2008a);12(Nielsenetal., 2010b); 13(Flowersetal.,2009); 14(Oehmenetal.,2010a;2010c); 15(Liuetal.,2001); 16(Kongetal.,2001;Kongetal.,2002b); 17(Lemaireetal., 2008a);18(Kongetal.,2008);19(Xiaetal.,2008);20(Kawaharasakietal.,1999).

27 1.6.2.2Candidatus‘Accumulibacterphosphatis’ Bondetal.(1995;1999a)appliedclonelibraryandFISHanalysistogeneratedatasuggesting thatmembersrelatedtotheβ2proteobacterialgenusRhodocycluswerepossibleimportant PAO, a verdict based on their higher representation in laboratoryscale (labscale) systems efficiently removing P. Later studies in Switzerland and Australia generated data which confirmedthesesuggestions(Hesselmannetal.,1999;Crocettietal.,2000).Applyingmore specificFISHprobestargetingtheRhodocyclusrelatedgroupshowedthesewerepresentin EBPR systems as large ovoid cells in clusters, typical of EBPR communities. They also combinedpolyPstainingtoshowthattheybehavedasPAOinsituandthattheirpresence correlatedwithhighEBPRefficiency(Hesselmannetal.,1999).Hesselmannetal.(1999) named these putative PAO group Candidatus ‘Accumulibacter phosphatis’ (henceforth referredtoas‘Accumulibacter’).Crocettietal.(2000)designedthreeFISHprobesfortheir in situ identification – PAO462, PAO651 and PAO846, which revealed that ‘Accumulibacter’areoftenprominentpopulationsinEBPRsystems(Table1.2).PHAand polyPstainingincombinationwithFISHMARconfirmedtheirphenotypealsoconformedto thatexpectedofaPAOintheproposedEBPRmodels(Crocettietal.,2000;Liuetal.,2001; Kongetal.,2004;Beeretal.,2006)(Tables1.1and1.2).Consequently‘Accumulibacter’ are now considered to be a major PAO globally in EBPR plants of widely different configurations(Seviouretal.,2003;Oehmenetal.,2007;McMahonetal.,2010). 1.6.2.2.1Intraphylotypicdiversityamong‘Accumulibacter’ AlthoughthePAOprobesofCrocettietal.(2000)(Table1.2)areappliedfrequentlytostudy ‘Accumulibacter’asafunctionalphylogeneticgroup,theconflictingfindingsofsomestudies indicate considerable phenotypic variation probably exists among them. These differences includetheircellmorphology(Kongetal.,2002b;Carvalhoetal.,2007;Kimetal.,2010), their ability to use nitrate as an electron acceptor and denitrify (Carvalho et al., 2007; Flowersetal.,2009)andthesourceofreducingequivalentstheycanuseforanaerobicPHA formation (Wexler et al., 2009) (also seeSections 1.6.2.2.21.6.2.2.4). The whole genome sequencestudiesoftwoenrichedculturesof‘Accumulibacter’foundthatbothhadvariant

28 strainswith15%genomesequencedivergencefromthedominantone(GarcíaMartínetal., 2006).Thesewouldalmostcertainlytranslateintophenotypicdifferences(Carvalhoetal., 2007) among them. Comparative analysis of the sequences of the ITS region of their rrn operons(Heetal.,2006),andtheirPHAsynthasegenes(phaC)(Wangetal.,2008a)have revealedmuchmoresubtlescaledifferencesbetweenmembersofthe‘Accumulibacter’PAO thanemergefrom16SrRNAsequencedataalone.SubsequentlyMcMahon et al. (2007b) suggestedthatthegeneencodingthepolyphosphatekinase(ppk)involvedintheproduction of polyP, is more useful as a marker for elucidating finerscale ‘Accumulibacter’ biodiversity.Theyshowedthatphylogenetictreesbasedonsequencesoftheppkgeneand the16SrRNAwerelargelycongruent(seeFig.1.7),buttheppkgenecouldbetterdefinetwo broadgroupsIandII,comprisingatotalof12clades,designatedIAEandIIAG(Heetal., 2007; Peterson et al., 2008). This additional phylogenetic resolution provided by the ppk sequences has allowed appropriate primer sets to be designed which differentiate between membersofeachclade,andtheirquantificationusingrealtimequantitativePCR(qPCR). MembersofcladesIAC,IIADandIIFhavebeendetectedinEPBRsystems(GarcíaMartín etal.,2006;Heetal.,2007;McMahonetal.,2007b;Wexleretal.,2009;Kimetal.,2010; Slateretal.,Inpress)whiletheremainingclademembershavebeenfoundinfreshwaterand sedimentsamples,whichweresuggestedtorepresenttheir‘natural’habitat(Petersonetal., 2008). While the ecological importance of this phylogenetic diversity is not well understood, it appearsthecomplexityofthehabitatreflectsthediversityofthisgroup,withhighernumbers ofcladespresentinfullscaleplantscomparedtolabscalesystems(Heetal.,2007).Slateret al. (In press) have suggested that the clade IIA members are associated with high EBPR performanceandIICmemberswithpoor,and,togetherwithHeetal.(2010),haveproposed that the composition of the ‘Accumulibacter’ community may be influenced by other flankingpopulations.However,thesesuggestionsarebasedonlimitedevidencefromlab scalereactorsandfurtherworkontheinfluenceofoperatingconditionsinfullscaleEBPR plantsonthepresenceofindividualcladesandoverall‘Accumulibacter’diversityisrequired. Based on the metagenomic data of GarcíaMartinet al. (2006), Kunin et al.(2008)found differences between ‘Accumulibacter’ clades related to their phage defence mechanisms, which were associated with the genes encoding exopolysaccharides (EPS) production, and clustered regularly interspaced short palindromic repeats (CRISPR), suggesting that phage

29 predation probably contributes to the maintenance of ‘Accumulibacter’ diversity. For the nitrifiers, Maixner et al. (2006) found marked differences between the proximity of co existingsublineagesoftheNitrospiranitriteoxidisersandtheammoniaoxidiserspresent. This was suggested to relate to niche differentiation based on sensitivity to nitrite concentration.Whetherasimilarnichedifferentiationalsooccursamong‘Accumulibacter’ cladesisaninterestingquestion. 1.6.2.2.2.Anaerobicmetabolismof‘Accumulibacter’ FISHMARandlabscalestudiesindicatethat‘Accumulibacter’canutiliseanarrowrangeof substrates,andhasahighaffinityforshortchainVFAsincludingacetate(Kongetal.,2004) (Table1.4).Proteomicsandinhibitorstudieswithenrichedculturesindicatethatacetateis transported across the cell membrane using an acetate permease, energised by the pmf generatedbythesymporteffluxofPandH+throughthephosphoruspermeasePit(phosphate inorganictransport)system(GarcíaMartínetal.,2006;Saundersetal.,2007;Burowetal., 2008a;Wilmesetal.,2008a)(seeFig.1.8a.). In‘Accumulibacter’,thesourceofreducingequivalentsusedforreducingacetatetoPHAis stillthesubjectofmuchdebate,althoughthemostlikelysourceisfromglycogendegradation andanaerobicoperationoftheTCAcycle(Zhouetal.,2010);inotherwordsacombination oftheMino(Minoetal.,1987)andComeauWentzelmodels(Comeauetal.,1986;Wentzel etal.,1986).Inhibitorstudiesonenrichedcultures(Burowetal.,2008b)andinsituMAR studies of fullscale plant communities (Kong et al., 2004) support an important role for anaerobic glycolysis. Whole genome sequence data indicate that glycolysis is mediated by theEmbdenMeyerhofpathway(EMP)andnottheEntnerDouderoff(ED)pathway,asthe full complement of enzymes involved in each pathway were only present for the former (GarcíaMartínetal.,2006).Thisproposalisalsosupportedbythetranscriptomic(Heetal., Inpress)andproteomicdetectionofkeyEMPenzymes(Wilmesetal.,2008a;Wilmesetal., 2008b; Wexler et al., 2009). However, Hesselmann et al. (2000) with 13CNMR had suggestedananaerobicoperationoftheEDpathwayinanEBPRreactorassessedbyFISH analysisprobablydominatedby‘Accumulibacter’(Hesselmannetal.,1999;2000). 30 Figure 1.7: Phylogenetic trees for ‘Accumulibacter’related a. 16S rRNA gene and b. ppk gene sequences (He et al., 2007). Clades are inferred by brackets.Posteriorprobabilitiesareshownnexttoeachnode.Thefirstnumberinparenthesisindicatesthenumberofsequencesthatcontributetothe operationaltaxonomicunit(OTU),andthesecondnumberindicateshowmany‘Accumulibacter’sequenceswerefoundinthesourcecommunityofthese sequences.Thescalebarsindicatechangespersite.

31 Transcriptomic, proteomic and inhibitor studies all support some level of anaerobic TCA cycleoperation,andevidencesuggeststhatalltheenzymesrequiredforitsfull,partialand splitoperation(pathwaydetailssummarisedinFig.1.9)areencodedbygeneslocatedinthe wholegenomesequence(GarcíaMartínetal.,2006).Anovelcytochromeb/b6encodedbya gene detected in the genome sequence, and its anaerobic expression in the presence of acetate,isthoughttoplaythekeyroleintheoperationofthefullTCAcyclebyreoxidising quinonesreducedbyreverseelectrontransportbytheactivityofasuccinatedehydrogenase (GarcíaMartínetal.,2006;Burowetal.,2008b).Evidenceforthesplitoperation,withthe reductivearmoperating inconnectionwiththemethylmalonylCoApathwaytoreoxidise theaccumulationofthesereducedquinones(Wilmesetal.,2008a;Heetal.,Inpress;Heand McMahon,Inpress),andpartialoperationthroughtheglyoxylateshunt,maximisingcarbon storagebyavoidingthelossasCO2, hasalsobeenpublished(see Fig. 1.9) (Burow et al., 2008b).Thedifferentsourcesofreducingpoweravailableto‘Accumulibacter’arethoughtto provideitwiththemetabolicflexibilityneededtobettercopewiththechangingconditionsof EBPR, where reliance on each pathway may depend on the prevailing environmental conditions(Oehmenetal.,2007;Burowetal.,2008b;Heetal.,Inpress).Furtherevidence for such metabolic flexibility is provided by Zhou et al. (2009) who showed that when glycogen stores were exhausted, reducing equivalents were increasingly sourced from the operationoftheTCAcycle. 1.6.2.2.3.Aerobicmetabolismof‘Accumulibacter’ InagreementwiththeMinomodel(Minoetal.,1987),‘Accumulibacter’canoxidiseitsPHA storesaerobicallythroughtheTCAcycle,couplingtheenergygeneratedforgrowth,Puptake anditspolymerisationintopolyPandreplenishmentofglycogenstores.Transcriptomicsand inhibitorstudiessuggestthataerobiccarbonfluxoccurspartiallythroughtheTCAcyclefor energyprovisions,whilegluconeogenesisandtheglyoxylatepathwayoperatetoreplenish glycogen stores (Burow et al., 2008b; Wexler et al., 2009; He et al., In press; He and McMahon,Inpress)(Fig.1.9).AerobicPuptakeoccursthroughbothalowaffinityPitand highaffinity Pst (phosphatespecifictransport) phosphate permeases (GarcíaMartín et al., 2006; Burow et al., 2008a; He et al., In press) (Fig. 1.8a.). Interestingly, when P levels becomelimiting,‘Accumulibacter’canshiftitsreliancefrompolyPtoglycogenasitssource 32 oftheanaerobicenergyrequiredforacetateuptake,showingyetfurthermetabolicdiversity andadaptability(Zhouetal.,2008). 1.6.2.2.4Can‘Accumulibacter’denitrify? MuchefforthasbeendevotedtodeterminingwhetherthePAOandtheDPAOaredifferent populations(Dabertetal.,2001;Ahnetal.,2002;Zengetal.,2003a;Freitasetal.,2005; Carvalho et al., 2007; Flowers et al., 2009; Guisasola et al., 2009). The whole genome sequenceofan‘Accumulibacter’cladeIIAmemberindicatesthatitmaypossiblyusenitrite butnotnitrateasaterminalelectronacceptorfordenitrification(GarcíaMartínetal.,2006). Miyauchi et al. (2007) also amplified a nitrite reductase gene (nirS) from a fluorescence activatedcellsorted(FACS)enriched‘Accumulibacter’sample,andsuggestedthatitmost likely derived from this population. However, FISHMAR data show that some ‘Accumulibacter’infullscaleplantcommunitiesmayusebothnitrateandnitrite(Konget al., 2004; MorganSagastume et al., 2008), and data from enriched cultures indicate that ‘Accumulibacter’cancouplePuptakewithnitratereduction(Ahnetal.,2002;Zengetal., 2003a;Carvalhoetal.,2007;Flowersetal.,2009). Carvalhoetal.(2007)havedemonstratedthattwomorphologicallydistinctPAOpopulations both responding to the ‘Accumulibacter’ FISH probes differed in their abilities to reduce nitrate, suggesting metabolic variants exist among them. FISH has since been applied to differentiatebetweencladesIAandIIAmembers,whereonlytheformercouldreducenitrate (Flowersetal.,2009;Oehmenetal.,2010a;Oehmenetal.,2010c).

33

Figure1.8:ImportantmembranetransportmechanismsincharacterisedPAOandGAO(modifiedfromBurowetal.,2008a;McMahonetal.,2010). a.‘Accumulibacter’PAO:i.SymporteffluxofprotonsandPthroughthePittransportergenerateanelectricalmembranepotential.ii.Symportofacetate andprotonsthroughanacetatepermease,drivenbytheelectricmembranepotential.iii.SymportuptakeofPandprotonsthroughthelowaffinity Pit transporterathighexternalPconcentration(earlyaerobic)iv.PuptakethroughthehighaffinityPsttransporter,attheexpenseofenergy,whenexternalP concentrationislow(lateaerobic). b.‘Competibacter’GAO:i.EffluxofH+viathefumaratereductasesystemgeneratesanelectricalmembranepotential.ii.Symportofacetateandprotons through an acetatepermease, drivenby an electricmembranepotential.iii. Export of H+ through an ATPase maintainsthe membranepotentialatthe expenseofenergy. c.DefluviicoccusrelatedGAO:i.Effluxofprotonsviathefumaratereductasesystemgeneratesanelectricalmembranepotential.ii.Symportofacetate andprotonsthroughanacetatepermease,drivenbyelectricmembraneandsodiumpotentials.iii.SodiumpotentialmaintainedbymethylmalonylCoA decarboxylation.

34

Figure 1.9: Proposed alternate anaerobic metabolic pathways for ‘Accumulibacter’ adapted from Oehmenetal.(2007).Keyvariedstepsinalternatepathwaysarecolourcoded:ED=green;EMP= blue;partialTCA/glyoxylateshunt=purple;splitreductivebranchoftheTCAcycle=red. 1.6.2.3AremembersoftheDechloromonasPAO? Some evidence suggests that members of the genus Dechloromonas can behave as PAO (Zillesetal.,2002a;Kongetal.,2007;Güntheretal.,2009),whichisnotsurprisinggiven theirphylogeneticproximitytothe‘Accumulibacter’(McMahonetal.,2010)(seeFig.1.6). Thus,Zillesetal.(2002a)redesignedtwooftheoriginalPAOprobes(Crocettietal.,2000) PAO651bandPAO846b,toincludetwo Dechloromonasrelated sequences (see Fig. 1.6),

35 althoughtheirapplicationtoEBPRsystemsshowslittleobserveddifferenceintheircoverage whencomparedtotheoriginalunmodifiedprobes(Nielsenetal.,2009b).Applyingthefull cycle approach to an activated sludge system, Kong et al. (2007) also described a probe definedgroup(Bet135)relatedtotheDechloromonasthatbehavedinsituaccordingtoPAO models(Kongetal.,2007). Conversely,membersofthisgenushavealsobeenshowntobehaveaspossiblecompetitors of the ‘Accumulibacter’ PAO in a continuously aerated labscale EBPR system where the FEAST:FAMINE conditions essential for EBPR were achieved by temporal separation of additionofthePandcarbonsource(Ahnetal.,2007;Schroeder,2009).Inthissystemthey assimilatedacetateasPHAduringthe‘FEAST’periodwithoutsubsequentPaccumulation duringthecycleperiodsof‘FAMINE’,aphenotypecharacteristicoftheGAO(seeSection 1.7). 1.6.3ActinobacterialrelatedPAO As with the Betaproteobacteria, members of the Gram positive high mol % G+C ActinobacteriaareoftenabundantinEBPRsystemsandsufficientevidenceexiststosuggest they contribute to P removal (Wagner et al., 1994b; Kämpfer, 1997; Christensson et al., 1998;Hiraishietal.,1998;Kawaharasakietal.,1999;Crocettietal.,2000;Leeetal.,2002; Zillesetal.,2002b;Eschenhagenetal.,2003;Beeretal.,2006).Examplesoftheseputative actinobacterialPAOarediscussedhere. 1.6.3.1Microlunatusphosphovorus Nakumura et al. (1991) isolated an actinobacterial species, later named Microlunatus phosphovorus, fromactivatedsludgethataccumulateslargeamountsofpolyPaerobically, andreleasesitanaerobicallywithaconcomitantuptakeofglucose(Nakamuraetal.,1991; 1995a;1995b)andglutamate(UbakataandTakii,1994,1998).Thesearethemetabolictraits expected of a PAO (seeTable 1.1). Then Santoset al.(1999)with 13CNMR showed the organism did not polymerise acetate or glutamate anaerobically, but instead glucose was fermented to acetate, which they claimed was accumulated intracellulary, together with

36 glutamatefromthesuppliedyeastextract.Bothwereutilisedinthesubsequentaerobicphase (Santos et al.,1999).Thefateofglutamatewhensuppliedasthesolecarbonsourcewas similar(Ubakata,1994).Althoughsomeunidentifiedstoragepolymerwaspostulated,neither PHA nor glycogen cycling occurred and P and carbon metabolism were not exclusively coupled (Santos et al., 1999). M. phosphovorus has since been shown to produce PHA anaerobically(Akaretal.,2006),althoughPmetabolismwasnotmonitoredandtheglucose levelsrequiredforPHAproductionwereeighttimeshigherthanthoseusedbySantosetal. (1999). In situ FISH studies show that this organism is observed in EBPR systems but only intermittently(Table 1.2).Wheredetecteditstainspositively in situforpolyP,indicating that it may participate as a minor player in P removal (Kawaharasaki et al., 1998; Kawaharasakietal.,1999;Leeetal.,2002;Eschenhagenetal.,2003;Leeetal.,2003b;Beer etal.,2006). 1.6.3.2TetrasphaerarelatedPAO SeveralTetrasphaeraisolateshavebeenculturedfromactivatedsludge,andallaccumulate polyP aerobically, suggesting a possible involvement in P removal (Kataoka et al., 1996; Blackalletal.,2000;Maszenanetal.,2000b;Hanadaetal.,2002;OndaandTakii,2002; McKenzie et al., 2006) (see Table 1.1). Of these only Tetrasphaera elongata assimilates polyPaerobicallyafterananaerobicincubationwithsubstrate.However,Pcyclingwaslower thanexpectedforanEBPRbiomass,PHAswerenotformed,andPuptakewasonlyobserved whencasaminoacids,andnotacetate,weretheanaerobiccarbonsourcesupplied(Ondaand Takii,2002). The TET63, actino_1011 and NLIMII175 FISH probes were designed to target defined clustersofsequenceswithinthegenus Tetrasphaera (Kong et al., 2001; Liu and Seviour, 2001;Liuetal.,2001),althoughitisnowclearthatthesetargetmuchbroader,lessdefined, clusters of 16S rRNA sequences within this genus. Their application has revealed the presenceofTetrasphaerarelatedorganismsinEBPRsystems(Table1.2)wheretheyoften stainpositivelyforpolyP(Kongetal.,2001;LiuandSeviour,2001;Liuetal.,2001;Konget al.,2002b;Eschenhagenetal.,2003;Wongetal.,2005;Beeretal.,2006). 37 Kongetal.(2005)appliedtheActino_1011FISHprobesequenceasaPCRprimertoenrich forTetrasphaerarelatedorganismsintheirclonelibrary,whichtheythenusedtodesignthe FISHprobes,Actino658andActino221.CombiningFISHwithMARrevealedtheidentity oftwoTetrasphaerarelatedgroupswithPAOlikephenotypes.Thesegroups,onegrowing ascocciintetradsandtheotherasrods,assimilatedaminoacidsanaerobicallyinsituwith the concomitant release of stored P, while under aerobic conditions the same cells accumulatedPaspolyP.However,shortchainfattyacidslikeacetatewerenotassimilated anaerobically and PHA was not formed (agreeing with pure culture data). Instead storage polymer/s of unknown chemical composition was synthesised from the amino acids. The absenceofPHAformationhasalsobeenreportedforotherputativeactinobacterialPAOin EBPR systems (Liu et al., 2001; Beer et al., 2006). These TetrasphaerarelatedPAO sometimesdominateEBPRcommunities,oftenoutnumberingthe‘Accumulibacter’ PAO, showingthatwhilenotconformingstrictlytotheusualdefinitionofaPAO,theyaremajor contributors to EBPR (Kong et al., 2005). They occur more abundantly in EBPR plants treatingindustrialwastewhereprotein,andhenceaminoacids,levelscanbehigherthanin plantstreatingdomesticwastes(Kongetal.,2005;Kongetal.,2006).Afurtherphylogenetic diversityamongtheTetrasphaerarelatedPAOgroupoforganismshassincebeenreported, emphasisingtheirimportanceinEBPR(Nguyenetal.,2009). 1.6.3.2.1MetabolismoftheTetrasphaeraPAO FISHMAR studies after addition of inhibitors of the glycolytic pathway indicate that glycolysis is not important anaerobically in providing energy for substrate (amino acid) assimilation by them (Kong et al., 2005). Although they seem unable to assimilate anaerobicallyshortchainfattyacidslikeacetate(seeabove)(Kongetal.,2005),populations respondingtotheActino221probecouldtake upoleicacidanaerobically.However,this wasnotcoupledtosubsequentaerobicPuptake(Kongetal.,2005).Theseorganismsmay alsomakeanimportantcontributiontothehydrolysisofmorecomplexcarbonsourcesand theirfermentation(Kong et al., 2008; Xia et al.,2008).Sincenotallorganismscurrently coveredbythetwoavailableTetrasphaeraFISHprobesshowthesemetaboliccapabilities, furtherphysiologicaldiversityprobablyexistsamongthesesubgroups(Kongetal.,2005; Kong et al., 2008; Xia et al., 2008). Kong et al. (2008) did speculate that, as with 38 Microlunatusphosphovorus(Santosetal.,1999),someTetrasphaerasmaystorefermentation byproducts for subsequent use aerobically, which would explain their apparent lack of relianceonPHAstorage. FISHMAR studies indicate that both the Actino221 and Actino658 probe defined populationscanusenitratebutnotnitriteastheirterminalelectronacceptor(Kong et al., 2005), consistent with data from the pure culture isolates except for T. japonica and T. australiensis,neitherofwhichcouldusenitrateeither(Kataokaetal.,1996;Blackalletal., 2000;Maszenanetal.,2000b;Hanadaetal.,2002;OndaandTakii,2002;McKenzieetal., 2006). 1.6.4OtherpossiblePAO Several other activated sludge isolates listed in Table 1.1, which can assimilate polyP aerobicallyawaitfurthercharacterisationandinsituanalysistoclarifytheirpossiblerolesin EBPR.ItisevidentfromFISHMARdata,and/orstainingbasedsurveysoffullscaleplant samplesthatmanymorePAOnotcoveredbyexistingFISHprobes, andwhoseidentities remain unknown are present in EBPR communities. These include members of the Alphaproteobacteria (Kawaharasaki et al., 1999; Kong et al., 2004; Beer et al., 2006), Gammaproteobacteria(Kongetal.,2004;Beeretal.,2006),Bacteroidetes(Kawaharasakiet al.,1999)andadditionalmembersoftheBetaproteobacteria(Chuaetal.,2004;Beeretal., 2006) and Actinobacteria (Beer et al., 2006). Eukaryotic PAO have also been suggested (Melasniemi and Hernesmaa, 2000), although the evidence presented in their support was indirect, and organisms with similar morphologies were shown to be novel Betaproteobacteria (Chua et al., 2004). Application of flow cytometry to enrich for cells stainedpositively forpolyP, andclonelibrary analysisalsosuggestsa higherdiversityof organisms involved in EBPR, and approaches like this may assist in documenting this diversity (Kawaharasaki et al., 2002; Zilles et al., 2002b; Günther et al., 2009). The continuingreappraisalofcurrentFISHprobesagainsttherapidlyincreasingpublicrRNA sequence databases, and the search for the identity of new groups of PAOs, coupled with ecophysiologicalstudies,willrevealeventuallythetrueextentoftheirdiversityandfunction.

39 TheecophysiologyoftheTetrasphaerarelatedPAOsuggeststhatitismoreappropriateto useawiderandlooserdefinitionofaPAOthanthatfittingthephenotypesuggestedfromthe metabolicmodelsdiscussedearlier(Section1.4).Thus,anypopulationwhichaccumulates morePthanitrequiresforgrowthandwhichstainspositivelyinsituforpolyPshouldbe considered as a putative PAO, regardless of whether it synthesises PHA from acetate anaerobically. This need is emphasised by reports of anaerobic uptake of a wide range of substratesbylabscaleEBPRbiomasssamples(Satohetal.,1998;Caruccietal.,1999)and populationsdetectedinfullscaleplants(Kongetal.,2004)whereinsituPHAstorageisnot observed.Theseobservationsshowthatothersurvivalstrategiesmustexisttoallowcellsto cope with the ‘FEAST:FAMINE’ conditions of EBPR anaerobic: aerobic recycling, and morearelikelytoemergeasourunderstandingofEBPRmicrobiologyincreases. DistributionstudiesshowthatmanyoftheproposedcandidatePAOpopulationsareoften presentatlownumbersinthesesystems(Table1.2),butthisdoesnotdenotetheirpotential importance,astheproportionsoforganismsstainingpositivelyforpolyPinclusionsinthese systemsisoftenlowerthan20%ofthetotalbiomass(Hungetal.,2002;Beeretal.,2006). ThesecouldstillbemakingimportantcontributionstoEBPR,givenPremovalresultsfrom thecombinedactivitiesofawiderangeofdifferentorganisms(Minoetal.,1998;Seviouret al.,2003).Thereasonforsuchfunctionalredundancyprobablyprovidesstabilityforthese continuously fluctuatingsystems,whereeachgroupmayoccupyaslightlydifferentniche (Wagneretal.,2002;McMahonetal.,2007a;Hesselsoeetal.,2009;Oehmenetal.,2010b). 1.7Theglycogenaccumulatingorganisms(GAOs) The general field experience is that fullscale EBPR processes dealing with complex and variablefeedsarenotoriouslyunreliable.Theremaybeseveralsoundexplanationsforpoor EBPRcapacity,includingeventsofhighrainfall,highlevelsofnitrateintheanaerobiczone encouragingdenitrifyingbacteriaorviralpredationofimportantPAO(Seviouretal.,2003; BarnardandAbraham,2006;Oehmenetal.,2007;Barretal.,Inpress).Onesuggestionis thenegativeimpactofnonpolyPaccumulatingcompetitorsofthePAO,anideawhichis based on early observations of anaerobic substrate uptake in the absence of substantial P release in low capacity EBPR labscale systems (Fukase et al.,1984;CechandHartman, 1990; Satoh et al., 1992; Cech and Hartman, 1993; Liu et al., 1994; Satoh et al., 1994). 40 BecauseofcompleterelianceonaccumulatedglycogenandnotpolyPstoresasanenergy sourceforanaerobicuptakeandstorageofcarbon(Liuetal.,1994),organismspossessinga phenotypesuitableforoutcompetingthePAOhavebeentermedtheglycogenaccumulating organisms(GAO)(Minoetal.,1995).AstheydonotcyclepolyPbutcompetewiththePAO forsubstratesintheanaerobicfeedstage,theymayhaveanegativeinfluenceontheaerobic ‘FAMINE’Premovalstage,thusleadingtopossibleeventualEBPRfailure(Satoh et al., 1992;Minoetal.,1998;Seviouretal.,2003;Oehmenetal.,2007). Comparedtothe‘Accumulibacter’PAO,littledataareavailableontheanaerobicmetabolism oftheGAO(Oehmenetal.,2007),althoughmetabolicmodelshavebeenproposedforthem (Satohetal.,1994;Minoetal.,1995;Filipeetal.,2001b;Zengetal.,2003b;Oehmenetal., 2006b).However,itisnowclearthatthese,likethePAOarephylogeneticallydiverse(see Fig. 1.10) and most of the models available have been constructed without resolving the GAOidentityinthecommunitiesanalysed. 1.7.1TheanaerobicmetabolismoftheGAO LikethePAO,theGAOarethoughttosequestercarbonintheanaerobicfeedstageanduseit to synthesise PHA, with the required energy and reducing equivalents sourced from the metabolismofglycogenstores(Liuetal.,1994;Satohetal.,1994;Minoetal.,1995).The lackofATPgeneratedfromthehydrolysisofpolyPandsubsequentPrelease,whichoccurs withthePAO,meansthattheGAOmustcompensatewithanelevatedrelianceonanaerobic glycogenhydrolysisfortheirenergy(Oehmenetal.,2007).Tobalancetheresultinghigher production of reducing equivalents, the GAO cells are thought to balance their redox by reducingpyruvatetopropionylCoAthroughtheleftreductivebranchoftheTCAcycleand the methylmalonylCoA pathway (Fig 1.9). Consequently unlike the PAO, polyβ hydroxyvalerate(PHV)inadditiontopolyβhydroxybutyrate(PHB)issynthesisedbythem whenacetateisthecarbonsource(Fig.1.9)(Liuetal.,1994;Satohetal.,1994;Filipeetal., 2001b).

41 1.7.2AerobicmetabolismoftheGAO AswiththePAO,underaerobicfamineconditions,degradationofthestoredPHAoccurs through the TCA cycle, and the energy and carbon are predominately made available for biomass production, cell maintenance and for replenishing glycogen stores, but withoutP assimilationandsynthesisofpolyP(Zengetal.,2003b). 1.8ThephylogeneticidentityoftheGAO The frequent association of EBPR inefficiency with the proliferation of tetrad forming organisms(TFO)(CechandHartman,1993;Liuetal.,1996b;Liuetal.,2000a;Filipeetal., 2001c;TsaiandLiu,2002;WhangandPark,2002)ledearlystudiestoconcentrateonthe isolationandidentificationofwhatwereinitiallytermedthe‘Gbacteria’,namedfortheir suggestedaffinityforglucoseassimilationanddefinedbytheirTFOmorphology(Cechand Hartman,1993;Seviouretal.,2000).Itwassoonrealisedthatthismorphologicallydefined ‘Gbacteria’ group contained several phylogenetically and phenotypically diverse populations(Seviouretal.,2000),someofwhichaccumulatedpolyP(seeTable1.1),and equallyimportantlythattheGAOphenotypewaspossessedby amorphologicallydiverse groupoforganisms(seeTable1.1). In the absence of being able to directly identify glycogen accumulating cells by staining (Serafim et al.,2002a),indirectmethodshavebeenusedforGAOidentificationbasedon applying a range of molecular methods to identify the dominating populations in systems with low EBPR capacity. Whether these possess the required GAO phenotype can be determinedpartlybyFISHMARandhistochemicalstaining(Kongetal.,2006;Burow et al.,2007;WongandLiu,2007),supportedbytheoverallchemicalprofiledatafromenriched labscalereactorcommunities(Crocettietal.,2002;Wongetal.,2004;Meyeretal.,2006; Oehmen et al., 2007). As with the PAO, the putative GAO members are clearly phylogenetically diverse, and two main groups are now recognised; those within the GammaproteobacteriaandAlphaproteobacteria.Theirphylogeneticaffiliationsareshownin Fig. 1.10.anddataontheirecophysiologyanddistributionsummarisedinTables 1.1 and 1.4,respectively.

42 1.8.1ThegammaproteobacterialGAOCandidatus‘Competibacter phosphatis’ Nielsenetal.(1999)werethefirsttorecogniseaputativeGAOpopulationinadeteriorated EBPRsystemusingthemolecularapproachesof16SrRNADGGEcommunityanalysisand fromthedatagenerated,designingtwoFISHprobes(Gam1278andGam1019)tocoverthe dominant sequences they found. These probes hybridised with large coccobacilli not accumulatingpolyP.Crocettietal.(2002)whonamedthisgroupCandidatus‘Competibacter phosphatis’(henceforthreferredtoas‘Competibacter’)designednewprobes,GAOQ989and GAOQ431 to cover all the then known sequences from their 16S rRNA clone libraries. FindingfurthersequencediversityencouragedKongetal.(2002a)todesignasetofFISH probesnowdefiningtwogroupswhichwerefurtherdividedintoatotalofsevensubgroups (Fig1.10 andTable1.3). Importantly,Konget al.(2006)andWongandLiu(2006)both reportedthatsome‘Competibacter’cellsrespondingtotheuniversalGBFISHprobewere notcoveredbyanyofthesesubgroupFISHprobes(Fig1.10andTable1.3)andsuggested theexistenceoffurthersubgroupsandincreasedbiodiversity. FISHMAR and histochemical staining reveal that these organisms have the phenotype appropriateforaGAO,inassimilatingsubstratesanaerobicallyandstoringthemasPHAbut withoutsubsequentaerobicstorageofexcessPaspolyP(Crocettietal.,2002;Kongetal., 2002a;Kongetal.,2006)(Table1.1).These‘Competibacter’havesincebeenreportedin labandfullscalesystems,makingupto98%and31%ofthetotalbiomass,respectively (Table1.3).TheirpresencehasalsobeencorrelatedwithpoorEBPRcapacityinfullscale systems(Saundersetal.,2003).Nolinkhasbeenfoundbetweeninsituphysiologyofthe differentsubgroupsandtheirdistributionfromasurveyinvolving12fullscaleEBPRplants in Denmark (Kong et al., 2006). Understanding how individual subgroups behave in responsetodifferentoperationalconditionsislikelytobevitalinattemptstounderstandand ultimatelycontroltheirundesirableproliferation.

43

Figure 1.10: Maximum likelihood phylogenetic tree of sequences of putative GAO and related organisms.AllsequenceswerealignedusingtheARBprogramandwereatleast1200bplong.‘*’ Indicates partial sequences (<1200 bp) added later using the ‘quick add’ function in ARB. Probe coverageisindicatedbybrackets,wherebrokenlinesindicatetheabsenceofsequenceinformationat the probe site. DF1mix = TFO_DF218, TFO_DF618 and TFO_DF776; DF2mix = DF988 and DF1020.SeeTable1.3forfurtherprobedetails.Phylogeneticaffiliationsareindicatedintheboxes tothefarleftandsomegroupsarealsocolourcoded.Thescalebarcorrespondsto0.1substitutions pernucleotideposition.

44 1.8.1.1Anaerobicmetabolismofthe‘Competibacter’ Very few differences in substrate affinities have been noted for members of the different ‘Competibacter’subgroups,withallhavingahighaffinityforVFAslikeacetate(Konget al.,2006)(Table1.4).Inhibitorstudieswithenrichedculturesindicatethatapmfsupplies the energy for acetate uptake, and is thought to be maintained by an efflux of protons involving the activity of F1F0 ATPase, at the expense of ATP and fumarate reductase (Saundersetal.,2007)(seeFig.1.8b.).Theobservedinhibitionofinsituanaerobicacetate uptakeafteradditionoftheglycolysisinhibitoriodoacetate,indicatesarelianceonglycogen utilisationforenergyforsubstrateassimilation(Kongetal.,2006).13CNMRbasedstudies onculturesenrichedwithboth‘Competibacter’andDefluviicoccusrelatedGAO(seelater) indicatethattheircellsusetheEDpathwayforglycogendegradation(Lemosetal.,2007) supported by the profiles of another temperature based study with a ‘Competibacter’ enriched biomass also using an incubation temperature of 30 °C (LopezVazquez et al., 2009a). However, the profile data for studies at lower temperatures with enrichments of GAO, including ‘Competibacter’ and the Alphaproteobacterial TFO, seem to support the involvementoftheEMPpathwayduetoahigherglycogenutilisationandPHAproduction (see Oehmen et al., 2010b). It has been suggested that either these GAO possess both pathways that are temperature dependant, or different phylotypes of these groups possess eitherpathway(Oehmenetal.,2010b). 1.8.1.2Aerobic/anoxicmetabolismofthe‘Competibacter’ EnrichedculturestudiesindicatethatstoredPHAisrespiredthroughtheTCAcyclewith gluconeogenesisandglycolysisinvolvedinthereplenishmentofglycogenlevels(Lemoset al.,2007).Whilelabscaledatasuggestan abilityofthese cellstodenitrify (Zeng et al., 2003c;Wangetal.,2008b),FISHMARstudiesusingthe‘Competibacter’subgroupprobes (Fig1.10andTable1.3)revealedthatonlymembersofsubgroup6coulddenitrifywhile those of subgroups 1, 4 and 5 reduced nitrate but only to nitrite (Kong et al., 2006). Interestingly, organisms responding to the subgroup 6 probe (GB_6/Gam1019) appear to accumulatesmallamountsofpolyP(Liuetal.,2001),andalthoughnotreportedsince,this suggeststhatthey,likethePAO,canadjusttheirmetabolismsaccordingtoconditions.

45 Table1.3:FISHprobesanddistributionsummaryforputativeGAOpopulations Lab Fullscale * Probe Targetgroup Reference Scale No.plants Range Avg. (%)¶ analysed¥ (%) (%)§ Gammaproteobacteria Gam1278 Some‘Competibacter’ (Nielsenetal.,1999) GB ‘Competibacter’ (Kongetal.,2002a) GB_G1(GAOQ989) Group1‘Competibacter’ (Crocettietal.,2002) <981 6528 <31 4.5 GB_G2 Group2‘Competibacter’ (Kongetal.,2002a) GAOQ439 Some‘Competibacter’ (Crocettietal.,2002) GB_1&2 Subgroups1and2‘Competibacter’ (Kongetal.,2002a) <109 124 <5.8 0.8 GB_2 Subgroup2‘Competibacter’ (Kongetal.,2002a) ND9 133,4 <12.5 1 GB_3 Subgroup3‘Competibacter’ (Kongetal.,2002a) ND9 124 <1.8 0.3 GB_4 Subgroup4‘Competibacter’ (Kongetal.,2002a) <509 223,4,10 <2.5 1.2 GB_5 Subgroup5‘Competibacter’ (Kongetal.,2002a) ND9 124 <2 0.4 GB_6(Gam1019) Subgroup6‘Competibacter’ (Nielsenetal.,1999) <109 133,4 <11.5 1.3 GB_7 Subgroup7‘Competibacter’ (Kongetal.,2002a) <209 124 <2.3 0.6 Gam455 PutativeGAOclone (Kongetal.,2007) NA 456,8 <4 0.6 Betaproteobacteria Bet65 PutativeGAOclone (Kongetal.,2007) NA 206 <6 1.7 Alphaproteobacteria AMAR839 Amaricoccussp. (Maszenanetal.,2000a) <111 410 <9 2.6 SBR91a SphingomonasrelatedGAO (Beeretal.,2004) <71 365,7,10,12 <24 1.9 DEF438 Defluviicoccusvanus (citedinKongetal.,2001) TFO_DF862 Defluviicoccusvanus (Wongetal.,2004) TFO_DF218 ClusterIDefluviicoccusrelatedGAO (Wongetal.,2004) <9513 583,58 <1.5 0.1 TFO_DF618 SomeclusterIDefluviicoccusrelatedGAO (Wongetal.,2004) TFO_DF776 ClusterIDefluviicoccusrelatedGAO (WongandLiu,2007) TFO_DF629 ClusterIIDefluviicoccusrelatedGAO (WongandLiu,2007) DF988 ClusterIIDefluviicoccusrelatedGAO (Meyeretal.,2006) DF1020 ClusterIIDefluviicoccusrelatedGAO (Meyeretal.,2006) <5514 4558 <9 0.6 DEF636 SomeclusterIIDefluviicoccusrelatedGAO (Kondoetal.,2007) DEF827 SomeclusterIIDefluviicoccusrelatedGAO (Kondoetal.,2007) 46 Actinobacteria MIC184 Micropruinaglycogenica (citedinKongetal.,2001) <2215 223,10 <8 0.8 KSBR531 PutativeGAOclone (citedinKongetal.,2001) <715 910 <1 <1 *Probesareconsideredinsetswheretheyareappliedasamixoranalternativetotargetthesamegroupoforganisms;¶Highestenrichmentobtainedina labscale‘EBPR’reactor;¥Numberoffullscaleplantscontributingtotheanalyses,onlyvaluesdeterminedbyquantitativeFISHmethodswereincluded intheanalysis; §Averagefromallstudies.Whererangesaregiventhemiddleofthesevaluesisconsideredforcalculations. ND=Notdetermined. 115 References:1(Saundersetal.,2007);2(Saundersetal.,2003);3(Wongetal.,2005);4(Kongetal.,2006);5(Burowetal.,2007);6(Kongetal.,2007);7 (LopezVazquezetal.,2008a);8(Nielsenetal.,2010b);9(Kongetal.,2002a);10(Beeretal.,2006);11(Kongetal.,2002b);12(Beeretal.,2004);13(Dai etal.,2007);14(Meyeretal.,2006);15(Kongetal.,2001).

47 1.8.2AlphaproteobacterialrelatedGAO Much less is known of the phylogenetic diversity among the Alphaproteobacterial GAO. Thisarisespartlyfromdifficultiesinacquiring16SrRNAsequenceinformationfromthem inclonelibrariesgeneratedfromEBPRcommunities,evenwhereFISHsuggeststheyare abundantthere(Beeretal.,2004;Meyeretal.,2006).Somesuccessinovercomingthishas beenachievedbypriorpopulationenrichmentsteps(Wongetal.,2004;Meyeretal.,2006; Wong and Liu, 2007). Much higher diversity among these than discussed here is likely, especially since Oehmen et al. (2006b) showed that only 16 % of their labscale reactor community,highlyenrichedinalphaproteobacterialTFO,hybridisedwiththeexistingFISH probesdesignedtotargetthethenknownGAOmembersofthisgroup(Fig1.10;Table1.3). ExamplesofalphaproteobacterialGAOmembersarediscussednext. 1.8.2.1Amaricoccussp. The original ‘Gbacteria’ isolate of Cech and Hartman (1993) was later identified as Amaricoccus kaplicensis, a member of a novel genus that now includes isolates from geographically diverse activated sludge systems (Maszenan et al., 1997) (Fig. 1.10). Although Amaricoccus spp. are abundant by FISH in some EBPR plants in Australia (Maszenan et al., 2000a), A. kaplicensis strains show no ability to assimilate substrates anaerobicallyinpureculture,whichquestionstheircapabilitytocompetewiththePAOfor substrates under anaerobic conditions (Falvo et al., 2001). As with the Acinetobacterium PAO,theyappeartobelaboratoryweedsofhistoricalinterestonlyinEBPRresearch. 1.8.2.2SphingomonasrelatedGAO Beeretal.(2004)alsoidentifiedputativemembersoftheGAOinsituinalabscalereactor dominated by FISH probed alphaproteobacterial TFO and with poor EBPR capacity. ApplyingDGGEandclonelibraryanalysistheyidentifiedthedominantalphaproteobacterial sequenceasamemberofthegenusSphingomonas(Fig.1.10).ApplicationofFISHprobes (SBR91aandSBR91b)designedagainstthissequencegavepositivehybridisationwiththe

48 dominant TFO, and histochemical staining and chemical profiles showed that these organismsbehavedaccordingtotheproposedGAOmodels(Table1.1).Inalatersurveyof Australian fullscale EBPR plants by Beer et al. (2006), these populations were observed commonlymakingupto24%ofthetotalbiovolume,buttheyhavebeenconspicuously absentfromcommunitiesoffullandlabscaleEBPRsystemsanalysedelsewhere(Oehmenet al.,2005a;Meyeretal.,2006;Oehmenetal.,2006a;Oehmenetal.,2006b;Burowetal., 2007;Saundersetal.,2007;Burowetal.,2008a;LopezVazquezetal.,2008b;Pijuanetal., 2008).Ofadditionalconcernarethemanyinconsistenciesintheoriginalstudythatquestion thevalidityofthisgroup(Saunders,2005)andthesearediscussedindepthinChapter5. 1.8.2.3DefluviicoccusrelatedGAO Wong et al. (2004) proposed that members of the putative alphaproteobacterial GAO recovered from a deteriorated labscale membrane EBPR bioreactor may be related to the activatedsludgeisolateDefluviicoccusvanus(Maszenanetal.,2005),fromsequencesina 16SrRNAclonelibraryconstructedwithalphaproteobacterialtargetedPCRprimers.These sequences formed a monophyletic group including D. vanus. The two FISH probes they designedfromthem(TFO_DF218andTFO_DF618)targetedmembersofthisentirecluster (clusterI).ThenMeyeretal.(2006)obtainedfurther16SrRNAsequencesalsorelatedtoD. vanus,buttheseformedadistinctsecondclusterwith97%similaritybetweenitsmembers (clusterII),andsharedonly90%similaritytomembersoftheclusterIofWongetal.(2004) (Fig. 1.10). The probes Meyer et al. (2006) published (DF988 and DF1020) were also designedsothatwhenusedtogethertheytargetedthewholecluster(Fig1.10andTable1.3). AthirdDefluviicoccus‘cluster’(clusterIII)suggestedbyWongandLiu(2007)wasbasedby themonasingle16SrRNAsequencegeneratedfromanonEBPRsystem(seeFig.1.10),but no FISH probes were designed to detect its members. Thus their potential importance in EBPRsystemsisunknown. BothclusterIandIImembersareabundantinlabscalereactors,withsuccessfulenrichments ofupto95and55%,respectively,ofthetotalbiovolumebeingachievedforeach(Meyeret al.,2006;Daietal.,2007)(Table1.3).InfullscaleplantsclusterImembersarerarelyfound (Wongetal.,2005;Burowetal.,2007;Nielsenetal.,2010b)whileclusterIImemberscan constituteupto9%ofthetotalbiomassinthoseexaminedsofar,andaresometimesin 49 higherabundancethanthe‘Competibacter’GAOandAccumulibacterPAO,indicatingthier potentialimportanceascompetitorsofthePAOinthesesystems(Meyeretal.,2006;Burow etal.,2007;Nielsenetal.,2010b)(seeTable1.3). Whether this Defluviicoccus group is as diverse phylogenetically as the ‘Competibacter’ GAOisnotknown.Withtheexceptionofthe D. vanus sequenceallthe16SrRNAdata availableforclustersIandIIDefluviicoccusmemberswereobtainedfromlabscalereactors fedsimplefattyacids,aloneorsubstitutedwithcasaminoacidsassubstrates(McMahonet al.,2002;Wongetal.,2004;Zhangetal.,2005;Meyeretal.,2006;WongandLiu,2007). Studies also suggest that morphological and physiological variation exists among the members of each of these clusters (Wong et al., 2004; Burow et al., 2007; Kondo et al., 2007;WongandLiu,2007;Schroederetal.,2008).Forexampletheaerobicsubstrateuptake profiles for cluster II members in an aerated novel EBPR process (Schroeder et al., 2008) differed to those reported by Burow et al. (2007) for their Defluviicoccus from fullscale anaerobic: aerobic EBPR processes. It was especially noticeable with propionate assimilation,whichwasveryslowintheDefluviicoccusidentifiedbyBurowetal.(2007). Thisisasurprisingresult,consideringthattheirhighapparentaffinityforpropionatehad been exploited to enrich them for RNASIP (Meyer et al., 2006). These published data suggest that the FISH probes currently available do not describe the full phylogenetic diversitywithinthisgroup. 1.8.2.3.1AnaerobicmetabolismoftheDefluviicoccusrelatedGAO ApplicationoftheDefluviicoccusFISHprobes,incombinationwithMARandhistochemical staining,hasshownthatmembersofbothclustersIandIIconformtotheproposedmodels fortheGAO(Table1.1),andbothhavesimilarinsituphysiologiesandanaerobicsubstrate uptakeprofilestoboththe‘Accumulibacter’and‘Competibacter’(Wongetal.,2004;Meyer et al., 2006; Burow et al., 2007; Wong and Liu, 2007) (see Table 1.4). As with ‘Accumulibacter’,inhibitorstudieswithenrichedculturesofclusterImembersindicatethat acetate uptake is mediated by an acetate permease involving a pmf (Burow et al., 2008a). However, this pmf is generated by a H+ and/or Na+ efflux mediated by the activity of a

50 fumaratereductaseandthedecarboxylationofmethylmalonylCoArespectively,withATP generatedbyprotoninfluxthroughATPases(Burowetal.,2008a)(seeFig.1.8c). Enrichedcultureanalysisalsoshowsarelianceonglycolysisasanenergysourceforacetate uptakeanaerobicallyforbothclusterI(Daietal.,2007;Burowetal.,2008a;Burowetal., 2009)andIImembers(Burowetal.,2007).InhibitionofkeyenzymesintheTCAcyclealso reveal with cluster I members that carbon flux occurs through the glyoxylate pathway. Oxidationofexcessreducingequivalentsseemstoinvolvethereductivebranch(Fig1.9)of theTCAcycle(Burowetal.,2009),anoutcomeagreeingwiththatfrom13CNMRstudies usingenrichedculturesofmembersofthesamecluster(Lemosetal.,2007).Inhibitionof aconitase,anenzymeinvolvedintheoxidativebranchoftheTCAcycle(Fig.1.9),didnot reducenoticeablyinsituacetateuptakeandstorageofPHAinclusterIImembers,suggesting thatthesedonotrelyontheglyoxylatepathwayorfullanaerobicoperationoftheTCAcycle forenergyorreducingequivalents(Burowetal.,2007)(seeFig.1.9). 1.8.2.3.2AerobicmetabolismoftheDefluviicoccusrelatedGAO Theaerobicmetabolismofcluster IDefluviicoccusmembersappearstobeverysimilarto thatreportedfor‘Competibacter’,withgluconeogenisisandtheoxidationofPHAthrough theTCAcycleresponsibleforrestoringtheirglycogenstores(Daietal.,2007;Lemosetal., 2007;Wongand Liu,2007).Glycogencycling hasbeeninferredfrom datafromchemical profilesofenrichedculturesofclusterI(<95%ofthetotalbiomassbyFISH)(Daietal., 2007)andclusterIImembers(<33%oftotalbiomassbyFISH)(Meyeretal.,2006)andalso shownforanaxeniccultureofDefluviicoccusvanus(WongandLiu,2007). Defluviicoccus vanus reduces nitrate in pure culture (Maszenan et al., 2005). Enriched culture studies with cluster I members suggest they too can reduce nitrate but not nitrite (Wangetal.,2008b),whileinsituFISHMARstudiesindicatethatclusterIImemberscan useneitherasanelectronacceptorintheabsenceofoxygen(Burowetal.,2007).

51 1.8.3OtherputativeGAO Other potential competitors of the PAO have been suggested, including those isolated in attemptstoidentifytheTFO‘Gbacteria’(Seviouretal.,2000).TheseincludeMicrosphaera multipartita (Yoshimi et al., 1996), Micropruina glycogenica (Shintani et al., 2000) and Kineosphaera limosa (Liu et al., 2000a; Liu et al., 2002), all shown to accumulate carbohydrates aerobically without any polyP storage (Table 1.1). Of these, only Micropruinia glycogenica hasbeenreportedin EBPRsystems in situ (Kong et al., 2001; Wongetal.,2005). Kong et al. (2001) applied FISH probes designed against Micropruinia glycogenica (MIC184),andanunidentifiedactinobacterialsequence(KSBR531:seeFig1.10andTable 1.3),tothebiomassofalabscalesystemwithnoPremovalandahighglycogencontent, reporting that these were present in this system at 22 and 7 % of the total biomass, respectively. FISHMAR/staining revealed that both had the ability to accumulate anaerobically acetate and glucose and produce PHA, but without polyP cycling, a metabolismconsistentwiththeGAOphenotype(seeTable 1.1). Whileneither population appearscommoninfullscaleEBPRcommunities,Micropruiniaglycogenicawaspresentat 8%ofthecommunitybiovolumeinaplantcommunitylocatedinJapan(Wongetal.,2005) (seeTable1.3). Kongetal.(2007)alsousedthefullcycleapproachwithFISHMARtoidentifytwoother putative GAO populations, defined by the FISH probes Bet65 and Gam445, within the BetaproteobacteriaandGammaproteobacteriarespectively(Table1.3andFig.1.10).These assimilated substrates anaerobically and stored them as PHA but without any subsequent aerobic polyP storage (Table 1.1), and made up to 3 to 6 % respectively of the total populationsofsurveyedDanishfullscaleplantbiomasssamples(Kongetal.,2007;Nielsen et al., 2010b) (Table 1.3). Tsai and Liu (2002) also noted the presence of a betaproteobacterialTFOpopulationnotassimilatingpolyPintheirfailedlabscale reactor andotherputativeGAOwithinthisclasshavedominatedotherfailedreactors,asdetermined by16SrRNAclonelibraryconstruction(Bondetal.,1995)andFISH(Bondetal.,1999a) analyses.However,anyinsitudominanceoftheformerhasnotbeenconfirmedwithFISH andtheunequivocalidentityofthelatterwasnotdetermined. 52 Giventhecurrentpracticaldifficultiesinidentifying‘true’GAO,morediversitywithinthis groupislikelytoberevealedasotherexperimentalapproachesareused.Also,assuggested withthePAO,weshouldnotconfineourselvestothecurrentdefinitionofGAOphenotype when seeking to identify PAO competitors, since competition between them may involve differentstrategies. 1.9CompetitionbetweenthePAOandGAOpopulationsinEBPR InformationonunderstandingtheecophysiologyofthedifferentPAOandGAOpopulations shouldprovideusefulinsightintohowoperationalparametersmayinfluencethecompetition betweentheminEBPRsystems.MuchofourcurrentunderstandingofthePAOandGAO comes from labscale systems, with the advantage that these can be operated with higher controlthanfullscaleplants,whereitisdifficulttocorrelatepopulationoractivityshifts with individual operating parameters. The data from such studies suggest that certain conditionsmayshiftthebalancebetweenthemtowhereoneiscompetitivelyfavouredover theother.UnfortunatelyfewidentifywhichPAOorGAOpopulationsarepresentintheir systems, and in fact little or no microbiological community analyses are often performed (Seviouretal.,2003;Oehmenetal.,2007).InsteadwhetherthePAOorGAOdominateis deduced indirectly from chemical profile data, which reveal key metabolic steps assumed from the metabolic models discussed earlier to be performed exclusively by each. For exampletheanaerobicacetateuptaketoPrelease,oranaerobicPHB:PHVratios,indirectly relate to the PAO/GAO population balance (Seviour et al., 2003; Oehmen et al., 2007; McMahonetal.,2010;Oehmenetal.,2010b).WhatmightdeterminetheoutcomesofPAO GAOcompetitionandsubsequentcommunitycompositionisdiscussednow. 1.9.1Carbonsource SincethemainbasisforthecompetitionbetweenthePAOandGAOisforavailablecarbon substratesintheanaerobicfeedstageinEBPR,differencesinuptakeratesofthesupplied carbonsourcemaybecrucial.WhileacetateisthoughttobethemostabundantVFApresent

53 intheinfluent,propionatelevelscanalsobehighinplantsthatincorporateprefermentation tanks,andotherVFAs,sugarsandaminoacidsmayalsobepresent(Oehmenetal.,2007). ExaminationofavailableFISHMARdataindicatethat‘Accumulibacter’, ‘Competibacter’ and Defluviicoccusallhaveahighaffinity forshortchainVFAs(Table 1.4), ensuring a directcompetitionforthesesubstratesinsitu(Kongetal.,2004;Kongetal.,2006;Burowet al.,2007;WongandLiu,2007;Schroederetal.,2008). LabscalereactorstudiessuggestthatPAOareadvantagedwhenpropionateisprovidedas carbonsource,comparedtowhenacetatealoneisavailable(HoodandRandall,2001;Chen etal.,2004;Oehmenetal.,2004;Pijuanetal.,2004a;Pijuanetal.,2004b;Chenetal.,2005; Oehmen et al., 2005b; Oehmen et al., 2006a). The improved performance of a fullscale EBPRsysteminAustraliahasbeencreditedtoanincreaseinthepropionatelevelfromapre fermenter feed, which replaced a direct addition of acetate (Thomas et al., 2003; Thomas, 2008).Whilemixedculturesenrichedwith‘Acumulibacter’appeartoshowsimilaruptake rates for both propionate and acetate (Pijuan et al., 2004b; Oehmen et al., 2005b), a ‘Competibacter’enrichedbiomassshowedslowuptakeratesforpropionateafterswitching fromanacetatefeed(Oehmenetal.,2005b). Furthermore,alowabundanceof‘Competibacter’wasreportedinpropionatefedlabscale communities(Oehmenetal.,2004;Pijuanetal.,2004a;Pijuanetal.,2004b;Oehmenetal., 2005b; Oehmen et al., 2006a). However, FISHMAR studies on fullscale plant biomass samples suggest that ‘Competibacter’ assimilates propionate at a rate similar to ‘Accumulibacter’ based on subjective MAR signal intensities. The ‘Competibacter’ also showednopreferenceforeither,astheyassimilatedpropionateinthepresenceofacetate (Kong et al., 2006). Although MAR signal strengths varied between individual ‘Competibacter’ cells, within and between FISHMAR experiments (Kong et al., 2006), whichcouldbetakentosuggestalowaffinityforpropionateuptakebysomemembersof thisgroup,thesedatamayreflectdifferentphysiologicalstatesofindividualcellsandnot substantial phenotypic differences between them. However, as bulk liquid acetate or propionate are not measured, it can not be unequivocally stated that they are taken up simultaneously,asacetatemayhavebeendepletedbeforepropionateuptakebegan.Noneof thelabscalestudieshaveappliedthesubgrouplevel‘Competibacter’FISHprobes,leaving

54 openthepossibilitythatothersubgroupsdifferenttothosereportedsofarfromthefullscale EBPRstudiesofKongetal.(2006)mayhavebeenpresent. The literature suggests that the alphaproteobacterial GAO can better compete with the ‘Accumulibacter’ PAO in propionate fed systems than with ‘Competibacter’ populations. Enrichedculturestudieswith‘Defluviicoccus’clusterI(Daietal.,2007),andanunidentified alphaproteobacterialGAO(Oehmenetal.,2005b),suggeststhatthesemaypreferpropionate overacetate,andclusterII‘Defluviicoccus’dominatedalabscalesystemfedpropionateas thesolecarbonsource(Meyeretal.,2006).However,clusterIDefluviicoccusrelatedGAO have become highly enriched in systems fed acetate (Wong et al., 2004; Wong and Liu, 2006,2007),andclusterIImemberstakeupacetateinthepresenceofpropionateinsitu,also generatingahigherMARsignalinthecaseoftheformer(Burowetal.,2007).Againthese trends may relate to the different conditions imposed in these studies, or to basic physiological differences between and within the currently known phylotypes of the alphaproteobacterialGAO. Nevertheless,Luetal.(2006)appliedtheseexperiencestogenerateanenrichedcultureof ‘Accumulibacter’at>90%ofthetotalpopulationbyalternatingbetweenpropionate,when theywerepresumablyoutcompetingthe‘Competibacter’,andacetate,whentheymayhave hadaselectiveadvantageoverthealphaproteobacterialGAO. Although the anaerobic supply of glucose was thought to promote the growth of PAO competitors (the ‘GBacteria’), leading to EBPR failure (Cech and Hartman, 1990; 1993; Satoh et al., 1994), successful P removal in its presence has been reported (Liu, 1998; Caruccietal.,1999;Sudianaetal.,1999;JeonandPark,2000;Leeetal.,2002;Wangetal., 2002).While‘Accumulibacter’PAOand‘Competibacter’GAOappearunabletoassimilate glucose directly anaerobically (Kong et al., 2004; 2006), Defluviicoccus GAO and some actinobacterial PAO can (Burow et al., 2007; Kong et al., 2008) (Table 1.4). However, it seemsprobablethatthisglucoseisfirstfermentedunderanaerobicconditionstogenerate VFAfermentationendproductsandthesearethesubstratesactuallyassimilatedbythePAO (Wentzeletal.,1985;Sudianaetal.,1999;JeonandPark,2000;Wangetal.,2002;Konget al.,2004;2008;Nielsenetal.,2010b).

55

Table1.4:FISHMARsummaryofavailabledataforinsituuptakeofdifferentsubstrates GAO Incubation D.vanus PAO Substrate ‘Competibacter’ condition related I II GB 1 3 4 5 6 7 RPAOa A221b A658c Formicacid Anaerobic –7 –7 +4 –4 –4 –4 –4 +4 –4 –2 –3 –3 Acetate Anaerobic +6,7 +7 +4 +4 +4 +4 +4 +4 +4 +1,2,5 –3 –3 Butyrate Anaerobic –7 –7 –4 –4 –4 –4 –4 –4 –4 –2 –3 –3 Propionate Anaerobic +6,7 +7 +4 +4 +4 +4 +4 +4 +4 +2 –3 –3 Pyruvate Anaerobic +6,7 +7 +4 +4 +4 +4 +4 +4 +4 +2 –3 –3 Lactate Anaerobic +6 ND ND ND ND ND ND ND ND ND –3 –3 Ethanol Anaerobic –7 –7 ND –4 –4 –4 –4 –4 –4 –2 –3 –3 Glycerol Aerobic –8 +8 –8 ND ND ND ND ND ND –8 ND ND Glucose Aerobic –8/+7 –8/+7 –4,8 –4 –4 –4 –4 –4 –4 –1,2,8 –3/+9 –3 Anaerobic –6/+7 +7 +4 +4 +4 +4 +4 +4 +4 +2 –3/+9 –3 Galactose Aerobic ND ND ND ND ND ND ND ND ND ND –9 ND Mannose Aerobic –7 –7 –4 –4 –4 –4 –4 –4 –4 ND –9 ND Anaerobic –7 –7 –4 –4 –4 –4 –4 –4 –4 ND ND ND Oleicacid Aerobic –7,8 –7,8/+8 –4 –4 –4 –4 –4 –4 –4 –2,8 +3 –3 Anaerobic –7 –7 –4 –4 –4 –4 –4 –4 –4 –2 +3 –3 Palmiticacid Aerobic –8 –8 –8 ND ND ND ND ND ND –5,8 ND ND Asparticacid Aerobic –7/+8 –7/+8 –4/+8 –4 –4 –4 –4 –4 –4 –2/+8 –3 –3 Anaerobic –6,7 –7 –4 –4 –4 –4 –4 –4 –4 –2/+5 –3 –3 Glutamicacid Aerobic –7,8 –7/+8 –4,8 –4 –4 –4 –4 –4 –4 +2,8 –3 –3 Anaerobic –7 –7 –4 –4 –4 –4 –4 –4 –4 +2,8 –3 –3 Leucine Anaerobic –7 –7 –4 –4 –4 –4 –4 –4 –4 –2 –3 –3 Glycine Anaerobic –7 –7 –4 –4 –4 –4 –4 –4 –4 –2 –3 –3 Thymidine Anaerobic –7 –7 +4 +4 –4 –4 –4 +4 –4 –2 –3 –3 Aminoacidsd Anaerobic ND +7 +4 ND ND ND ND ND ND ND +3 +3 aRPAO=Rhodocyclusrelated‘Accumulibacter’PAO;bcTetrasphaerarelatedPAO,definedbyprobesbActino221andcActino658(Kongetal.,2005); ddefinedmixtureof15aminoacids(Kongetal.,2005).‘–‘=Nouptake;‘+’=positiveuptake;ND=Nodata.GB=dataforgeneralGBgroupprobe (Kongetal.,2002a).Aerobicdataisincludedforsubstrateswhereanaerobicdataisunavailableordifferent. eacc=electronacceptorpresent: O2= aerobic(oxygen);No=anaerobic. 19References: 1(Kongetal.,2002b) 2(Kongetal.,2004); 3(Kongetal.,2005); 4(Kongetal.,2006); 5(Chuaetal., 2006);6(WongandLiu,2007);7(Burowetal.,2007);8(Schroederetal.,2008);9(Kongetal.,2008). 56 UnliketheproteobacterialPAOandGAO,theactinobacterialPAOfromearlyFISHMAR data do not take up VFAs, but instead assimilate amino acids under anaerobic conditions (Kong et al., 2005). However, from more recent experiments, some of these subgroups appeartoassimilateacetate(seeNielsenetal.,2010b).‘Competibacter’andDefluviicoccus related GAO also assimilate amino acids anaerobically (Table 1.4),althoughwhetherthis leadstoanydirectcompetitionforsubstrateswiththeactinobacterialPAOisunclearsince theFISHMARexperimentalprotocolusedappliedanaminoacidmixandnotindividual substrates(Kongetal.,2006;Burowetal.,2007). Togetherwithsubstratetype,howitissuppliedmayalsoimpactonPAOGAOcompetition. For example, Burow et al. (2008a) suggest that ‘Accumulibacter’ may better scavenge acetate at low concentrations than Defluviicoccus because of its higher acetate permease activity. Although prefermenters improve EBPR capacity by supplementing VFAs in the feed (Thomas et al., 2003), fullscale surveys indicate that sometimes their use may discourage‘Accumulibacter’(Beeretal.,2006;Heetal.,2008)sincetheVFAfermentation endproductsareprovidedasadumpfeed,andnotreleasedslowlyremovinganyscavenging advantagethe‘Accumulibacter’mighthave(Heetal.,2008). 1.9.2pH Increased EBPR capacity has been reported in labscale systems operating at higher pH (Bondetal.,1998;Bondetal.,1999b;Filipeetal.,2001c;Jeonetal.,2001;Levantesietal., 2002;SchulerandJenkins,2002;Serafimetal.,2002b;Oehmenetal.,2005a;Zhangetal., 2005),andafullscaleEBPRplant(Thomas,2008),whichisthoughttoreflectanincreased advantagethePAOhaveatoperatingpH>7.0. AlinearrelationshipbetweenanaerobicPreleaseandincreasedpHhasbeennotedonseveral occasions (Smolders et al., 1994a; Liu et al., 1996a; Romanski et al., 1997; Bond et al., 1999a;Bond etal.,1999b;Pijuanetal.,2004b;Oehmen etal.,2005a; Liuetal.,2007b). Smolders et al. (1994a) suggested an elevated polyP hydrolysis is required to meet the increasedenergydemandforacetatetransportintothecellatahigherpH,asaresultofa greater pH gradient across the membrane. Serafim et al. (2002b) suggest that it is better handledbythePAO,whichhavebothpolyPandglycogenasenergysources,whereasthe 57 GAOrelytotallyonthelatter.Anaerobicsubstrateuptakestudiescarriedoutwithenriched cultures of unknown GAO/PAO composition at pH of 6.58.0, generated data which suggestedthattheGAOincreasetheirglycogenconsumptionatthehigherpH(Filipeetal., 2001b)tocompensate.However,whileacetateuptakebythePAOseemedtobeindependent ofpH(Filipe et al.,2001d),itisreducedintheGAO,thusgivingthePAOanadvantage undertheseconditions(Filipeetal.,2001b). UnderaerobicconditionsPuptakeandbiomassgrowthinthePAOwerepostulatedtobe inhibited at low pH (<7.0), while GAO growth was largely unaffected over the same pH range (Filipe et al., 2001a), further emphasising the importance of pH in deciding the outcomeofcompetitionbetweenthetwo.PerforminganaerobicpolyPbreakdownwasalso thoughttoadvantagetheunidentifiedPAObyassistingininternalpHregulation(Bondetal., 1999b). A few studies have been carried out where the identity of both the PAO and GAO populationshasbeendermined,andthesearediscussednow.Zhanget al.(2005)reported EBPRfailureinareactorwhenthepHshiftedfrom7.0to6.5.Clonelibraryanalysesoftheir communities before and after failure showed the ‘Accumulibacter’ 16S rRNA related sequenceshaddisappeared.SequencesforclusterI‘Defluviicoccus’GAOmembershadalso disappeared, although more direct quantitative FISH analyses would have been more revealing of such population shifts. Bond et al. (1999a) did use FISH to show that corresponding relationship between increases in pH and EBPR efficiency were associated withincreasednumbersoftheβ2,including‘Accumulibacter’members,and actinobacterialgroups.ApplyingFISHtocommunitiesintworeactors,onedominatedbythe alphaproteobacterialGAOandtheother‘Competibacter’,Oehmenetal.(2005a)reporteda clear community shift in favour of ‘Accumulibacter’ members, and a subsequent improvementinEBPRefficiencyinbothcaseswithashiftinoperatingpHfrom7.0to8.0.A higheroperatingpHseemedtocorrespondtohigher‘Accumulibacter’populationsizesin fullscaleEBPRsystemsalthoughDefluviicoccusand‘Competibacter’GAOpopulationsin thoseanalysedwerebarelydetectable(<3.2%)(LopezVazquezetal.,2008a).

58 1.9.3Temperature ManystudieshavesuggestedthattemperaturecanalsoinfluenceEBPRefficiency,although the published data are often in conflict, with both increases and decreases in temperature beingclaimedtoleadtoimprovedEBPRcapacity(seeBrdjanovicetal.,1997).Thegeneral beliefisthattemperaturesof520°CfavourthePAObutabove20°Cchemicalprofiledata suggest the advantage switches to the GAO phenotype, which may explain the frequent reports of EBPR inefficiency at such temperatures (Whang and Park, 2002; Erdal et al., 2003;Panswad et al., 2003; Whang and Park, 2006; Erdal et al., 2008). Unfortunately, as with the pH studies, the composition of the communities showing these trends has rarely been determined, and so without knowing the identity of the PAO and GAO drawing comparisonsbetweenthedifferentstudiesbecomeproblematic. Enrichedcultureshaveshownthatthechemicaltransformationstypicalof‘Competibacter’ changelittleintheirstoichiometrybetween1530°Calthoughat10°Cglycolysisappearsto berepressedandat40°Cthesecellsdonotsurvive(LopezVazquez et al., 2007; Lopez Vazquez et al., 2008b; LopezVazquez et al., 2009a). Short term temperature response studiesindicatethat‘Accumulibacter’and‘Competibacter’sharesimilaracetateuptakerates below 20 °C, although in long term acclimatised enrichments, such rates were lower for ‘Competibacter’thanthoseforanunidentifiedPAOenrichedmixedculture(Brdjanovicet al., 1998a; LopezVazquez et al., 2009a). The lower energy requirements for anaerobic maintenancebelow30°Carethoughttoadvantage‘Accumulibacter’(LopezVazquezetal., 2007),whilehigheracetateuptakeratesofthe‘Competibacter’advantagethemabove20°C (LopezVazquezetal.,2007;LopezVazquezetal.,2009a).Comparedtothedatafroman undefinedPAOenrichmentculture(Brdjanovicetal.,1998c),‘Competibacter’hadalower aerobicgrowthrate,increasinglyfavouringglycogenreplenishmentattemperaturesbelow20 °C.Thus,thePAOare advantaged further(LopezVazquezetal.,2009a).Thesesupposed advantages were used to explain the community shift from ‘Competibacter’ to ‘Accumulibacter’dominanceinalabscaleEBPRreactorrunat10°C(LopezVazquezetal., 2009a). Whether similar advantages at low temperatures exist for the alphaproteobacterial GAO is unknown,althoughWhangandPark(2002)notedtheproliferationofanunidentifiedTFO 59 whentemperatureincreasedintheircommunity.Basedonseveraluntestedassumptions,a model incorporating the reported influence of carbon source, pH and temperature on ‘Accumulibacter’ PAO and ‘Competibacter’ and alphaproteobacterial GAO, suggests an overalladvantageto‘Accumulibacter’at10°C,evenatapHof6.5andregardlessofcarbon source(althoughonlyacetateandpropionateareconsidered)(LopezVazquezetal.,2009b). The low abundance of ‘Competibacter’ and Defluviicoccus GAO in fullscale plants in DenmarkandtheNetherlandshasalsobeenconsideredtoreflectthegenerallylowrecorded temperaturesinthesetwocountries(LopezVazquezetal.,2008a;Nielsenetal.,2010b). 1.9.4Carbontophosphorusratio(C:P) ItisthoughtthatahighC:Pratio(>50mgCOD/mgP)favourstheproliferationoftheGAO attheexpenseofthePAO(Oehmenetal.2007),andthisratiohasoftenbeenmanipulatedto obtainhighenrichmentsoftheformer(Liu etal.,1994;1996b;1997b;Minoetal.,1998; Sudiana et al., 1999; Kong et al.,2002b;SchulerandJenkins,2003a;Zeng et al., 2003c; Oehmenetal.,2004;Oehmenetal.,2005b;Oehmenetal.,2006b;Daietal.,2007;Lopez Vazquezetal.,2007;Saundersetal.,2007;Burowetal.,2009).Heetal.(2006)alsorelated theabundanceof‘Accumulibacter’whenP:Cratioswereincreasedinthefeedstofullscale EBPRplants.Eventhough‘Accumulibacter’canincreaseitsrelianceonglycogenstoresfor energy when P levels are depleted, their efficiency of acetate uptake is decreased substantially,asistheirabilitytocompetewiththeGAO(Zhouetal.,2008). 1.9.5Sludgeretentiontime(SRT) The SRT is thought to influence the competition between the PAO and GAO. As with anaerobiccarbonuptake,theaerobic growthphaseisimportantindeterminingwhetheran organismwillsurviveinEBPRsystems.InterestinglyWhangandPark(2006)reportedhigh EBPR capacity at 30 °C, a temperature thought to favour the GAO, when sludge age was reduced from 5 to 3 days. Later Whang et al. (2007) proposed that a lower conversion efficiencyofaerobicPHAcatabolismtobiomassintheGAOcouldexplaintheadvantagethe PAO seem to have at the shorter SRT. The minimum calculated aerobic SRT for ‘Competibacter’(1.9days)waslargerthanthatofanunidentifiedPAOenrichmentculture (1.25 days), which also suggested a lower growth rate for the former (Brdjanovic et al.,

60 1998c;LopezVazquezetal.,2009a).Heetal.(2008)alsoshowedarelationshipbetween higher levels of ‘Accumulibacter’ in communities of fullscale EBPR plants with shorter SRT,whichissupportedbyindirectevidencefromotherstudies(Zillesetal.,2002a;Wong etal.,2005;Beeretal.,2006;Heetal.,2008).ItmaybethatDefluviicoccusrelatedGAO aredisadvantagedatreducedSRT.WongandLiu(2006)notedacommunityshiftintheir labscale reactor where ‘Competibacter’ GAO (abundant in the seed) were replaced by clusterI‘Defluviicoccus’,afterSRTwasincreasedto15daysfrom78days. DespitetheproposedadvantagesforthePAOatshorterSRTthechallengeinimplementing thisasacontrolstrategyinfullscaleplantsmaybeattheexpenseofNremoval,witha potentialwashoutoftheslowergrowingnitrifiers(LopezVazquezetal.,2009a). 1.9.6Dissolvedoxygen(DO)levels Thefewstudiescarriedoutarecompromisedbythelackofmicrobiologicaldatatosupport their findings and in some cases are anecdotal only. For example Griffiths et al. (2002) monitored several fullscale EBPR plants in Australia and concluded that the PAO, ‘identified’solelybytheirpolyPpositivestaining,requiredanoptimumDOof2.53.0mg/l. HigherDOlevelsof4.55mg/lhadanegativeimpactonEBPRandinsteadappearedto promote the growth of unidentified TFO (probably Defluviicoccus; R.J. Seviour, unpublished). Brdjanovic et al. (1998b) speculated that overaeration decreases EBPR capacitybecausethesupplyofPHArequiredforaerobicPuptakeisexhaustedthen.Daiet al.(2007)suggestedthatDefluviicoccusismorecompetitivethan‘Competibacter’atlower DOlevel.ThepossibleimpactofDOonPAOGAOcompetitionisstillfarfromclearsince PAO levels were probably negatively affected at the low P:C ratio used in the GAO enrichment studies of Dai et al. (2007), although Lemaire et al. (2006) have shown that ‘Accumulibacter’ dominated a reactor run at an even lower DO concentration of 0.5 mg/l, suggestingtheyarecompetitivewiththeGAOthere.

61 1.10Aimsofthisstudy Itisclearfromthereviewoftheliteraturegiveninthischapter,thatmuchstillneedstobe learned about the microbiology of EBPR systems including the biodiversity and ecophysiologyoftheDefluviicoccusGAO.Onlythenwillthebasesforcompetitionbetween thesepopulationsandthePAObecomeclear.Thisthesisdescribesworkwhichattemptsto contributetothisby;

• Examining systematically the experimental problems mentioned in the literature inherentinidentifyingthesepopulationsinEBPRcommunities,bylookingatmore suitable enrichment recovery methods and possible biases in the methods used in

earlierclonelibrarystudiesforDNA/RNAextractionfromactivatedsludge • Applyingtheseprotocolstodeterminewhetherfurtherbiodiversityexistsamongthe Defluviicoccusanddevelopmethodsfortheirinsituidentificationandforresolving theirecophysiologies • Applying these methods to resolve some of the inconsistencies in the literature concerningtheidentificationofthealphaproteobacterialGAO • Attempting to understand the physiological bases for the competition between the GAOandPAOinresponsetochangesinculturepH.

62 2.0 FlowcytometryassistedidentificationofGAOinlab scaleEBPRsystems 2.1Introduction EBPRactivatedsludgesystemsoftenbehaveunreliablybecausethePAOareoutcompeted for substrates in the anaerobic zone by GAO (Seviour et al., 2003; Oehmen et al., 2007). Bothoccurcommonlyinheavilycapsulatedclustersintheflocs.InsteadofassimilatingP aerobically into intracellular polyP as the PAO do, the GAO store glycogen instead. InvariablythesearefoundwiththePAOinEBPRsystems,butoccurofteninhighernumbers in those with reduced EBPR capacity. Since the glycogen accumulating cells are not detectable by staining (Serafim et al., 2002a), and as most are yet to be cultured, their identityhasbeensoughtbyconstructing16SrRNAbasedclonelibrariesandPCRDGGE profiling (Crocetti et al., 2002; Beer et al., 2004; Wong et al., 2004; Meyer et al., 2006; Kong et al., 2007). These methods have identified the gammaproteobacterial GAO as members of the GB or ‘Competibacter’ group. At present these are divided into seven distinctsubgroupswithFISHprobesdesignedtocovereach(Kongetal.,2002a).However, WongandLiu(2006)andKong et al.(2006)havehintedatfurtherdiversity,withboth studiesreportingtheexistenceofcellsintheirEBPRsystemsrespondingtothebroadgroup coverageFISHprobesforthe‘Competibacter’butnoneofthesubclusterprobes. Greater difficulties have been encountered in identifying the alphaproteobacterial GAO. Wongetal.(2004)andWongandLiu(2007)usedalphaproteobacterialtargetedprimersto construct 16S rRNA clone libraries from a membrane EBPR process in which sequences closely related to Defluviicoccus vanus were well represented. However, when 16S rRNA clonelibrarieswerepreparedforsamplesisolatedfromalabscalesequencingbatchreactor (SBR)anaerobic:aerobicEBPRprocesswhichcontainedhighnumbersofTFOtargetedby alphaproteobacterial FISH probes, no sequences associated with them could be detected (Meyeretal.,2006).IdentificationoftheseTFOasDefluviicoccusspp.onlyprovedpossible afterMeyeretal.(2006)appliedRNASIPenrichmentbeforeclonelibraryconstruction.

63 PriorstudieshavesuggestedthattheDefluviicoccusrelatedTFOarephylogeneticallydiverse andcanbedividedintothreedistinctclusters,althoughthethirdclusterisonlybasedona singlerRNAsequence(WongandLiu,2007).AseriesofFISHprobeshavebeendesigned forclustersIandIIoftheDefluviicoccusrelatedorganisms(Wongetal.,2004;Meyeretal., 2006; Wong and Liu, 2007). Wong and Liu (2007) extended the phylogenetic diversity observedintheseclusterswithadditionalrRNAsequencesisolatedfromtheircommunity anddesignednewprobesforeachcluster.WhethertheoriginalclusterIIprobesofMeyeret al.(2006)coverthesenewsequencesisunclearsincethe16SrRNAregiontheytargetwas not revealed in the clone sequences obtained by Wong and Liu (2007) with their alphaproteobacterialprimers. Ahnetal.(2007)describedanovelcontinuouslyaeratedEBPRprocesswherethesupplyof carbon(‘FEAST’stage)andsupplyofP(‘FAMINE’stage)aretemporallyseparate.Thisis quiteunlikeconventionalEBPRsystems,wherebothareaddedsimultaneously(Seviouret al.,2003),andthechemicalprofilessuggestlittlechangeinglycogenbiomasslevelsacross thereactorcycle(Ahnetal.,2007).AsMeyeretal.(2006)experiencedearlier,when16S rRNA based clone libraries were generated from samples taken from this community containing alphaproteobacterial TFO, no Defluviicoccusrelated sequences were able to be identified. FISH analyses showed that the TFO were all members of the cluster II Defluviicoccus (Ahn et al., 2007). However, these probes were not designed against individualstrainsbutclustersof16SrRNAsequencesallsharingtheprobetargetsite,and hencetheymaynotdiscriminatesufficientlytorevealanyadditionalphylogenetic(andhence ecophysiological) diversity which might exist. Since the aerated EBPR process is quite different to previously studied EBPR systems it was hypothesised that the Defluviicoccus GAO present there may be phylogenetically distinct. This hypothesis was supported by FISHMARstudies(Schroederetal.,2008)whichfoundtheirecophysiologywasmarkedly differenttothatdescribedbyBurowetal.(2007).Consequentlyamoreprecisephylogenetic identityoftheseDefluviicoccusGAOwassought. Neither of the previously published approaches for identifying Defluviicoccus GAO were suitableforuseintheaeratedEBPRprocess.WiththemethodofWongetal.(2004),only partialsequencesaregenerated,restrictingopportunitiesforFISHprobedesign(Nielsenet al., 2004). RNASIP is complex, and requires a priori information about the targeted

64 organisms’ substrates preferences (Meyer et al., 2006). Where the targeted population numbersarelow,theprobabilityofsuccesswitheitherapproachisreducedsincescreening ofclonelibrariesforraresequencesisunreliable(Nielsenetal.,2004). TheapproachselectedheretoidentifytheDefluviicoccusTFOwasflowcytometrysortingof FISHtargetedcells(fluorescentactivatedcellsorting(FACS)).Thismethodhasbeenapplied toconventionalandEBPRactivatedsludgesamplesforsimilarpurposes,predominantlyfor theenrichmentofPAObasedonpositivestainingforpolyPinclusionswiththefluorescent DAPI (Porter et al., 1993; Wallner et al., 1997; Kawaharasaki et al., 1999; Snaidr et al., 1999;Hungetal.,2002;Kawaharasakietal.,2002;Zillesetal.,2002a;Zillesetal.,2002b; Miyauchietal.,2007;Güntheretal.,2009).Thesameapproachwasalsoappliedtoanother conventional anaerobic (‘FEAST’): aerobic (’FAMINE’) EBPR SBR system where again cluster II Defluviicoccus sequences were absent from clone library analysis despite FISH indicatingtheirhighabundanceinthesamesourcecommunity(seeChapters3and6). 2.2Materialsandmethods 2.2.1OperationoftheEPBRSBRreactors LS1 was a SBR operated under continuously aerated conditions and fed with clarified effluentcontaining1012mg/lPandsupplementedwithacetate(120mg/lcarbon)froma nonEBPRtreatmentplantinMelton,Australia.OtherconditionsaredetailedinAhnetal. (2007).LS2wasaSBRoperatedunderalternatingaerobic:anaerobicconditionsandalsofed withacetateasthesolecarbonsource(75mg/lcarbon).Furtheroperationalconditionscanbe foundinChapter6.Bothreactorswereinitiallyseededfromafullscaleanaerobic:aerobic cycling modified University of Cape Town (MUCT) EBPR plant located in Castlemaine, Victoria.

65 2.2.2Cellfixation Samplesforflowassistedsortingweretakenafter97and387daysoperationfromLS1and LS2,respectively. For analysisofGramnegativesbiomasswasfixed with3volumesof freshlyprepared(≤48hold)4%[w/v]paraformaldehyde(PFA)in1×phosphatebuffered saline (PBS) (137 mM NaCl, 10 mM Na2HPO4.7H2O, 2.7 mM KCl, 1.47 mM KH2PO4) solutionfor2hat4°C.ForanalysisofGrampositives(laterchapters)biomasswasfixed with50%[v/v]ethanolat4°Covernight.Afterthefixationstep,sampleswerewashedtwice in1×PBS,resuspendedin50%[v/v]ethanolin1×PBSsolutionandstoredat20°Cuntil required. 2.2.3Fluorescenceinsituhybridisation(FISH) FISH was performed as detailed by Daims et al. (2005). All probes were purchased from ProOligo (SigmaAldrich, Australia) containing either 5(6)carboxyfluoresceinNhydroxy succinimide ester (FLOUS), indocarbocyanine (CY3) or indodicarbocyanine (CY5) fluorochromesattachedtothe5’endoftheoligonucleotide.Probesequencesaregivenin Table 2.1. Initially 8 l of fixed cell suspension was added to 6 well Teflon coated microscope slides that had been previously coated in Vectabond (Vector Laboratories). Slideswerethendriedat46°Cfor10minanddehydratedbysequentiallyimmersingthe slidesinaseriesofethanolconcentrations,50%[v/v],80%[v/v]and95%[v/v]for3min eachandallowedtoairdry.Hybridisationbufferwasaddedtoeachwell(0.9MNaCl,20 mM TrisHCl (pH 8.0), 0.01 % [w/v] sodium dodecyl sulphate (SDS), 070 % [v/v] formamideand5ng/lofeachprobe,withatotalvolumeof10lwithsterilemilliQwater). The formamide concentration used for each probe is given in Table 2.1. Slides were immediatelyplacedintoahorizontal50mlcentrifugetube,containingpapertowelmoistened with1mlhybridisationbuffer,andincubatedfor1.5hat46°CinaBFD53hybridisation oven(BinderScientific). Immediately following hybridisation the probe was rinsed off with wash buffer of the appropriatestringency(20mMTrisHCl(pH8.0),xmMNa+(adjustedwith5MNaCl)(see Table 2.2), 5 Mm ethylenediaminetetraacetic acid (EDTA) (pH 8.0), 0.01 % SDS) and immersedin50mlofprewarmedwashbufferina50mlcentrifugetubeat48°Cfor10min. 66 Slideswerethencarefullyremovedandimmersedthreetimesinchilleddistilledwaterand immediatelyairdried.Ifslideswerenotviewedimmediately,theywerestoredat20°Cwith silicageluntilrequired. 2.2.4Fluorescencemicroscopy Samplewellsweremountedwith5lofVectashield(VectorLaboratories)andaglasscover slip.SlideswereviewedusingaNikonEclipse800epifluorescencemicroscope.Thefilter sets for each fluorochrome are given in Table 2.3. Images were captured using a Nikon DMX 1200 CCD camera driven by Nikon ACT1 v.3 software. Images were alternatively takenusingaLeicaTCSSP2confocalscanninglasermicroscope(CLSM)(modelDMRE2) equippedwithanArgon,HeNe(redandgreen)lasersdrivenbyLeicaConfocalSoftwarev. 2.61. To assist in the identification of false positives all experiments included a negative controlwellwheretheNONEUBprobe(Table2.1)wasappliedtothesamebiomass. 2.2.5QuantitativeFISH(qFISH) EstimationoftargetpopulationsusingqFISHwasperformedasdescribedbyDaimsetal. (2005)andvaluescalculatedbyDAIMEsoftware(Daimsetal.,2006)basedonatleast40 fieldsofviewtakenat630xmagnificationonaconfocallasermicroscope.Theabundanceis representedasthepercentageoftheareafluorescingwiththeEUBmixprobes(FLOUS)that alsofluorescedwiththetargetprobe(CY5).Biomasswasappliedtoeachslidewellinthree successive5Laliquotsofthesamesample,witheachaliquotallowedtodrybeforethe additionofthenext.Slideswerethenhorizontallyimmersedin0.5%[w/v]agarosewhich wasallowedtosetonice.Excessagarosewasremovedfromaroundthewellswitharazor blade and the slides dried at 46 °C for 20 min. FISH was then performed as detailed in Section 2.2.3. The qFISH analysis for LS1 in this chapter was performed by Dr Sarah Schroeder(LaTrobeUniversity,Bendigo).

67

Table2.1:FISHprobesappliedinthischapter Probename Sequence(5´3´) Target [FA]1(%) Reference EUB338I2 GCTGCCTCCCGTAGGAGT MostBacteria 35 (Amannetal.,1990) EUB338II2 GCAGCCACCCGTAGGTGT Planctomycetales 35 (Daimsetal.,1999) EUB338III2 GCTGCCACCCGTAGGTGT Verrucomicrobiales 35 (Daimsetal.,1999) NONEUB ACTCCTACGGGAGGCAGC ControlprobecomplementarytoEUB338 n/a (Wallneretal.,1993) GB3 CGATCCTCTAGCCCACT ‘Competibacter’groupGB 35 (Kongetal.,2002a) GB_G1(GAOQ989)3 TTCCCCGGATGTCAAGGC ‘Competibacter’subgroupG1inGroupGB 35 (Crocettietal.,2002) GB_G23 TTCCCCAGATGTCAAGGC ‘Competibacter’SubgroupG2inGroupGB 35 (Kongetal.,2002a) GB_2 GGCATCGCTGCCCTCGTT ‘Competibacter’Subgroup2 (Kongetal.,2002a)

ALF968 GGTAAGGTTCTGCGCGTT Alphaproteobacteria,exceptRickettsiales 20 (Neefetal.,1999) TFO_DF862 AGCTAAGCTCCCCGACAT Defluviicoccusvanus 35 (Wongetal.,2004) TFO_DF2184 GAAGCCTTTGCCCCTCAG ClusterIDefluviicoccusrelatedTFO 35 (Wongetal.,2004) TFO_DF6184 GCCTCACTTGTCTAACCG ClusterIDefluviicoccusrelatedTFO 35 (Wongetal.,2004) TFO_DF776 GCTATAGCGTCAGTTACGG ClusterIDefluviicoccusrelatedTFO 30 (WongandLiu,2007) TFO_DF629 AGGACTTTCACGCCTCAC ClusterIIDefluviicoccusrelatedTFO nd (WongandLiu,2007) DF9885 GATACGACGCCCATGTCAAGGG ClusterIIDefluviicoccusrelatedTFO 35 (Meyeretal.,2006) DF10205 CCGGCCGAACCGACTCCC ClusterIIDefluviicoccusrelatedTFO 35 (Meyeretal.,2006) H966 CTGGTAAGGTTCTGCGCGTTGC HelperprobeforDF988 n/a (Meyeretal.,2006) H1038 AGCAGCCATGCAGCACCTGTGTGGCGT HelperprobeforDF988andDF1020 n/a (Meyeretal.,2006) SBR91a AAGCGCAAGTTCCCAGGTTG PutativeSBRGAO 30 (Beeretal.,2004) AMAR839 CTGCGACACCGAACGGCAAGCC Amaricoccusspp. 20 (Maszenanetal.,2000a) nd=notdetermined;n/a=notapplicable; 1[FA]=formamideconcentrationinhybridisationbuffer; 2 5 appliedinequimolaramountsas: 2 EUBmix, 3 GBmix,4DF1mix,5DF2mix 68 Table2.2:RequiredNa+concentrationforFISHwashbuffer. [FA]1 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 [Na+]2 900 636 450 318 225 159 112 80 56 40 28 20 14 10 7 1Formamideconcentration(%[v/v])inthehybridisationbuffer. 2Saltconcentration(mM)inthe washbuffer.CalculationsarebasedontheequationofLathe(1985):[Na+]=10(0.5[%FAHyb]–0.76)/16.61 whereanincreasein1%[v/v]formamide(FA)isconsideredtobeequivalenttoanincreaseof0.5 °C.TheadditionofEDTAtothewashbuffercontributes0.01MNa+(Daimsetal.,2005). Table2.3:FiltersetsforNikonEclipse800 FilterSet Excitation/Emissionλ(nm) Fluorochrome/Stain UV2A 330380/420 DAPI FITC 465495/505 FLOUS/SYBRGold G2A 510560/575 CY3/NileblueA CY5/HYQ 620/60/660 CY5 2.2.6Flowcytometry 2.2.6.1FISHlabellingofcells Prior to flow cytometry PFA fixed biomass was homogenised in a 15 ml dounce tissue homogenisertodisruptcellularaggregates,andfilteredthrough40mnylonmesh(353335 Falcon). 100 l of homogenised biomass was added to a 1.5 ml centrifuge tube and centrifuged(12,000xg,4°C,5min),thesupernatantdiscardedandthepelletwashedonce with250lhybridisationbuffer(0.9MNaCl,20mMTrisHCl(pH8.0),0.01%[w/v]SDS and35%[v/v]formamide.Thepelletwasthenresuspendedin100lofhybridisationbuffer containingtheFLUOSlabelledFISHprobe(5ng/l)andincubatedat46°Cfor2h.The tubewasthencentrifuged(12,000xg,roomtemperature,4min)andthepelletresuspended in600lofwashbuffer(seeSection2.2.3)beforeincubationfor10minat48°C(forthe sortingof‘Competibacter’thewashstepwasomittedandinstead600loficecold1×PBS

(137 mM NaCl, 10 mM Na2HPO4.7H2O, 2.7 mM KCl, 1.47 mM KH2PO4) (pH 8.0) was added). The cells were again centrifuged, the supernatant discarded and the pellet resuspendedin1×PBS(pH8.0)beforesorting.Successfullabellingoftargetorganismswas thenassessedbyfluorescencemicroscopy.

69 2.2.6.2SortingofAlphaproteobacteria CellsortingwasperformedwiththeassistanceofDrDanielHoefel(SAWater,Adelaide). Cells labelled with the ALF968 probe (Table 2.1) were sorted on a FACS Calibur flow cytometer(BectonDickinson),usinga530/30bandpassfilter,aspreviouslydescribedby Hoefeletal.(2005).Cellsweresortedusingthe‘singlesortmode’andtheconcentrationof thebiomasskeptbelowalevelthatgavehigherthan300eventss1.Approximately5×106, cellsweresortedinto50mlcentrifugetubesataconcentrationofapprox.2×103cellsml1. Cellswereconcentratedbysequentialcentrifugation(10,000xg,4°C,20min).Escherichia coli (a Gammaproteobacteria) and Novosphingobium sp. Geo25 (DQ137853) (an Alphaproteobacteria)wereusedasnegativeandpositivecontrolsrespectively.Sortwindow parametersaregiveninFig.2.1aandb. 2.2.6.3Sortingof‘Competibacter’ CellslabelledwiththeGBmixprobeset(GB,GB_G1andGB_G2:Table2.1)weresorted with a FACS Aria (BD Biosciences), using a 530/30 band pass filter by Ken Field (MelbourneUniversity,Melbourne).SortingparametersweresetbytheFACSDivasoftware package.Approximately1×106cellsweresortedin1ml.Sortedcellswereconcentratedby centrifugation(20,800g,4°C,20min).BiomasslabelledwithNONEUB(Table2.1)was used as a negative control and biomass samples initially hybridised with each ‘Competibacter’probe(GB,GB_G1andGB_G2)individuallytoensuresortparametersdid notexcludecellsbecauseoneprobehadalowerfluorescencethantheothers,orthecellonly hybridisedoneoftheprobes.SortwindowparametersaregiveninFig.2.1c. 2.2.7ExtractionofDNAfromFACSsortedbiomass The DNA was extracted by addition of extraction buffer (1 mM EDTA (pH 8.0), 10 mM TrisHCl(pH8.0),0.2%TritonX100[v/v]and0.4mgml1proteinaseK),incubatedat55 °Cfor2handthenheatedto95°Cfor10min.Theextractwasmixedusingavortexmixer for5sandstoredat70°Cuntilrequired.

70

Figure2.1:FACSsortingplotsfora.LS1ALF968positivecells;b.LS2ALF968positivecells;c.LS2GBmixpositivecells,othergatesnotshownhere werealsoappliedtominimisecellaggregates;Allsortwindowboundariesareshowninred.

71 2.2.816SrRNAgeneclonelibraryconstruction 2.2.8.116SrRNAgeneclonelibraryPCR PCRreactionswereperformedin200lthinwalledPCRtubes,withareactionvolumeof 20 l, on an iCycler IQTM Multicolor RealTime Detection System (BIORAD). Primer sequencesaregiveninTable2.4andweresynthesisedbyGeneworks(Adelaide,Australia). All16SrRNAgeneswereamplifiedusinguniversalprimers,27Fand1525R.PCRreactions contained1UAmplitaqGoldDNApolymerase(AppliedBiosystems),1×AmplitaqGold reaction buffer, 2.5 mM MgCl2, 400 nM of each primer, 200 M deoxynucleotide triphosphates (dNTPs) (Roche), 5 % [v/v] dimethyl sulphoxide (DMSO) (SigmaAldrich). ThePCRcycleusedwas:96°Cfor10minfollowedby35cyclesof96°Cfor1min,52°C for30sand72°Cfor2minwithafinal7minextensionat72°C. 2.2.8.2Ligationandtransformation PCRproductswerepurifiedusingQIAquickGelExtractionkits(Qiagen)andclonedintothe pGEMTEasyVectorSystemII(Promega).TemplatewasligatedintothepGEM®TEasy vector(Promega).Ligationreactionscontained5lof2×RapidLigationBuffer(Promega), 1lvectorDNA,3lofPCRproductand1lofT4DNAligase(Promega).Thereactions were gently mixed and incubated at 4 °C overnight. Plasmids transformed into JM109 competentE.colicells(Promega). A 2 l aliquot of the ligation reaction was added to 50 l of JM109 E. coli chemical competentcells(Promega),mixedbygentlyflickingthetubeandincubatedonicefor20 min.Thecellswerethenheatshockedat42°Cfor45sandplacedonicefor2min.

72

Table2.4:Primersequencesusedinthischapter PrimerName Sequence(5’3’)* Target TargetOrganism Reference Gene 27F GAGTTTGATCMTGGCTCAG 16SrDNA Bacteria (ModifiedfromLane,1991) 357F CTCCTACGGGAGGCAGCAG 16SrDNA Bacteria (Lane,1991) 519R GWATTACCGCGGCKGCTG 16SrDNA Bacteria (Lane,1991) 530F GTGCCAGCMGCCGCGG 16SrDNA Bacteria (Lane,1991) 534R ATTACCGCGGCTGCTGG 16SrDNA Bacteria (Muyzeretal.,1993) 907R CCGTCAATTCMTTTRAGTTT 16SrDNA Bacteria (Lane,1991) 926F AAACTYAAAKGAATTGACGG 16SrDNA Bacteria (Lane,1991) 1100R GGGTTGCGCTCGTTG 16SrDNA Bacteria (Lane,1991) 1114F GCAACGAGCGCAACCC 16SrDNA Bacteria (Lane,1991) 1392R ACGGGCGGTGTGTRC 16SrDNA Bacteria (Lane,1991) 1369F CGGTGAATACGTTCYCGG 16SrDNA Bacteria (Suzukietal.,2000) 1492R GGYTACCTTGTTACGACTT 16SrDNA Bacteria (Lane,1991) 1525R AAGGAGGTGWTCCARCC 16SrDNA Bacteria (Lane,1991) M13F GCGCAGGGTTTTCCCAGTCACGAC Plasmid pGEM®TEasyVector (Messing,1983) M13R TCACACAGGAAACAGCTATGAC Plasmid pGEM®TEasyVector (Messing,1983) *R=AG;Y=CT;M=AC;K=GT;S=GC;W=AT;H=ACT;B=GCT;V=AGC;D=AGT;N=AGCT

73 950lofSOCmedium(0.2gl1tryptone,50mgl1 yeastextract,10mMNaCl,2.5mM 2+ 1 1 KCl,20mMMg (203.3gl MgCl2.6H20,246.5gl MgSO4.7H20),20mMglucose)was thenaddedandthetubeincubatedat37°Cfor1.5hwhilstshakingat150rpm.100l aliquotsoftransformedcellswerethenplatedontoprewarmedLB(LuriaBertani)plates(15 gl1agar,10gl1tryptone,5gl1yeastextract,5gl1NaCl,100gml1ampicillin(Sigma)) supplementedwith0.5mMisopropylβD1thiogalactopyranoside(IPTG)and80gml15 bromo4chloro3indolylβDgalactopyranoside(XGal)andtheplatesincubatedovernight at37°C.Selectionofcolonieswithinsertswasbasedonbluewhitescreening. 2.2.8.3Plasmidextraction ColoniesgeneratedinSection2.2.8.2weretouchedlightlywitha200lpipettetipthatwas thenaddedto5mlofLBbrothina50mlscrewcapcentrifugetubewhichwasincubatedin ashakingwaterbathat37°Covernight.PlasmidswerethenextractedusingQIAprepSpin MiniprepKit(Qiagen)accordingthemanufacturer’sinstructions.Toestimateconcentration andverifyinsertsize,plasmidsweredigestedwith10UofEcoRI(RocheDiagnostics),at37 °Cfor30minandfragmentsseparatedonanagarosegel(seeSection2.2.8.5). 2.2.8.4ColonyPCR Alternatively inserts were amplified directly, without plasmid isolation (as in Section 2.2.8.3),withcolonyPCR.Coloniesweretouchedlightlywitha200lpipettetipthatwas thendippedina1.5mltubecontaininglysisbuffer(1mMEDTA(pH8.0),10mMTrisHCl (pH8.5),0.2%[v/v]TritonX100).Thetubewasthenincubatedat90°Cfor5min.1lof extractwasusedinaPCRreactioncontaining1UAmplitaqGoldDNApolymerase(Applied

Biosystems), 1 × Amplitaq Gold reaction buffer, 2.5 mM MgCl2, 400nM of M13F and M13Rprimers(Table2.4),200MdNTPs(Roche)and5%[v/v]DMSO.ThePCRcycle was:95°Cfor5minfollowedby20cyclesof95°Cfor30s,60°C(decreasedby0.5°C everycycle)for30sand72°Cfor70sfollowedby15cyclesof95°Cfor30s,50°Cfor30 sand72°Cfor70swithafinal7minextensionat72°C.PCRproductsofthecorrectsize (seeSection2.2.8.5)werepurifiedusingQIAquickGelExtractionkits(Qiagen).

74 2.2.8.5DNAelectrophoresis Samplesweremixedwithloadingdye(6×stock:0.25%[w/v]bromophenolblueand0.25 %[w/v]xylenecyanol,30%[v/v]glycerolindistilledwater)beforebeingloadedintoan agarosegel(preparedin1×TAEbuffer(40mMTrisHCl,20mMglacialaceticacid,1mM EDTA(pH8.0)),electrophoresedat90Vin1×TAEbufferandpoststainedwith100g/ml ethidiumbromideorSYBR©GOLDnucleicacidstain(Invitrogen)in1×TAEbuffer.Size of DNA was estimated against 2log ladder (New England Biolabs) or a 1kb ladder (Promega). 2.2.8.6Sequencingandphylogeneticanalysis Either plasmids (Section 2.2.8.3) or PCR products (Section 2.2.8.4) were sent to the AustralianGenomeResearchFacility(AGRF,Brisbane,Australia)forsequencing.Primers usedinsequencingreactionsaregiveninTable2.4. Sequenceswerearrangedintooperationaltaxonomicunits(OTUs)basedonamutual99% similaritybetweentheir partialsequences(≥500bp)andarepresentativesequenceofeach OTUfullysequencedinbothdirections.AsOTUI149wasofparticularinterest,bothclone sequencevariants,I25andI149,wereincludeddespitebeing99.3%similartoeachother. Contigs were assembled using Geneious Pro 3.0.6 (Biomatters Ltd.). If necessary partial sequence reads were processed with the LongTrace program (www.nucleics.com.au). CompletesequenceswerecheckedforchimerasusingBellerophonv3(DeSantisetal.,2006) and Mallard (Ashelford et al., 2006). Suspect sequences were individually checked using Pintail (Ashelford et al., 2005) against their closest matches in the NCBI database and divergent regions individually used to screen the NCBI database. Sequences assessed as being ‘clean’ were then added to ARB (Ludwig et al., 2004) into the Greengenes ARB database(DeSantisetal.,2006)updatedwithnewsequencesfromtheNCBIdatabasesthat were close matches to sequences of interest. These sequences were then aligned and phylogenetictreesconstructed.

75 2.3Resultsanddiscussion 2.3.1SBRcommunitycompositions Biomass taken from SBRs LS1 and LS2 contained alphaproteobacterial TFO organised mainly in clusters, with few cells dispersed as single tetrads (Fig. 2.2). In LS2 all the observedtetradsaswellassomelargecocci,gaveapositivehybridisationsignalwiththe ALF968probe(Fig2.2bi.ii.),whileinLS1veryfewALF968positivecellsdidnotexhibit the TFO morphology (Fig 2.2a i.ii.). A small number of these TFO responded to the AMAR839probeandthosedesignedtotargetclusterIDefluviicoccus(Table2.1)ineither SBR community. Although cluster II Defluviicoccus had not been described at the commencementofthisstudy,applicationofthelaterreportedprobesofMeyeretal.(2006) revealedthatmostoftheTFOinboththesereactorswerepositivewiththeDF988probeand about60%and75% ofthesealsofluorescedwiththeDF1020probefor LS1and LS2 respectively (Table 2.5). No cells fluoresced with the TFO_DF629 FISH probe in either SBR,eventhoughitwasdesignedtocoveralltheclusterIIDefluviicoccusrelatedTFOas defined by Wong and Liu. (2007). Cells responding to the GBmix probe set, for the ‘Competibacter’GAO,wereabundantintheLS2communitybutwererarelyobservedin LS1 (Table 2.5). Interestingly, the GBmix probe hybridised with the large cocci also respondingtotheALF968probe(Fig.2.2b),eventhough‘Competibacter’aremembersof theGammaproteobacteriawhichwasalsoreportedbyOehmenetal.(2006a)promptingthe designoftheALF969probewithacompetitorforsomeofthese‘Competibacter’sequences. Such specificity problems with the broad coverage proteobacterial subphylum probes are welldocumented(AmannandFuchs,2008). Table2.5:QuantitativeFISHresults Probe(s) LS1 LS2 AMAR839 <1% <1% SBR91a ND ND DF1mix <1% <1% DF988 17.6±1.2% 7.4±0.6% DF1020 10.9±1.0% 5.6±0.6% GBmix <1% 9.5±1.2% ND=Nonedetected.Standarderrorisgiven. 76

Figure2.2:Micrographsofbiomasssamples:a.i.PhasecontrastimageoftheLS1biomass;ii.correspondingFISHimageofcellshybridisedwiththe ALF968probe(CY3:red);iii.PhasecontrastimageoftheALF968FACSsortedbiomass.b.i.PhasecontrastimageoftheLS2biomass;ii.corresponding FISHimageofcellshybridisedwiththeALF968probe(CY3),somelargepositivecoccicellsareindicatedwithbluearrows; iii.andiv.Phasecontrast imagesoftheALF968FACSandGBmixFACSsortedbiomass,respectively.Scalebarsrepresent10m. 77 2.3.2FlowcytometrysortingoftheAlphaproteobacteria The results of the flow cytometry analyses confirmed earlier reports that breaking up activatedsludgeflocsandaggregatestoencouragecellstogointosuspension,isproblematic (Wallneretal.,1995;PerezFeitoetal.,2006;Miyauchietal.,2007).Thisprovedespecially so with the heavily capsulated biomass in the SBRs analysed here. However, when the ALF968 sorted LS1 community was examined microscopically, it contained almost exclusively TFO, and cells exhibiting other morphologies as in the original sample, were rarelypresent(Fig.2.2aiii.).TheALF968sortedpopulationforLS2alsocontainedsome TFO,althoughthemajorityofthecellswerelargecoccobacilli(Fig.2.2biii),whichwere muchmoreeasilydispersedwiththemethodsappliedhere. 2.3.3ClonelibraryanalysisoftheALF968FACSsortedcells Alibraryofthe16SrRNAsequencesfromtheALF968positivesortedcellsfromLS1and LS2 were constructed and phylogenetic trees generated for the clones obtained for each reactorcommunity(Figs.2.3and2.4).OftheclonesintheLS1library,almostathird(17of 55)(representingOTUI149)showed>99%sequencehomologytothealphaproteobacterial TFO clone (DQ145465) reported by Meyer et al.(2006).ThisbelongstoclusterIIofthe DefluviicoccusvanusrelatedTFO,sharing92%sequencehomologytoDefluviicoccusvanus (AF179678).TheOTUI149clonespossessedthebindingsitefortheWong et al. (2007) TFO_DF629probe,sothenegativeFISHresultreportedaboveconfirmsthatitisprobably unabletoaccessitstargetsite.NoneoftheclonescontainedthetargetfortheDF988probe withoutalsocontainingthesitefortheDF1020probe.OnlytwootherAlphaproteobacterial clones appeared in this library, OTUI78 and OTUI159, only distantly related to Phenylobacteriumkoreensis(89%)andMesorhizobiumseptentrionale(98%),respectively (Fig.2.3).

78

Figure 2.3:Maximum likelihoodtree of the complete sequencesobtained from the LS1 ALF968 FACSsortedcommunityandrelatedsequences(allsequenceswereatleast1250bplong).OTUs fromthisstudyarerepresentedinredandboldtext.ALF968probecoverageisindicatedwithared bracket.Broadphylogeneticaffiliationsareindicatedwithblackbrackets.Clonefrequencyforeach OTUisindicatedinparenthesis.Parsimonybootstrapvaluesarecalculatedasapercentageof1000 analysesandareonlyindicatedforvalues≥75%.○Indicatesabootstrapvalueof≥75%and● indicates a bootstrap value of ≥ 95 %. The scale bar corresponds to substitutions per nucleotide position.

79 In the library prepared from the ALF968 sorted cells of LS2, no Defluviicoccusrelated sequenceswere found,nordidanyofthesequencescontaintheDF988orDF1020FISH probe sites, indicating that the abundant TFO responding to these probes were not represented.Ofconcernwasthatonlyonesequenceinthelibrary,relatedtoBrevundimonas diminuta(99%),wasamemberofthetargetedAlphaproteobacteria(Fig.2.4).However,46 %ofthesecloneshadtheALF968probesite,themajorityofwhichweremembersofthe gammaproteobacterial‘Competibacter’GAO.Thereforetheapplicationofthisapproachto identifyorganismsrecalcitranttoclonelibraryanalysisiscompromisedifotherpopulations fromwhichsequenceinformationisreadilyobtainablearealsotargetedbytheFISHprobe usedfortheFACSenrichment. Thehighprevalenceofclonesinbothlibraries(Figs.2.3and2.4)thatlackedthe16SrRNA target site for the ALF968 probe may arise from probe mishybridisation (Nielsen et al., 2004),orfromnontargetcellsphysicallyattachingtothetargetcellsduringFACS.Theless than expected representation of the Defluviicoccus may reflect the same biases in clone librarygenerationtothoseresponsiblefortheiromissionfromtheclonelibraryofAhnetal. (2007). DNA/RNA extraction bias against some populations in environmental systems is well known (see Chapter 3),andifthisisthecasehere,acrosslinkingofthecellwall during fixation is likely to have made nucleic acid extraction from these cells even more difficult (Wallner et al., 1997). FACS with FISH labelled cells has been performed successfully without fixing the biomass, to avoid any cross linkage of the nucleic acids during fixation that can affect subsequent analyses (Yilmaz et al., 2010). It may have overcometheproblemsencounteredhereifDNAextractioninefficiencywasacontributing factortotheunderrepresentationofDefluviicoccusrelatedsequencesintheclonelibraries. ItisimportanttonotethatnonovelDefluviicoccusrelatedsequences weredetectedinthe aeratedEBPRprocessclonelibrarydespiteitsnovelprincipleofoperation.Thismayreflect anadaptabilityofthe DefluviicoccusrelatedGAO,butmayalsobeattributedtoalackof resolving power of the 16S rRNA gene. He et al.(2007)alsofoundthat Accumulibacter PAO 16S rRNA sequences obtained from geographical and operationally distinct systems shared a high similarity. They had to use the ppk gene to resolve the full extent of phylogeneticdiversityamongthesepopulations.Ifanalternativegenemarkerisrequiredto

80 resolvethefulldiversityoftheDefluviicoccusrelatedorganisms,thenFACSseemsanideal enrichmentmethodasthewholecell(anditsgenome)isisolated(Miyauchietal.,2007). 2.3.4 Could FACS also assist in uncovering further diversity among the ‘Competibacter’? Analysisof‘Competibacter’relatedsequencesindicatesthatfurtherdiversity,notcoveredby theexistingsubgroupFISHprobes,existsforthisgroupofimportantorganisms(Fig.2.4). Aspreviouslymentioned,thisisalsosuggestedbyreportsofcellsrespondingtothebroad GBgroupprobe,targetingthewholegroup,butnoneofthe7subgroupprobes(Kongetal., 2006;WongandLiu,2006).Definitionofthesubgroups,aspracticallydeterminedbythe currentlyavailableFISHprobes,clearlyrequiresattention.Thisshouldincludethedesignof additional probes for new, potentially important subgroups, and the reassessment of the present FISH probes. As with the alphaproteobacterial GAO, the majority of sequences availableforthe‘Competibacter’arefromlabscalecommunitiesfedasinglesimplecarbon source. There is therefore a need to obtain more sequence information from these groups frommorecomplexfullscalesystemswhereadditionalundescribeddiversityisknownto exist(Kongetal.,2006). AstheFACSmethodseemedsuitedtotheenrichment‘Competibacter’GAOintheALF968 enrichment, its success in enriching these organisms from EBPR systems was assessed. Unlike the situation with the alphaproteobacterial GAO, no reported bias is reported for obtaining ‘Competibacter’sequencesin clonelibraries,buttheyareoftenpresentinfull scalesystemsinlowabundances(LopezVazquezetal.,2008a;Nielsenetal.,2010b).Even though ‘Competibacter’ sequences contributed 9.5 % to the FISH probed total bacterial biovolume,anenrichmentstepwouldincreasethelikelihoodofobtainingsequencesfrom membersofeachofthesubgroups,someofwhichmaybepresentatlowabundance.

81

82 Figure2.4:MaximumlikelihoodtreeofthecompletesequencesobtainedfromtheLS2FACSsorted communityandselectedrelatedsequences(allsequenceswereatleast1250bplong).OTUsfromthis studyarerepresentedinboldtextandsequencesfromtheALF968andGBmixsortedcommunities arerepresentedinredandblue,respectively.Probecoverageisindicatedwithbracketsandthoseused forFACSenrichmentarecoloured.‘Competibacter’probedetailsarereportedbyKongetal.(2002). Broadphylogeneticaffiliationsareindicatedwiththebracketstothefarright.Clonefrequencyfor eachOTUisindicatedinparenthesis.Parsimonybootstrapvaluesarecalculatedasapercentageof 1000analysesandareonlyindicatedforvalues≥75%.○Indicatesabootstrapvalueof≥75%and● indicates a bootstrap value of ≥ 95 %. The scale bar corresponds to substitutions per nucleotide position. A more comprehensive tree of‘Competibacter’related sequences and probe coverage is giveninAppendix1.

83 Therefore the GBmix probe primer set was applied to enrich for all ‘Competibacter’ sequencespresentintheLS2community.Ofthe61clonesintheclonelibrary,95%were ‘Competibacter’ (Fig. 2.4). However, >30 % (19 of 61) of these were assessed as being chimericartefacts.Aschimerasappearmorefrequentlybetweencloselyrelatedsequences, the high incidence of this artefact here is probably a consequence of enriching for close phylogenetic groups. This is of particular concern for ‘Competibacter’ enrichments given multiplesubgroupsoftencoexist(Kongetal.,2006).OTUG115isamemberofsubgroup 2ofthe‘Competibacter’andmakesup64%ofthetotalclones,yetconstitutes<15%ofthe GBmixpositivebiomassbyquantitativeFISHanalysiswiththeGB_2probeofKongetal. (2002).Althoughbasedonlimiteddata,andatleastsomesubgroup2memberscontaina single mismatch to the GB_2 FISH probe (see Fig 2.4), this might suggest a biased preferenceforthissubgroupinclonelibraryconstruction,providingyetanotherexampleof thefailingsofclonelibraryanalysesasasemiquantitativetoolforcommunityanalyses. All 16S rRNA sequences retrieved here fall into the seven previously described clusters. However, a major limitation with applying the GBmix probes is that it is limited to organismswiththesesequences,andwillmissanycloselyrelatedsequencesfromgroupsnot coveredbytheseprobes(seeFig.2.4). 2.4Conclusions Onthebasisofthesedata,FACSprovidesan attractivemethodfor recoveringmolecular information from important EBPR populations including the clustered capsulated PAO, whichareoftenunderrepresentedinclonelibraries(Hesselmannetal.,1999;Crocettietal., 2000; Ahn et al., 2007; Miyauchi et al., 2007), regardless of their in situ activity or abundance.ItseemsespeciallysuitedtofullscaleEBPRprocesseswherethesepopulations often contribute only a small percentage of the total cell biovolume (Burow et al., 2007; Nielsen et al., 2010b). However, the appropriateness of the method for this purpose is conditional on the availability of suitably targeted FISH probes and the community composition,andmayleadtoahigherincidenceofPCRartefacts.

84 Aswellasbeingusefulforuncoveringthediversityoftheseorganisms(basedontheir16S rRNA),thedemonstratedsuccessfulenrichmentofsubpopulationsformetagenomicanalysis (Podar et al., 2007; Mary et al., 2010; Müller and NebevonCaron, 2010; Yilmaz et al., 2010) is another potentially useful application for flow cytometry based enrichment of populationsimportanttoEBPR,especiallysincethemajorityarerecalcitranttoisolation.

85 3.0 Developingmethodsfornucleicacidextractionfrom activatedsludgesampleswhichreflectcommunity populationdiversity

3.1Introduction CommunityprofilingofEBPRcommunitiesusingtechniqueslike16SrRNAclonelibrary construction, often suggest an under representation of functionally important populations, whichhaveincludedthealphaproteobacterialGAO(Hesselmannetal.,1999;Crocettietal., 2000;Wongetal.,2004;Meyeretal.,2006;Ahnetal.,2007;Miyauchietal.,2007).The previous chapter applied FACS enrichment to target underrepresented 16S rRNA cloned sequences,butthisreliesonanaprioriknowledgeofthecommunitycompositionanddoes not address the issue of population underrepresentation in popular community profiling techniques.Whilemanypossiblereasonsexistforthis,oftenneglectedisthechoiceofan adequateDNAextractionmethod.Theisolationofhighqualitynucleicacidsreflectingall community members being crucially important to all PCR based culture independent analyses(vonWintzingerodeetal.,1997).Comparedtotheextensiveliteratureassessingthe isolation of nucleic acid from soils and sediments, relatively few reports have assessed extractionprotocolsfortheirsuitabilityforapplicationtoactivatedsludgebiomass(Bourrain et al., 1999; Yu and Mohn, 1999; Orsini and RomanoSpica, 2001; Gabor et al., 2003; Purohitetal.,2003;Lemarchandetal.,2005;Rohetal.,2006;Guobinetal.,2008;Bonotet al., 2010; Vanysacker et al.,2010).Unfortunately,mosthaveadaptedprotocolsoriginally developedforextractingnucleicacidsfromcellsfromhabitatslikesoilwithoutproviding justificationfortheirselection. Activatedsludgeismarkedlydifferenttotheseenvironmentalsamplesinthatthebiomassis organised typically as cellular aggregates or flocs (Yu and Mohn, 1999; Nielsen, 2002). These flocs can be robust and resistant to extraction methods (Watanabe et al., 1998; Bourrainetal.,1999;YuandMohn,1999;Vanysackeretal.,2010).

86 Theprotocolsusedtoisolatenucleicacidsfromenvironmentalsamplesincorporatechemical (seeZhouetal.,1996),enzymatic(Porteousetal.,1994),mechanical(Ogrametal.,1987), heat (Picard et al., 1992), and freezethaw (Tsai and Olson, 1991) treatments, often in combination. Mechanical lysis is popular as it provides high nucleic acid yields and can facilitatethedisruption ofaggregatedbiomass(Moré et al., 1994; Watanabe et al., 1998; Bourrainetal.,1999;Frostegårdetal.,1999;YuandMohn,1999;Bürgmannetal.,2001; Stach et al., 2001; Lakay et al., 2007; Guobin et al., 2008). While most protocols are dedicatedtoDNAisolation,thoseabletoextractRNAandDNAsimultaneouslyprovidethe opportunity to obtain additional valuable information on the metabolic activities of populationsinthecommunity(vonWintzingerodeetal.,1997;Hurtetal.,2001). Inthisstudyamethodfornucleicacidisolationfromactivatedsludgewasdeveloped.This methodemploysthestrongestknownchaotrophicagent,sodiumtrichloroacetate(NaTCA) (HamaguchiandGeiduschek,1962).NaTCAwasusedbySummertonetal.(1983)toisolate plasmid DNA, but has never been used to extract nucleic acids from natural microbial communities.ItwashypothesisedthatNaTCAincombinationwithphysicaldisruptionmay provide high quality DNA and RNA from recalcitrant environmental samples, especially those containing the alphaproteobacterial GAO, without any need for using potentially hazardouschemicalslikephenolorchloroform.Havingoptimisedtheprotocol,itwasthen comparedwitheightdifferentpublishedmethodsforitsabilitytoextractsimultaneouslyhigh qualitynucleicacidsfromactivatedsludgesamples.Thesemethodswerechosenfortheir demonstrated ability to extract both RNA andDNA, and their suitability for high sample throughputprocessingatminimalcost.Theeffectivenessofeachwithactivatedsludgewas compared using 16S rRNA groupspecific PCR of selected marker bacterial populations which had been wellrepresented, underrepresented or absent from 16S rRNA gene clone libraries generated from activated sludge. Special attention was given to Defluviicoccus related organisms, for the reasons discussed in Chapter 2. FISH was used to assess the relative abilities of each method to recover nucleic acids from the selected marker populationsindependentlyoftheextractionprocess,andtoallowarationalbasisfornucleic acidextractionmethodselection.

87 3.2Materialsandmethods 3.2.1Sampling 3.2.1.1Purecultures Pure cultures of Escherichia coli, Pseudomonas aeruginosa, Micrococcus luteus, Bacillus subtilis, Mycobacterium phlei, and Mycobacterium smegmatis were obtained from the La TrobeUniversityculturecollection.Thesecultureswereselectedtorepresentarangeofboth Grampositiveandnegativeorganismswithassumeddifferingsusceptibilitiestocelllysis. For nucleic acid extraction, liquid cultures were sampled in their exponential phases of growth (determined by UVVis Spectrophotometry at 600 nm in a SmartSpecTM Plus spetrophotometer (BIORAD)). These cultures were grown in 150 ml of nutrient broth (Oxoid) in 250 ml conical flasks that were inoculated with 10 ml of a stationary phase culture.P.aeruginosaandE.coliweregrownat37°Candallothersat30°C. 3.2.1.2LabscaleEBPRactivatedsludgesamples ActivatedsludgebiomasssampleswereobtainedfromfourEBPRplants.PlantLS1wasa laboratoryscale EBPR SBR that was continuously aerated and fed with clarified effluent from a nonEBPR treatment plant located in Melton, Victoria, Australia. Operational conditionsofthisreactoraregiveninAhnetal.(2007).PlantLS2wasalsoalabscaleEBPR SBR, but was operated under alternating aerobic: anaerobic conditions and also fed with acetate as the sole carbon source (75 mg/l carbon). Further operational conditions can be foundinChapter6. SamplesfrombothweretakenattheendoftheSBRcycleandstoredat70°C.Biomass samplesusedforFISHanalyseswereremovedatthesametime,washedtwicein1×PBS

(137mMNaCl,10mMNa2HPO4.7H2O,2.7mMKCl,1.47mMKH2PO4)andfixedin4% [w/v]PFAand1×PBSat4°Cfor3h,beforebeingstoredin50%[v/v]ethanoland1× PBSat20°Cuntilfurtheruse.

88 3.2.1.3FullscaleEBPRactivatedsludgesamples Plants FS1 and FS2 were two fullscale EBPR waste water treatment plants. Both were MUCTconfiguredsystemslocatedatCastlemaineandKyneton(bothinVictoria,Australia) respectively. Samples (100 ml) were taken from their aerobic reactors and, while continuously mixed, 200 l aliquots of each were immediately dispensed into 1.5 ml microcentrifugetubesusingwideborepipettetips.Theseweretransportedondryicetothe laboratoryforstorageat70°C. 3.2.2Nucleicacidextractions Aliquots of 200 l of biomass (approx 814 mg wet weight), which were pelleted by centrifugation(6,800xg,for5min,4°C)andnucleicacidswereextractedusingadaptations ofthemethodsofCorgié et al.(2006)(abbreviatedtoCR)(Section 3.2.2.2), Costa et al. (2004)(CS)(Section3.2.2.3),Griffithsetal.(2000)(GR)(Section3.2.2.4),McVeighetal. (1996) (MV) (Section 3.2.2.5), Orsini and RomanaSpica (2001) (OR) (Section 3.2.2.6), Tillet and Neilan (2000) (TN) (Section 3.2.2.7),andYuandMohn(1999)(YM)(Section 3.2.2.8) and the NaTCA method developed in this study (MI) (Section 3.2.2.1). These methodsweremodifiedtomakethenonlysisstepsineachasuniformaspossible.Following theirextraction(seeSections3.2.2.13.2.2.8),nucleicacidswereprecipitatedbytheaddition of0.6volumesof2propanolonice,for15minandpelleted,at20,800xgfor15minat4 °C,washedtwicein70%(w/v)ethanol,airdriedandresuspendedin50lTEbuffer(10 mMTrisHCl,1mMEDTA,pH8.0).Anoverviewoftheprincipledifferencesbetweenthe lysisstepsintheseprotocolsaresummarisedinTable 3.1. Extractions using the CR, CS, GR, MV and YM methods were performed by Dr Kate Porter (La Trobe University, Bendigo).

89 Table3.1:Overviewofthelysisstepineachextractionmethod. a Chemicallysis Mechanicallysis CRb SDS Beadbeat 1min SDS+phenolchloroform Beadbeat 0.5min CSb Beadbeat 0.5min Cetyltrimethylammoniumbromide(CTAB)+SDS+heat(65°C/30 min) GR CTAB+phenolchloroform Beadbeat 0.5min MI Sodiumtrichloroacetate(NaTCA)+Sarkosyl Beadbeat 3min MVb Phenolchloroform Beadbeat 1min Phenolchloroform Beadbeat 0.5min ORb SDS+Microwave(800W/45s) Guanidinethiocyanate+phenolchloroform TN Potassiumethylxanthogenate+SDS+phenolchloroform+heat(65 °C/5min) YMb SDS Beadbeat 5min SDS Beadbeat 5min MO Commercialbuffer Bead 10min vortex aMethod;bAdditionallinesindicateaseparatestep 3.2.2.1NaTCAmethod(MI) TheoptimisedprotocoltoextractnucleicacidsusingtheNaTCAmethod(MI)isdetailed here.Thebiomasspelletwasresuspendedin1500loflysisbuffer(3MNaTCA(4.5M stock: Appendix 3), 50 mM TrisHCl (pH 8.0), 15 mM EDTA pH 8.0, 1 % [w/v] N Lauroylsarcosine,1%[w/v]polyvinylpyrrolidone(PVP),10mMdithiothreitol(DTT),1.67 % [v/v] antifoam (Dow Corning 1520US)) and 0.6 g of 0.1 mm diameter glass beads (Biospec),andhomogenisedinaminibeadbeater(Biospec)atmaximumspeedfor3min. After centrifugation (20,800 x g, 5 min, 4 °C), the supernatant was retained. After precipitation and resuspension, necessary because of the presence of an insoluble ‘gelatinous’pellet,sampleswereincubatedfor20minat37°C,mixedbypipettingupand downthreetimes,centrifuged(20,800xg,30s)andtheresultingsupernatanttransferredto afresh1.5mltube.

90 3.2.2.2MethodofCorgiéetal.(2006)(CR) WiththemethodofCorgiéetal.(2006)(CR),thebiomasspelletwasresuspendedin800l of lysis solution (100 mM TrisHCl (pH 8.0), 100 mM EDTA, 100 mM NaCl, 1 % [w/v] polyvinylpolypyrrolidone (PVPP), 2 % [w/v] SDS) with 0.6 g of 0.1 mm diameter glass beads,andhomogenisedinaminibeadbeateratmaximumspeedfor1min.800lphenol chloroformisoamyl alcohol (25:24:1 v:v:v) was added and the mixture was homogenised again for 30 s. After centrifugation (20, 800 x g, 2 min, 4 °C) the aqueous phase was combinedwith800lchloroformisoamylalcohol(24:1v:v).Themixturewashomogenised brieflyinaminibeadbeater,centrifuged(20,800xg,5min,4°C)andtheaqueousphase saved.Thisprocesswasrepeatedtwice. 3.2.2.3MethodofCostaetal.(2004)(CS) ForthemethodofCostaetal.(2004)(CS),thebiomasspelletwasresuspendedin500l ethanolwith0.6gof0.1mmdiameterglassbeads,andhomogenisedinaminibeadbeaterat maximumspeedfor30s.Aftercentrifugation(20,800xg,5min,4°C),thesupernatantwas discarded.1.2mloflysissolution(100mMsodiumphosphatebuffer,100mMTrisCl(pH 8.0),100mMEDTA(pH8.0),1.5MNaCl,1%[w/v]cetyltrimethylammoniumbromide (CTAB),2%[w/v]SDS))wasaddedandthesolutionwasincubatedat65°Cfor30min while being inverted every 10 min. After centrifugation (20, 800 x g, 5 min, 4 °C) the supernatantwasretainedand1mlchloroformisoamylalcohol(24:1v:v)wasadded,thetube wasagitated,centrifuged(20,800xg,5min,4°C)andtheaqueousphasesaved. 3.2.2.4MethodofGriffithsetal.(2000)(GR) ForthemethodofGriffithsetal.(2000)(GR),thebiomasspelletwasresuspendedin250l of lysis buffer (0.7 M NaCl, 240 mM potassium phosphate buffer, 250 l CTAB (10 % [w/v]))and500lphenolchloroformisoamylalcohol(25:24:1v:v:v)with0.6gof0.1mm diameterglassbeads,andhomogenisedinaminibeadbeateratmaximumspeedfor30s. Aftercentrifugation(20,800xg,5min,4°C)thesupernatantwasretainedand1volume

91 chloroformisoamylalcohol(24:1v:v)wasaddedtoit,thetubewascentrifuged(20,800xg, 5min,4°C)andtheaqueousphasesaved. 3.2.2.5MethodofMcVeighetal.(1996)(MV) IntheMcVeighetal.(1996)(MV)protocolthebiomasspelletwasresuspendedin500l phenolchloroformisoamylalcohol(25:24:1v:v:v)and750 l120mMsodiumphosphate buffer(pH8.0),with0.6gof0.1mmdiameterglassbeads,andhomogenisedinaminibead beateratmaximumspeedfor60s.Aftercentrifugation(10,600x g, 10 min, 4 °C), the aqueousphasewassavedoniceand750l0.12Msodiumphosphatebuffer(pH8.0)was addedtothepellet.Themixturewashomogenisedagainatmaximumspeedfor30s.After centrifugation (10, 600 x g, 10 min, 4 °C), the aqueousphase was saved on ice and the pooledsupernatantwasmadeupto1,000lin2mlcentrifugetube,using0.12Msodium phosphatebuffer(pH8.0).1,000lphenolchloroformisoamylalcohol(25:24:1v:v:v)was addedandmixedbyinvertingapproximately20timestoformanemulsion.Themixturewas centrifuged(20,800xg,5min,4°C)andtheaqueousphasesaved. 3.2.2.6MethodofOrsiniandRomanospica(2001)(OR) Forthismethodthebiomasspelletwaswashedwith1mlofawashsolution(50mMTris HCl(pH8.0),(pH8.0),25mMEDTA(pH8.0),0.1%[w/v]SDSand0.1%[w/v]PVP),re suspendedin35lofalysissolution(50mMTrisHCl(pH8.0),25mMEDTA(pH8.0),3 %[w/v]SDS,1.2%[w/v]PVP)andheatedinamicrowaveovenfor1minat800W.After themicrowavedisruptionstep400lofapreheated(65°C),freshlypreparedlysissolution (1Mguanidiniumthiocyanate,7mMsodiumcitrate(pH7.0),0.025M2mercaptoethanol, 0.3Msodiumacetate,1.2%[w/v]PVP)wasaddedandthemixturevortexedfor30s.The mixturewasaddedto450lofphenol:chloroform:isoamylalcohol(25:24:1v:v:v)inverted several times, centrifuged (20,800 x g, room temperature, 5 min) and the aqueous phase saved.

92 3.2.2.7MethodofTillettandNeilan(2000)(TN) Inthisprotocol,thebiomasspelletwasresuspendedin50lTEbufferandaddedto1300l ofpreheated,freshlypreparedlysisbuffer(1%[w/v]potassiumethylxanthogenate,100mM TrisHClpH7.4,20mMEDTApH8.0,1%[w/v]SDS,800mMammoniumacetate)and incubated at 65 °C for 5 min. During this period the tubes were periodically mixed by inversion.Themixturewasvortexedand200lchloroform:isoamylalcohol(24:1v:v)was added.Aftercentrifugation(20,800xg,roomtemperature,4min)theaqueousphasewas transferred to a fresh tube containing 500 l phenol:chloroform:isoamyl alcohol (25:24:1 v:v:v),incubatedat65°Cfor2minandcentrifuged(20,800xg,roomtemperature,4min). Phenolchloroformextractionswererepeateduntilnoopaqueinterphasewasvisible(repeated 24times). 3.2.2.8MethodofYuandMohn(1999)(YM) Thebiomasspelletinthismethodwasresuspendedin1mllysisbuffer(50mMTrisHCl (pH8.0);5mMEDTA(pH8.0);3%[w/v]SDS)and30ldiethylpyrocarbonate(DEPC), with 0.6 g of 0.1 mm diameter glass beads, and homogenised in a mini bead beater at maximum speed for 2.5min. The mixture was incubated on ice for 1 min and then homogenisedagainatmaximumspeedfor2.5min.Aftercentrifugation(20,800xg,3min, 4°C),thesupernatantwassavedonice.Thepelletwasresuspendedin1mllysisbufferand 30 lDEPCandhomogenisedinaminibeadbeateratmaximumspeedfor2.5min.The mixturewasincubatedonicefor1minandthenhomogenisedagainatmaximumspeedfor 2.5min.Aftercentrifugation(20,800xg,3min,4°C),thesupernatantswerecombinedand ammoniumacetatewasaddedto2M.Themixturewasincubatedonicefor5minandthen centrifuged(20,800xg,3min,4°C)andthesupernatantscombined. 3.2.2.9MethodofMoBIO©SoilDNAKit(MO) NucleicacidwasextractedwiththeMoBIO©SoilDNAkit(MO)usingthemanufacturer’s instructions for maximum yield. This method was included in the comparison as both ‘Accumulibacter’ and Defluviicoccusrelated organisms were markedly underrepresented

93 (whencomparedtothecorrespondingFISHdata)inpreviousclonelibrariespreparedusingit fromtheLS1(Ahnetal.,2007)andLS2(MichaelBeer,unpublisheddata)communities. 3.2.3PostextractionbiomasslysisassessmentusingSYBRGold©staining Afterthelysisstepforeachextractionmethodthepelletedbiomassdebriswerewashedthree timesin1×PBSandfixedinPFAaswithsamplesforFISH(seeSection2.2.2).10lof eachsamplewasappliedtoVectabond©(VectorLaboratories)coatedslidesandstainedwith 1 ×SYBRGold©Nucleicacidstain(Invitrogen)for10min,rinsedbrieflywithdistilled water and air dried with compressed air. Slides were mounted in VectaShield (Vector Laboratories)andexaminedwithanepifluorescencemicroscope(Eclipse800,Nikon).Fixed sludgebiomass,treatedwithDNAseandRNAse(seeSection3.2.3.1)anduntreatedcontrols, wereusedaspositiveandnegativecontrolsrespectively. 3.2.3.1Insitunucleasetreatmentofcontrols PFA fixed biomass samples were applied to slides coated with Vectabond (Vector Laboratories,USA)andallowedtoairdry.Slidesweretransferredthroughanethanolseries of50%[v/v],80%[v/v]and96%[v/v]for3minutesateachconcentrationandallowedto airdry.Initially25loflysozymewasadded(10mgml1lysozyme(0.5MEDTA(pH8.0), pH8,1MTrisHCl(pH7.5))toeachwellandincubatedonicefor30min.Slideswere immersedindistilledwater,followedbyethanolandallowedtoairdry.RNAseandDNAse treatmentswereperformedasdetailedbyWeichartetal.(1997).TodigestDNA,25lof

DNAseI(1Uin5%[v/v]glycerol,1mMCaCl2,20mMTrisHCl(pH8.3)2mMMgCl2) (SigmaAldrich) was added to each well and the slides incubated horizontally in a 50 ml centrifugetubeat37°Cfor1h,thencarefullyrinsedwithdistilledwaterandairdriedwith compressedair.ForRNAdigestionRNAse(100mgofRNaseAml1(SigmaAldrich)in50 mMTrisHCl,10mMEDTA,(pH7.5))wasappliedtoeachwellandtheslidesincubatedat roomtemperature(approx.22°C)for30min.Slideswerethenrinsedwithdistilledwater andairdriedwithcompressedair.

94 3.2.4Electrophoresis 3.2.4.1DNAelectrophoresis Beforeelectrophoresis,extractsweretreatedwith10ngRibonucleaseA(SigmaAlrich)at room temperature for 30 min (if applicable). Electrophoresis was then performed as describedinSection2.2.8.5. 3.2.4.2RNAelectrophoresis Before electrophoresis extracts were treated with DNAse I (1 U in 5 % glycerol, 1 mM

CaCl2,20mMTrisHCl(pH8.3)2mMMgCl2)(SigmaAldrich)atroomtemperaturefor30 min, and inactivated at 75°C for 10 min. The method for RNA gel electrophoresis was adaptedfromthatofGodaandMinton(1995).Agarosegelswerepreparedbyadding20mM guanidinethiocyanateand100g/mlethidiumbromidetomoltenagarosein1×TBEbuffer (10.8 g l1 TrisHCl, 5.5 g l1 boric acid, 9.3 g l1 EDTA). RNA was denatured by adding RNAagarosegelloadingbuffer(6×sterilefiltered(0.2mporesize)stock:0.25%[w/v] bromophenolblueand0.25%[w/v]xylenecyanol,30%[v/v]glycerol,1.2%[w/v]SDS,60 mMsodiumphosphatebuffer(pH6.8)inDEPCtreateddistilledwater)andheatingat75°C for5min.Sampleswereimmediatelyloadedintothewells.Thegelswereelectrophoresed at65Vin1×TBEbuffer. 3.2.4.3SDSpolyacrylamidegelelectrophoresis(SDSPAGE) ThiswascarriedoutbyDrKatePorter(LaTrobeUniversity,Bendigo).SDSpolyacrylamide gelelectrophoresis(PAGE)wasperformedaccordingtothemethodofLaemmli(Laemmli, 1970).Thegelswereelectrophoresedat200Vin1×runningbuffer(pH8.3)andstained withCoomassieblueR250.

95 3.2.4.4Gelvisualisation Gels were visualised on a AITM26 Transilluminator (Quantum Scientific) and captured usinganAlphaDigidocsystem(QuantumScientific)equippedwithaC5060WideZoom digitalcamera(Olympus). 3.2.5Estimatingnucleicacidconcentration PCRproductDNAconcentrationswereestimatedbycomparingbandsagainstbandsof2log ladder(BioLabs)ofknownconcentration,usingAdobePhotoshop7.DNAandRNAlevels in crude extracts were quantified separately after capturing an image of each agarose gel (Sections2.2.8.5,3.2.4.2and3.2.4.4). For nucleic acid extracts, Adobe Photoshop 7 (Adobe, San Jose, CA, USA) was used to measure the integrated fluorescence intensity volume of each sample lane. Nucleic acid concentrations were calculated after comparing fluorescence intensity volumes of a three pointstandardcurvepreparedfromDNA/RNAstandardsofknownconcentrations.Duplicate valueswereobtainedfromduplicateextractionsforeachmethod,andforeachpointofthe standard curve.Theerrorrepresentstherange ofvaluesobtained. Itshouldbenotedthat valuesgivendonotindicatetheintegrityofthenucleicacid,andmaybeoverestimationsfor shearedsamples. 3.2.6Spectrophotometry Absorption levels of extracts were obtained by Dr Kate Porter (La Trobe University, Bendigo)usingaND1000NanoDropSpectrophotometer(ThermoScientific). 3.2.7Restrictiondigestinhibitionassessment Restriction enzyme digestion reactions were performed with 2.5 l of RNAse treated (Section3.2.4.1)crudeDNAfromeachextraction,60ng(approx)ofuncutpGEMTplasmid (Promega),10UofEcoRIand1×EcoRIbuffer(RocheDiagnostics),andwereincubatedat

96 37 °C for 30 min. Successful DNA digestion was assessed using agarose electrophoresis (Section2.2.8.5). 3.2.8Denaturinggradientgelelectrophoresis(DGGE) 3.2.8.1PCRcyclingconditions Amplificationof16SrRNAgenefragmentsspanningthev3regionwasachievedwiththe primers341Fand534RwiththeadditionofaGCclamptotheforwardprimer(Table3.2), asdetailedbyMuyzeretal.(1993).Reactionscontained1×GoTaq®GreenMasterMixand 0.5Mprimers,andapproximately1000nMtemplateDNA.PCRcycleparameterswere5 mininitialdenaturationat95°C,followedby30cyclesof30sdenaturationat95°C,30s annealingat53°Cand30selongationat72°C,withafinalelongationof10min. 3.2.8.2Electrophoresis DGGEgelswerecastandrunessentiallyasdescribedbyKongetal.(2001)usingtheDCode universalmutationdetectionsystem(BioRad,Sydney,Australia)byDrSarahSchroeder(La Trobe University, Bendigo). Gels had a denaturation potential of 40–80 % (100 % denaturation10moll1ureaand40%[v/v]formamide)witha10%acrylamidesolution (Sigma). Polymerising agent (0.09 % [v/v] ammonium persulphate, 0.09 % N,N,N’,N’ tetramethylethylenediamine(TEMED))wasaddedtoeachsolution,and100lofDCodedye thehigherpercentagesolution,addedimmediatelybeforepouring.Gelswerecastusinga DCodeGradientDeliverySystem(BIORAD)at1mmx16cmx10cmandallowedtoset for3h.Thecombregionwasthenpouredwith0%denaturationsolutionandallowedtoset for1.5h.Approximately350ngofDNAwasloadedforeachsamplein1×DCodeloading dye(0.05%[w/v]bromophenolblue,0.05%[w/v]xylenecyanol,70%[v/v]glycerol).Gels wereelectrophoresedfor16hat70Vandstainedfor20minin1×TAEcontaininga1× SYBRGold(Invitrogen)onanorbitalshaker.

97 3.2.9ReversetranscriptionPCR(RTPCR) RTPCRreactionswereperformedbyDrKatePorter(LaTrobeUniversity,Bendigo)in200 lthinwalledPCRtubes,withareactionvolumeof25l,onaniCyclerIQTMMulticolor RealTimeDetectionSystem(BIORAD).RNAwascombinedwith0.5gprimer27Fper gRNAandincubatedat70°Cfor5min,andthenincubatedonicefor5min.Reactions contained1×AMVReverseTranscriptaseReactionBuffer(Promega),40URecombinant RNasin®Ribonuclease Inhibitor,1mMdNTPmixand40UAMVReverseTranscriptase (Promega),andweremadeuptovolumewithDEPCtreateddistilledwater.Reactionswere heatedat42°Cfor1h,andthenscreenedbyPCRformembersoftheDomainBacteriawith theprimers1396Fand1492R.ForallprimersequencesseeTable3.2. 3.2.10PCRofmarkerpopulationphylotypes PCRdetectionofmarkerpopulationswasperformedwiththeassistanceofDrKatePorter (LaTrobeUniversity,Bendigo).PCRreactionswereperformedin200lthinwalledPCR tubes,usinganiCyclerIQTMMulticolorRealTimeDetectionSystem(BIORAD,Hercules, CA, USA). Reactions contained 1 × GoTaq®GreenMasterMix(Promega,Madison,WI, USA),200nMprimers,3lofa1:10ora1:100dilutionofnucleicacidextractanddistilled watertoafinalvolumeof25l.Reactionswereheatedto95°Cfor5minfollowedby40 cyclesof95°Cfor1min,annealingatthespecifiedtemperaturefor30s,andextensionat72 °Cfor30s,beforeafinalextensionat72°Cfor10min.Anotemplatenegativecontrolwas includedforeveryPCRreaction. PCR reactions targeting the 16S rRNA genes of Dechloromonasrelated organisms used primersDech454FandBTW0663Ratanannealingtemperatureof62.8°C.Thosetargeting 16SrRNAgenesofclusterIIDefluviicoccusrelatedpopulationsusedprimersDF988Fand 1492R,atanannealingtemperatureof56.5°C,whilethosetargetingthe16SrRNAgenesof RhodocyclusrelatedpopulationswereperformedusingprimersPAO462FandPAO651R,at anannealingtemperatureof62.8°C.Toensurethatnegativeresultswerenottheresultof insufficient DNA, the amount added to each PCR reaction was normalised down for all samplesgivinganinitialpositiveresultwiththeDF988Fand1492Rprimersto13ngand3

98 ngfortheLS1andFS1samplesrespectively.TheseDNAconcentrationswerechosentobe equivalenttothoseinthesamplegivingthelowestnucleicacidyield.PCRproductswere detected by agarose gel electrophoresis using 5 l of the final PCR reaction mix. Primers appliedinthischapterweresynthesisedbyGeneworks(Adelaide,Australia)anddetailsare giveninTable3.2. 3.2.11RealtimeqPCRconditions TheqPCRexperimentswereperformedbyDrKatePorter(LaTrobeUniversity,Bendigo). Reactions were performed in 96 well semiskirted PCR plates (Thermo Scientific), sealed withmicrosealBadhesiveseal(BIORAD),withareactionvolumeof25l,onaniCycler IQTMMulticolorRealTimeDetectionSystem(BIORAD). Reactions contained × 1 FailSafe GREEN RealTime PCR PreMix (Epicentre Biotechnologies),200nMprimersand1lFailSafeEnzymeBlend(Biotechnologies),and weremadeuptovolumewithdistilledwater.Reactionswereheatedat95°C for 5 min; followedby40cyclesofdenaturingat95°Cfor1min,annealingfor30s,andextensionat 72°Cfor30s;andameltcurve.Controlplasmidsweregeneratedfromclonesofthe16S rRNAgeneobtainedfrompreviousEBPRstudiesandwerelinearisedandpurified,andthe copy number calculated. For routine use, fourpoint calibration curves for qPCR were producedbytenfoldserialdilutionofpositivecontrolsintriplicatewithineachassay,from1 ×109to1×106copiesperreaction.Validexperimentshadaregressionof≥0.99andan efficiencybetween90–110%. PCRreactionsspecificforthe16SrRNAgeneofmembersoftheDomain Bacteria were performed using primers 1369F and 1492R, at an annealing temperature of 42.8°C, with buffer D (Epicentre Biotechnologies). PCR reactions specific for the 16S rRNA gene of organismscloselyrelatedtoDefluviicoccusspp.clusterIIwererunusingprimers518Fand DF1020R,atanannealingtemperatureof69°C,withbufferC(EpicentreBiotechnologies). PCR reactions targeting Rhodocyclus spp. were performed with primers PAO462F and PAO651R, at an annealing temperature of 62.8 °C, with buffer F (Epicentre Biotechnologies).

99

Table3.2:PCRprimersappliedinthischapter. PCRprimer Sequence(5’3’)a Target Reference 27F GAGTTTGATCMTGGCTCAG Bacteria (ModifiedfromLane,1991) 341F+GC CGCCCGCCGCGCGCGGCGGGCGGGGCGGG Bacteria (Muyzeretal.,1993) clamp GGCACGGGGGGCCTACGGGAGGCAGCAG 518F CCAGCAGCCGCGGTAAT Bacteria (Muyzeretal.,1993) 534R ATTACCGCGGCTGCTGG Bacteria (Muyzeretal.,1993) 1369F CGGTGAATACGTTCYCGG Bacteria (Suzukietal.,2000) 1492R GGYTACCTTGTTACGACTT Bacteria (Lane,1991) 1525R AAGGAGGTGWTCCARCC Bacteria (Lane,1991) BTW0663R GGAATTCCACCCCCCTCT MostRhodocyclales (AdaptedfromLoyetal.,2005) Dech454F CCCTGTGCGGATGACGGT SomeDechloromonas (AdaptedfromAhnetal.,2007) DF988F CCCTTGACATGGGCGTCGTATC ClusterIIDefluviicoccusrelatedorganisms (AdaptedfromMeyeretal., 2006) DF1020R CCGGCCGAACCGACTCCC ClusterIIDefluviicoccusrelatedorganisms (AdaptedfromMeyeretal., 2006) PAO462F GTTAATACCCTGWGTAGATGACGG ‘Accumulibacter’ (AdaptedfromCrocettietal., 2000) PAO651R CCCTCTGCCAAACTCCAG ‘Accumulibacter’ (AdaptedfromCrocettietal., 2000) PAO846R GTTAGCTACGGCACTAAAAGG ‘Accumulibacter’ (AdaptedfromCrocettietal., 2000) aW=A:T,Y=C:T,M=C:A,R=A:G

100 3.2.12Clonelibraryconstruction 3.2.12.116SrRNAgeneclonelibraryPCR 16SrRNAgeneswereamplifiedusingtheBacterialuniversalprimers,27Fand1525R.PCR reactionscontained1UAmplitaqGoldDNApolymerase(AppliedBiosystems)(activated priortoadditionat96°Cfor3min),0.1UPfu(Promega),1 × Amplitaq Gold reaction buffer,2.5mMMgCl2,400nMofeachprimer,200MdNTPs(Roche),5%[v/v]DMSO (SigmaAldrich).ThePCRcycleusedwas:96°Cfor2minfollowedby35cyclesof96°C for1min,52°Cfor30sand72°Cfor2minfollowedbyafinal7minextensionat72°C. 3.2.12.2Cloning,sequencingandphylogeneticanalysis Clone libraries were constructed using the TOPO (Invitrogen) cloning kit. PCR products were purified initially with QIAquick Gel Extraction kits (Qiagen). Replacement of A overhangswasperformedbasedontheprotocolintheTOPOTACloningKit(Invitrogen, 2006). Template was incubated with 1 U Amplitaq Gold DNA polymerase (Applied Biosystems)(activatedpriortoitsadditionat96°Cfor6min)1×AmplitaqGoldreaction buffer,2.5mMMgCl2,100Mdeoxyadenosinetriphosphate(dATP)(Promega)for15min at72°C.TemplatewasthenligatedintothepCR®4TOPO®vector.Theligationcontained

4lPCRtemplate,1lofsaltsolution(1.2MNaCl,0.06MMgCl2)and1lvectorDNA. The reaction was run at room temperature (approx. 28 °C) for 30 min. 2 l of ligation mixturewasaddedtoavialofOneShot®Mach1TMT1Rcompetentcells,mixedgentlyand incubated on ice for 15 min. The cells were then heat shocked at 42 °C for 30 s and immediatelyreturnedtoice.250lofSOCmedium(Invitrogen)wasaddedandthevial shakenat250rpmat37°Cfor1h.50lofthetransformedcellswereplatedonprewarmed LBplates(15gl1 agar, 10 g l1 tryptone, 5 g l1 yeast extract, 5 g l1 NaCl, 50 g ml1 ampicillin(Sigma))andincubatedfor8hat37°C. Methods for plasmid extraction from selected colonies, insert sequencing of these and phylogeneticanalysisweredescribedearlierinSections2.2.8.3and2.2.8.6.

101 3.2.13FISH FISHandqFISHwereperformedasdetailedinSections2.2.32.2.5.Probeswerepurchased from SigmaGenosys (Castle Hill, NSW, Australia) and those applied in this chapter are listedinTable3.3. 3.3Resultsanddiscussion 3.3.1OptimisationoftheNaTCAextractionmethod Anoptimalconcentrationof3MNaTCAwasselected,aslowerconcentrations(≤2.5M) gavealowertotalyieldofDNA,whileathigherconcentrations(≥3.5M),awhiteprecipitate appearedfollowingthe2proponalprecipitationstep,andDNAyieldswereseverelyreduced (datanotshown). Stablefoamproducedduringthebeadbeatingstep,arisingfromthepresenceofSDSinthe lysisbuffer,appearedtoreducecelllysisefficiency(asjudgedsubjectivelymicroscopically). TheinclusionofanantifoamsubstantiallyimprovedflocdisruptionandDNA/RNAyield. Three commercially available antifoams were screened and the 1520US Antifoam (Dow Corning)wasselected,asitwaseffectiveatalowerconcentrationanditstillworkedafter autoclavesterilisation,comparedtotheothertwo(FoodGradeAFEmulsionandAntifoam CompoundA(DowCorning))(datanotshown).Theoptimalbeatingtimechosenwasbased on the yield and integrity of nucleic acids, as assessed by their appearance on agarose electrophoresisgels(Fig.3.1).Atimeof3minwasselectedforactivatedsludgesamples, based on that required for successful isolation and PCR of DNA from cluster II Defluviicoccuscells,asdeterminedsubjectivelybyelectrophoreticanalysisofPCRproducts.

102

Table3.3:FISHprobesappliedinthischapter. FISHprobeID Sequence(5’3’)d Target [FA]e Reference EUB338Ia GCTGCCTCCCGTAGGAGT Bacteria 35 (Amannetal.,1990) EUB338IIa GCAGCCACCCGTAGGTGT Planctomycetales 35 (Daimsetal.,1999) EUB338IIIa GCTGCCACCCGTAGGTGT Verrucomicrobiales 35 (Daimsetal.,1999) NonEUB ACTCCTACGGGAGGCAGC ControlprobecomplementarytoEUB338 NA (Wallneretal.,1993) PAO462bb CCGTCATCTRCWCAGGGTATTAAC ‘Accumulibacter’ 35 (Zillesetal.,2002a) PAO651b CCCTCTGCCAAACTCCAG ‘Accumulibacter’ 35 (Crocettietal.,2000) PAO846bb GTTAGCTACGGYACTAAAAGG ‘Accumulibacter’ 35 (Zillesetal.,2002a) Dech454 ACCGTCATCCGCACAGGG SomeDechloromonas 35 (Ahnetal.,2007) DF988 GATACGACGCCCATGTCAAGGG Defluviicoccusrelatedorganisms,clusterII 35 (Meyeretal.,2006) DF1020 CCGGCCGAACCGACTCCC Defluviicoccusrelatedorganisms,clusterII 35 (Meyeretal.,2006) H966 CTGGTAAGGTTCTGCGCGTTGC HelperprobeforDEF988 35 (Meyeretal.,2006) H1038 AGCAGCCATGCAGCACCTGTGTGGCGT HelperprobeforDEF988andDEF1020 35 (Meyeretal.,2006) DF181A CTTTCCCTCACAAGGCAC ClonesK42andL24withinclusterIV 30 Chapter4 ‘Defluviicoccus’relatedTFO CFX1223c CCATTGTAGCGTGTGTGTMG phylum‘Chloroflexi’(greennonsulfurbacteria) 35 (Björnssonetal.,2002) GNSB941c AAACCACACGCTCCGCT phylum‘Chloroflexi’(greennonsulfurbacteria) 35 (Gichetal.,2001) a b c d UsedtogetherasEUBmixtocovermostbacteria; UsedtogetherasPAOmixtocoverwholegroup; UsedtogetherasaCFXmixtocoverwholegroup; W=A:T,Y=C:T,R=A:G;eappliedformamideconcentration;NA=notapplicable.

103 Some DNA pellets were gelatinous; some of this material was precipitated antifoam, althoughtherestwaspossiblyfromthehighlevelsofpolymericmaterialpresentinsome biomass samples (Nielsen, 2002; Moore et al., 2004). Attempts to selectively precipitate nucleicacidsinthepresenceofanypolysaccharideswiththeadditionofeither2MLiCl(Su andGibor,1988)or1%[w/v]potassiumethylxanthogenate(TillettandNeilan,2000)didnot noticeablyreducethesizeofthegelatinouspelletformedduringprecipitation.Also,these additional buffer components did not stay in solution, forming an additional precipitate duringthe2propanolprecipitationstep. Attempts to selectively remove polysaccharides prior to the precipitation of nucleic acids were also undertaken. Strategies attempted included addition of 1.5 M CTAB to the extraction buffer (Moore et al., 2004), fractionation of the precipitation over a range of alcohol concentrations (using either ethanol, 2butanol or 2propanol) and additional precipitationstepsat20%[v/v]ethanolinthepresenceof0.5Mpotassiumacetate(Wilkins and Lawrence, 1996). Despite these efforts attempted separation of the nucleic acids and gelatinousmaterialwasunsuccessfulastheyalwayscoprecipitated.Inclusionofchloroform isoamylalcoholpurificationstepsandextensivewashingofthefinalpelletwith3Msodium acetate(Logemannetal.,1987)werealsounsuccessful.Ultimately,thisgelatinousmaterial was removed successfully by resuspending the nucleic acids (20 min at 37°C or 4°C overnight),centrifuging(20,800xg,30s),andtransferringsupernatantstofreshtubes. TheoptimisedextractionmethodsuccessfullyisolatedDNAandRNAsimultaneouslyfroma range of Gram negative and positive bacteria, including Escherichia coli, Pseudomonas aeruginosa,Micrococcusluteus,Bacillussubtilis,Mycobacteriumphlei,andMycobacterium smegmatis.Thelattertwowerechosentoberelativelyrecalcitrantacidfastorganisms.Bead beatingwasessentialforGrampositivecells,butprovedoptionalforGramnegativecells (seeFig.3.1). Nucleic acids isolated by this method proved sufficiently free of inhibitory substances to allowsuccessfulPCR,RTPCR,realtimePCRandrestrictiondigestion(datanotshown). Whenincubatedfor2hat37°Cin1×EcoR1restrictionenzymebuffer(Roche)noDNase activitywasdetected(datanotshown).

104

Figure3.1:Gelelectrophoresis(1%[w/v]agarose,1xTAE)ofthetotalnucleicacidextractedfrom differentorganismsusingtheNaTCAmethod(2.5lload).Lanes:M,1kbDNAladder(Promega, G5711);1.E.coli(nobeadbeating);2.P.aeruginosa(nobeadbeating);3.M.luteus(1minbead beating);4.B.subtilis(1.5minbeadbeating);5.M.phlei(1minbeadbeating);6.M.smegmatis(1 minbeadbeating);7.Aerobiclaboratoryscalereactor(LS1)(3minbeadbeating). 3.3.2Comparisonofallmethodsfornucleicacidisolation 3.3.2.1Comparisonofnucleicacidyields Thefinalnucleicacidyieldsfromeachoftheextractionmethodsscreenedwerequantified bygelelectrophoresis(Fig. 3.2). In general, higher DNA yields were obtained with those incorporating bead beating as the mechanical lysis step than those employing a milder vortexingstepinthepresenceofbeads(i.e.theMOmethod),orrelyingtotallyonchemical lysis(i.e.theTNandORmethods).Thesefindingsagreewithothersfromsimilarstudies (Moréetal.,1994;Watanabeetal.,1998;Bourrainetal.,1999;Frostegårdetal.,1999;Yu andMohn,1999;Bürgmannetal.,2001;Stachetal.,2001;Lakayetal.,2007;Guobinetal., 2008;Vanysackeretal.,2010).Ofthosewherebeadbeatingwasincorporated,lowestDNA yieldswereobtainedwiththeYMextractionmethoddespiteithavingthelongestbeating time (Fig. 3.2). This may have resulted from the presence of SDS in the lysis buffer

105 contributing to the formation of stable foam that reduced the effectiveness of the bead beating process. Inclusion of silicone antifoam in this lysis buffer, as included in the MI methodlysisbuffer,mayassisthere. 3.3.2.2Comparisonofnucleicacidpurity The purity of the nucleic acids obtained with each method was assessed spectrophotometrically (Table 3.4). It is important to note that purification steps were standardisedforeachmethod,mainlytoensurethatcomparisonsoftheefficiencyofthecell lysisstepcouldbemade,butalsotoremovesuperfluousstepsfromtheoriginalprotocols. ThepurityofDNAextractedwiththeCR,GR,MVandORmethodswashigherthanthat obtained with the other extraction protocols. However, all nine methods yielded DNA sufficiently free of inhibitors to allow subsequent PCR and restriction enzyme digestion (Table 3.4, data not shown). Equally, the RNA obtained was suitable for use in RTPCR reactions (Table 3.4). The only exception was the CS extract from FS1, where an unidentified inhibitor of DNase I prevented removal of genomic DNA during RNA purification(datanotshown).Allextractsappearedtobefreeofhighlevelsofproteinsas noneoftheextractsgavevisiblebandsonSDSPAGEproteingels(datanotshown). 3.3.2.3Nucleicacidintegrity In addition to total yield, the physical integrity of the nucleic acid is a crucial factor in selectinganextractionmethod,asexcessiveshearingcanlimittheabilitytoamplifylarge gene regions. Furthermore, excessive DNA shearing may lead to the generation of PCR artefacts,especiallychimeras(Liesacketal.,1991). UsingLS1biomassasthesource,allnonbeadbeatingmethodsproducedhighmolecular weightDNA(Fig.3.3)andextractswith23S:16SrRNAratiosclosertotheexpectedvalue (Table 3.4). The bead beating methods all resulted in some DNA shearing (Fig. 3.3). Of these protocols, DNA integrity was best with the CS and YM methods, while the other methods showed higher levels of shear damage (Fig. 3.3). It should be noted that even methodswithhigherlevelsofdamagedidnotpreventthesuccessfullateruseoftheirDNA inPCR,asshowninTable3.4. 106

Figure3.2:SemiquantitativecomparisonoftotalDNA■andRNA■yieldfromeachsamplesource(indicatedonxaxis)foreachextractionmethod (indicatedbelowthegraph).Errorsindicatetherangeobtainedwithduplicatereadingsofduplicatesamples.LS=LS1.

107

Table3.4:Summaryofcomparisondataofextractionmethodsassessedinthischapter CR CS GR MI MV OR TN YM MO Generalcharacteristics: Nucleicacidpellet No White White Largeclear White Small, Small,white No NA discernable pellet, pellet,solid pellet pellet whitepellet pellet discernable pellet small,tight pellet Macroscopicbiomass White Brown White Brown White Brown White Brownpellet, Brown afterextraction interface pellet interface pellet interface pellet, interface visibleflocks pellet, flocks flocks Microscopicbiomass Cells Cells Cells Cells Cells Cells Cells Cells Cells afterextraction containing containing containing containing containing containing containing containing containing nucleicacid nucleicacid nucleic nucleic nucleic nucleic nucleicacid nucleicacid nucleic acid acid acid acid acid EstimatedRiska High Moderate High Moderate High Moderate Veryhigh High Low Estimatedtimeto complete 1h30m 1h50m 1h20m 1h40m 1h40m 1h10m 1h40m 1h40m 40m Labscalesample(LS1): 260/280nm 2.05 9.26 1.9 2.02 1.7 2.11 2.32 2.06 2.44 (SD0.01) (SD10.10) (SD0.03) (SD0.02) (SD0.03) (SD0.01) (SD0.07) (SD0.02) (SD0.02) 260/230nm 1.6 0.48 1.69 0.54 1.45 2.14 0.89 1.33 0.78 (SD0.11) (SD0.63) (SD0.04) (SD0.04) (SD0.12) (SD0.03) (SD1.45) (SD0.31) (SD0.83) Ratio23S:16S 0.67 0.63 0.38 0.61 0.95 1 1.24 1.07 NA (0.540.74) (0.530.82) (0.260.62) (0.490.84) (0.781.06) (0.971.02) (1.21.3) (1.021.18) PCRb–Dechloromonas + + + + + + + + + (Dech454:8.9±0.6%c) PCRb–Defluviicoccus – + – + + – – + – (DF988:4.3±0.8%c) PCRb–Accumulibacter + + + + + + + + + (PAOmix:11.8±1.0%c) RTPCR + + + + + + + + NA

108

CastlemainesampleWWTP(FS1): PCRb–Defluviicoccus + + + + + – – – – (2.9±0.4%c) PCRb–Accumulibacter + + + + + + + + + (1.4±0.3%c) RTPCR + NDd + + + + + – NA KynetonsampleWWTP(FS2): PCRb–Accumulibacter + + + + + + + + + (2.3±0.2%c) a Risk criteria: Very high = heating toxic chemicals(i.e. phenol, CTAB, DEPC), High = bead beating with toxic chemicals, Moderate = using toxic chemicals,Low=somehazards;bPCREvaluation:+=bandvisible,–=nobandvisible;cqFISHvaluesfortargetpopulationsample.Errorisgivenas standarderror(SE);dUnabletoremoveDNA;SD=Standarddeviation;ND=Nodata;NA=Notapplicable.

109 Detectedchimericsequencescontributed5and6%ofthetotalsequencesofclonesretrieved in libraries generated from MI and MV DNA extracts, respectively (Fig. 3.5). This proportion is similar to the average proportion of suspected 16S rRNA gene artefact sequences per clone library deposited in the publically accessible NCBI database (9 %) (Ashelfordetal.,2006).However,DNAfromboththeMIandMVmethodswasseverely shearedandnocomparisonwasmadewithmethodsshowinglowerDNAsheardamage(Fig. 3.3).

Figure3.3:ElectrophoresisgeloftotalnucleicacidextractsfromLS1forallextractionmethods. FeaturesincludinggenomicDNAandrRNAareindicated.M=molecularweightmarker. 3.3.2.4Effectsofhomogenisationonbiomassintegrity Nucleic acid stained biomass was macro and microscopically examined before and after eachextractionprocesstoassesssubjectivelytheoverallextentofcelllysis.TheMO,OR and YM methods each contained visible macroscopic intact flocs after the cell lysis step (Table3.4).Thisproblemhasbeenreportedwithotheractivatedsludgesamples,suggesting thatharshmechanicallysismayberequiredwhenworkingwithsuchbiomassorganisation 110 (Watanabeetal.,1998;Bourrainetal.,1999;YuandMohn,1999;Vanysackeretal.,2010). Even methods incorporating mechanical lysis still yielded suspensions containing small numbersofmicroscopicflocsandsmallcellaggregatesfollowingthelysisstage(examples ofpostextractionbiomassareshownin(Fig. 3.4)). Itmaybethat completecelllysisis unattainablefornucleicacidextractionfromactivatedsludgesampleswithoutunacceptable mechanical shear damage to the nucleic acids, and a compromise between the two is required.Asimilarproblemhasbeenreportedforsoilandcompostsampleswheresomecells appeartoescapelysis(Moréetal.,1994;Zhouetal.,1996;Yangetal.,2007;Wuetal., 2009). 3.3.2.5Assessingcelllysisefficiencyusingtargetpopulations Although comparing DNA yields provides an approximate estimate of relative cell lysis efficiency, yield alone can not be assumed to correlate necessarily with, or reflect meaningfullythebiodiversityoftheindividualpopulationsinanysample(Stachetal.,2001; Gaboretal.,2003;Lunaetal.,2006).Asintactbiomassalwaysremainedafterthelysisstep, therepresentativenatureoftheDNAandRNAintheextractwasestimatedusingPCRto targettheselectedmarkerpopulations,whosepresenceinthesamplewasthenassessedby qFISH(Table3.4). Three marker populations were used to assess nucleic extraction efficiency. These were Dechloromonas, Defluviicoccus and ‘Accumulibacter’related groups. Earlier studies had shown that Defluviicoccus and ‘Accumulibacter’related populations were conspicuously absent,orseverelyunderrepresentedinclonelibrariesgeneratedfromDNAextractedfrom several activated sludge communities, despite FISH data suggesting they were among the numerically dominant populations there (Hesselmann et al., 1999; Crocetti et al., 2000; Wongetal.,2004;Meyeretal.,2006;Ahnetal.,2007;Miyauchietal.,2007).Thesetwo groupswerethereforeselectedasmarkerpopulationsrepresentingpopulationsinactivated sludgefromwhichnucleicacidsweremoredifficulttoextract.

111

Figure 3.4: Micrographs of SYBR Gold© stained postextraction LS1 biomass. a. Phase contrast image post CR b. Corresponding field of view fluorescentimage.c.PhasecontrastofpostCSd.Correspondingfieldofviewfluorescentimage.e.PhasecontrastpostGRf.Correspondingfieldofview fluorescentimage.g.PhasecontrastofMIh.Correspondingfieldofviewfluorescentimage.i.PhasecontrastpostMVj.Correspondingfieldofview fluorescentimage.k.PhasecontrastpostORl.Correspondingfieldofviewfluorescentimage.m.PhasecontrastpostTNn.Correspondingfieldofview fluorescentimage.o.PhasecontrastpostYMp.Correspondingfieldofviewfluorescentimage.q.PhasecontrastpostMOr.Correspondingfieldofview fluorescentimage.Allscalebarsrepresent10m.

112 The ‘Accumulibacter’related organisms were present in all three activated sludge communitiesexaminedinthisstudy,contributing1.4to11.8%ofthetotalbiovolumeas determined by qFISH. Similarly, the cluster II Defluviicoccusrelated organisms were foundinallbiomasssamplesexceptFS2,wheretheycontributedupto4.3%ofthetotal cell biovolume (Table 3.4). The PCR data showed that only the CS, MI and MV extractionmethodswereabletoextractDNAconsistentlyfromtheDefluviicoccusrelated cellsineachofthetwosludgecommunitieswheretheirpresencewasconfirmedbyFISH analysis (Table 3.4). Defluviiccoccusrelated populations were never detected in DNA extracted with the OR, TN or MO protocols. These results may explain why these dominatingpopulationswerenotobservedin16SrRNAgeneclonelibraries generated fromDNAextractedusingtheMOmethodfromtheEBPRcommunitiespresentinLS1 (Ahnetal.,2007)andLS2(MichaelBeer,unpublisheddata). WhenclonelibrarieswerepreparedfromtheLS2community,withDNAextractsfrom theMIandMVmethods,theextentofrepresentationof‘Accumulibacter’wasinmuch closeragreementwiththeqFISHdata(Fig.3.5.andTable3.5)thanforpreviouslibraries prepared from LS2 with the MO method (never exceeding 20 % (Michael Beer, unpublisheddata)incommunitiesdominatedby‘Accumulibacter’(Chapter6)).Asingle cluster II Defluviicoccus sequence only was present in the MV DNA clone library, although qPCR analysis suggested that both the MI and MV methods gave similar extraction efficiencies for DNA from these organisms (Table 3.5). Clone libraries generatedwith DNAobtainedwiththesetwomethodsalsorevealedafurtherdiversity amongtheDefluviicoccusrelatedorganisms,bothhavingrelatedsequences(Fig.3.5)that didnotbelongtoanyofthethreepreviouslydescribedclusters(Wongetal.,2004;Meyer etal.,2006;WongandLiu,2007).TheiridentityisinvestigatedinChapter4. Table3.5:ComparisonofFISHquantitativedataforLS2biomass ‘Accumulibacter’ ClusterIIDefluviicoccus Methods (PAOmix:67.7±0.6%)a (DF1020b:4.1±0.6%)a MI MV MI MV Clonelibrary(%) 79c 58d 0c 1.5d qPCR(%) 66±14 72±16 11±3.0 10±2.5 a%ofbiovolumeasdeterminedbyFISH;bSelectedovertheDF988probetomatchqPCRprimer coverage;cof71clones;dof65clones;NA=notassessed.ErrorsrepresentSE.

113

Figure3.5:MaximumlikelihoodtreeofthecompletesequencesobtainedfromtheLS2,usingthe MI(redboldfacefont)andMV(blueboldfacefont)methods,andselectedrelatedsequences(all sequences were at least 1250 bp long). Probe coverage and qFISHdata is shown ingreen and broadphylogeneticallocationisgiveninpurple.ForprobedetailsseeTable3.3.Clonefrequency for each OTU is indicated in parenthesis. Parsimony bootstrap values are calculated as a percentage of 1000 analysis and are only indicated for values ≥75 %. ○ Indicates a bootstrap value of ≥ 75 % and ● indicates a bootstrap value of ≥ 95 %. The scale bar corresponds to substitutionspernucleotideposition.

114 In earlier clone libraries prepared from the LS1 biomass, Dechloromonasrelated organismsweremuchmorefrequentlyseeninthesame16SrRNAgenelibrarythanthe othertwomarkerpopulations,bothofwhichwereunderrepresented(Ahnetal.,2007). ThissuggeststhatDechloromonasrelatedorganismsmaybesuitablemarkersformore readily extractable bacterial populations. The qFISH data showed these dominated the LS1communitycontributingapproximately8.9%tothetotalcellbiovolume(Table3.4). AllthemethodsexaminedinthiscurrentstudyextractedPCRamplifiablelevelsofDNA from Dechloromonasrelated organisms (Table 3.4). Tracking DNA from such easily lysed organisms may indicate if DNA released early in the cell lysis step is damaged subsequentlybeyonddetection(eg.iflysisprocessistooharsh),orlostthroughbinding tothesamplematrix(Frostegårdetal.,1999). FISH is shown here to be an attractive method for assessing DNA/RNA extraction efficiency,asthepopulationabundancedataitprovidesisindependentofthenucleicacid extractionprocess.Itallowsanychosenmarkerpopulationsinasampletobequantified directly, and thus avoids the need to use broad marker groups, or to make untested assumptions as to which populations might be present, as has been adopted in other communitybasedstudies(Kuskeetal.,1998;Yeatesetal.,1998;Bürgmannetal.,2001; Gabor et al., 2003; Roh et al., 2006). Monitoring indigenous populations is also considered to be superior to the more common practice of monitoring exogenous organisms‘spiked’intosamples(Picardetal.,1992;Kuskeetal.,1998;Frostegårdetal., 1999;Schneegurtetal.,2003;Kauffmannetal.,2004;Klerksetal.,2006;Lakayetal., 2007;Herthneketal.,2008)asthelatterwouldnotbeassociatedwiththe‘local’sample matrix (Zhou et al., 1996)whichinthis caseis heavily encapsulatedactivated sludge flocs.ThebenefitofFISHisalsoemphasisedwhenDGGEprofileswereusedtocompare DNA extraction methods. For example, the MI method extracted DNA from the importantclusterIIDefluviicoccusGAO,whiletheMOmethodcouldnot.Yetavisual comparison of the DGGE profiles for all these DNA extracts show few obvious qualitativedifferences(Fig.3.6).

115

Figure3.6:DGGEofDNAextractsfromtheFS1sampleusingseveralmethods.SeeSection 3.3.2forexplanationsofabbreviations.

116 Using profiling techniques as bases for comparing outcomes of different nucleic acids extractionprotocolstoacommunitywithlowdiversity,dominatedbyasinglephylotype that is recalcitrant to extraction (ie. ‘Accumulibacter’ in LS2), may also imply misleadingly,thatahigherdiversitythanisactuallypresentisobtainedifthereisahigh diversity among the less dominant overrepresented populations present. Thus such a methodmightbechosenoverthoseachievingmorerepresentativeDNA/RNAextraction. These community fingerprint profilingmethods are applied frequently inassessing the relative merits of different DNA extraction methods (Duarte et al., 1998; Krsek and Wellington,1999;Griffithsetal.,2000;Niemietal.,2001;Gaboretal.,2003;deLipthay etal.,2004;Fortinetal.,2004;DesaiandMadamwar,2006;Dongetal.,2006;Yanget al., 2007; Guobin et al.,2008;MitchellandTakacsVesbach,2008;Sheu et al., 2008; Feinsteinetal.,2009;Tangetal.,2009;Thakuriaetal.,2009;Ariefdjohanetal.,2010; Beyetal.,2010;Cabroletal.,2010;Đnceoğluetal.,2010;Vanysackeretal.,2010),but datapresentedhereagainemphasisethedangersinrelyingcompletelyonthisapproach forassessingextractionmethodsuitability. 3.3.2.6Applicationoftheseobservations Thedurationof,andenvironmentalcontrolsassociatedwitheachextractionmethodwere also assessed (Table 3.4), as both are important in selecting a protocol suited for high throughput analysis. Extraction time is also critical especially with RNA extractions, given the typically short halflife of bacterial mRNA (Kaberdin and Bläsi, 2006). All protocolsinthestudywiththeexceptionoftheMOmethod,takeapproximately100min to complete. Both the CR and MV methods incorporate bead beating with phenol chloroform, while the TN method requires the use of hot phenolchloroform, which increasetheirOH&Srisks,giventheirtoxicity. 3.4Conclusions The results presented here suggest that the best methods for obtaining the most representativenucleicacidsfromactivatedsludgebacterialcommunitiesaretheMIand MV protocols. The MV method generates nucleic acid of higher purity, yield and integritythantheMImethod,butusesphenolinthebeadbeatingstep.Thelowerquality ofthenucleicacidsobtainedwiththeMImethoddoesnotappeartopreventtheirusein downstream molecular applications, and it may be better suited for high throughput

117 processing. Because of variations in floc size, density, and populations occurring in differentactivatedsludgecommunities,itisrecommendedthatseveraldifferentvalidated methodsareusedinparallelandtheextractednucleicacidspooledifoptimalbiodiversity istobecaptured,ashasbeenrecommendedbyJuretchskoetal.(2002).Thefailureof most of the methods applied here to isolate DNA consistently from the marker populations in these samples suggests a need to validate the nucleic acid isolation protocols used in all molecular ecological studies. The lack of sequence data currently available for the alphaproteobacterial GAO is due in part from choosing inappropriate DNAisolationmethods.Applicationoftheefficientmethodsdescribedherewillhelpin extendingtheknownphylogeneticdiversityofthisimportantgroup,asChapter4shows.

118 4.0 Elucidatingfurtherphylogeneticdiversityamong theDefluviicoccusrelatedGAOinactivatedsludge

4.1Introduction The microbial ecology of activated sludge communities removing P by the process of EBPRhasbecomeclearerwiththeapplicationofmolecularmethods(WagnerandLoy, 2002;McMahonetal.,2010).Thereisconsiderableexperimentaldatanowavailableto support the proposition that these processes fail because the organisms responsible, knowncollectivelyasthePAO,areoutcompetedundersomeoperationalconditionsby populationspossessingtheGAOphenotype(Oehmenetal.,2007).TheGAOaccumulate substratesintheanaerobicfeedstageofEBPRsystems,which,aswiththePAO,areused forsynthesisofPHA.Thenintheaerobicfaminestage,whilethePAOrespiretheirPHA storesusingtheenergytoassimilatePandsynthesiseintracellularpolyP,theGAOuse theirstoredPHAforglycogenproduction(Seviouretal.,2003;Oehmenetal.,2007). AtleasttwomaingroupsofGAOarenowthoughttoexistinEBPRcommunities,the gammaproteobacterial ‘Competibacter’ (Crocetti et al., 2002) and the alphaproteobacterial GAO (Beer et al.,2004;Wong et al., 2004; Meyer et al., 2006). Kong et al. (2002) recognisedseven‘Competibacter’ sub groups, and by FISHMAR, revealed physiological differences among them (Kong et al., 2006). Analysis of the currentlyavailablesequencesrevealsfurtherphylogeneticdiversity,notcoveredbythese existingprobes(Chapter2)fromtheirearlierapplicationtoEBPRcommunities(Konget al.,2006;WongandLiu,2006). Much less is known of the extent of phylogenetic diversity among the alphaproteobacterial GAO.Amaricoccussp.werethefirstsuggestedcompetitorsofthe PAO proposed (Maszenan et al., 1997), although they were shown not to accumulate substrates like acetate anaerobically in pure culture (Falvo et al., 2001), an essential metabolicfeatureofpopulationswhichmightcompetewiththePAOforsubstratesinthe feedstageofEBPRsystems(Seviouretal.,2003).Beeretal.(2004)appliedthefull16S rRNAcycleapproachtoidentifyputativemembersoftheSphingomonasrelatedGAOin situinalabscalereactordominatedbyFISHprobedalphaproteobacterialTFOandwith poorEBPRcapacity.Applicationofprobesdesignedagainstthissequencegaveapositive hybridisationwiththedominantTFO,andhistochemicalstainingandchemicalprofiles

119 showedthattheseorganismsbehavedaccordingtotheproposedGAOmodels(Beeret al.,2004). Wongetal.(2004)alsoproposedfromtheir16SrRNAclonelibrarydatathatputative alphaproteobacterialGAOwererelatedtoDefluviicoccusvanus,withwhichtheyformed amonophyleticgroup(clusterI).ThenMeyeretal.(2006)obtainedadditional16SrRNA sequences also related to D. vanus, forming a second cluster (II) with 97 % similarity betweenitsmembersand90%similartotheclusterImembersofWongetal.(2004).A thirdDefluviicoccus‘cluster’wasproposed(WongandLiu,2007)basedonasingle16S rRNAsequenceonlyfromanonEBPRsystemtreatingpharmaceuticalwaste.However, aFISHprobetargetingthissequenceiscurrentlynotavailableandsotheimportanceof membersofthisclusterinEBPRsystemsisunknown. Further phylogenetic diversity probably exists among the alphaproteobacterial GAO (Kongetal.,2006;WongandLiu,2007),sinceOehmenetal.(2006b)showedonly16% ofthetotalbiomasscommunityofanEBPRSBRreactor,almostallofwhichconsistedof alphaproteobacterial TFO, hybridised with the existing FISH probes designed to target known TFO Defluviicoccus members. A cluster of sequences related to Defluviicoccus vanus, but forming their own phylogenetic cluster separate from the three previously describedclusters(WongandLiu,2007),wasalsoreportedinChapter3. UnexpectedlytheDF988probe,designedtotargettheclusterIIDefluviicoccusmembers alsotargeteda filamentouspopulationwiththe‘NostocoidalimicolaII’ morphotypein biomassfromafullscaleEBPRplantinBendigoAustralia(unpublisheddata).Excessive proliferationoforganismswiththismorphotypeisassociatedwithsettlingor‘bulking’ problemsinactivatedsludge(reviewedbyWanneretal.,2010),andnotthembehaving asGAOcompetitorsofthePAO.Asmentionedpreviously,thisDF988FISHprobewas designed to target organisms with theTFO morphotype, and its binding to filamentous organismshasneverbeenreportedpreviously. This study sought to resolve whether binding of the DF988 FISH probe to the ‘Nostocoida limicola II’ filaments reflected a further unknown phylogenetic diversity among cluster II of the Defluviicoccusrelated GAO and/or if this was a problem of DF988probespecificity.Furthermore,allcurrentlyavailableDefluviicoccusrelated16S rRNAsequences,includingthoseobtainedintheworkdescribedinChapters2and3,

120 were analysed to determine whether they might reveal any previously unsuspected biodiversityamongthisgroup.NewFISHprobescouldthenbedesignedandappliedto determinetheirdistributionandecophysiologyinfullscaleEBPRsystemsandthustheir potentialoperationalimportancethere. 4.2Materialsandmethods 4.2.1Biomasssamples Activatedsludgesamplesweretakenfromanumberoffullscalesystemslocatedonthe east coast of Australia, whose details are given in Table 4.1. These were sent by overnightcourierandfixedforFISHassoonaspossibleineither4%PFA[w/v]or50% ethanol[v/v]asdescribedinSection2.2.2andstoredat20°C. The LS2 sample was taken from a SBR operated under alternating aerobic: anaerobic conditions and fed with acetate as the sole carbon source (75 mg l1 carbon). Further operationaldetailscanbefoundinChapter6. Aurantimonas ureilytica 5KACC 11607T was supplied by SoonWo Kwon (Korean AgriculturalCultureCollection(KACC))andgrownonR2Amedia(Appendix5)at28 °CbyDrStevePetrovski(LaTrobeUniversity,Bendigo). 4.2.2Clonelibraryconstruction The clone libraries in this chapter were constructed by Dr Tadashi Nittami (La Trobe University). DNA was extracted from ethanol fixed biomass, from the Bendigo EBPR plant, using the MI (Section 3.2.2.1) and MV methods (Section 3.2.2.5) described in Chapter 3, and the commercially available FastDNA SPIN Kit (Qbiogene). The DNA extractswerestoredat20°C.

121 Table4.1:Detailsofactivatedsludgeplantssampledinthisstudy Plantlocation1 Configuration2 Wastewatertype EBPRplants Ballarat,VIC Johannesburg Domestic Bendigo,VIC MUCT Domestic Castlemaine,VIC MUCT Domestic/industrial(meat processingplant) Coolum,QLD Oxidationditch Domestic Dalby.QLD Multimodal Domestic/industrial Kyneton,VIC MUCTLutzackEttinger Domestic Maroochydore,QLD 5stageBardenpho Domestic(95%)/industrial Merrimac,QLD MUCT Domestic Morpeth,NSW ModifiedJohannesburg Domestic Nambour,QLD Johannesburg Domestic(80%)/industrial Non–EBPRplants ATPCityWest,VIC ModifiedLutzackEttinger Domestic/industrial BoulderBay,NSW ModifiedLutzackEttinger Industrial Branxton,NSW Oxidationcarousal/IDEA Domestic DoraCreek,NSW Conventionalextendedaeration Domestic Edgeworth,NSW ModifiedLutzackEttinger Domestic/industrial Karuah,NSW IDEA Domestic PortFairy,VIC Industrial(opiumprocessing waste) RaymondTerrace,NSW ModifiedLutzackEttinger Domestic/industrial Shortland,NSW ModifiedLutzackEttinger Domestic/industrial TanilbaBay,NSW ModifiedLutzackEttinger Domestic Toronto,NSW ModifiedLutzackEttinger Domestic Papermillwastewatertreatmentplants(nonEBPR) Tasmania,TAS Custom Industrial Albury,NSW Custom Industrial Montreal,Canada Industrial Winerywastewatertreatmentplants(nonEBPR) WickhamHill AeratedSBR Winerywaste(nonvintage) OrlandoWines AeratedSBR Winerywaste(nonvintage) Tasmania AeratedSBR Winerywaste(nonvintage) 1VIC=Victoria;NSW=NewSouthWales;QLD=Queensland.2MUCT=ModifiedUniversity of Cape Town; IDEA = Intermittently decanted extended aeration; SBR = Sequencing batch reactor. FivePCRreactionswereperformedwitheachDNAextracttominimisePCRassociated biases. 16S rRNA genes were amplified with primers 27F (5’ GAGTTTGATCMTGGCTCAG3’) and 1492R (5’GGYTACCTTGTTACGACTT3’) (Lane,1991),underthefollowingconditions,1cycle10min95ºC,30cycles(30s94ºC, 30s50ºC,2min72ºC)and1cycle10min72ºC.EachPCRreactionmixture(50l) contained1loftemplateDNA,200nMofeachprimer,200MofeachdNTP,1×PCR buffer,2.5mMofMgCl2,and0.025U/lofAmpliTaqGold(ABI).ThecombinedPCR productswerepurifiedusingQIAquick GelExtractionkits(Qiagen) andclonedintothe pGEMT Easy Vector System II (Promega) as described in Sections 2.2.8.22.2.8.5 and insert sequencing and phylogenetic analysis performed as described in Section 2.2.8.6.

122 Only inserts of interest, as determined by their partial sequences (>500 bp), were fully sequenced(seeresultsforcriteria). 4.2.3CellsortingRTPCR. TheRTPCRmethoddescribedbyLevantesietal.(2004)wasusedtorecoverandamplify the16SrRNAgenefromthe‘Nostocoida limicola II’like filamentous bacteria from a freshbiomasssamplefromtheBendigoplantbyDrTadashiNittami(LaTrobeUniversity, Bendigo).Morethan30targetfilamentsofthismorphotypeweremicromanipulatedwitha Skerman (Skerman, 1968) micromanipulator onto agar plates by Ms Beth Seviour (La TrobeUniversity,Bendigo).Thesefilamentswereresuspendedin10lofsterilisedmilliQ waterandsubjectedtoRTPCRwiththeInvitrogenSuperScriptTMIIIOneStepRTPCR System with Platinum Taq DNA Polymerase (Invitrogen), exactly as described by Levantesietal.(2004).Preparationoftheresulting16SrRNAgeneclonelibrarywasthen performedasdescribedabove(Section4.2.2). 4.2.4FISHanalyses FISHwasperformedasdetailedinSection2.2.3andthedetailsofprobesappliedinthis chapteraregiveninTable4.2.ForFISHexperimentswiththeActino221andActino658 probes,biomasssampleswerepretreatedwithlysozyme(10mgml1in0.5MEDTA(pH 8),1MTrisHCl,(pH7.5))at37°Cfor30min(NielsenandNielsen,2009). 4.2.5FISHprobedesign Probesweredesignedusingthe‘Probedesign’functionofARB(Ludwigetal.,2004). TheonlinesoftwareprogramsProbeMatch(Coleetal.,2009)andprobeCheck(Loyet al.,2008)wereusedtoassesspotentialprobe16SrRNAtargetsitesagainsttheRDPII (Coleetal.,2009),SILVA(Pruesseetal.,2007)andGreengenes(DeSantisetal.,2006) databases.BLASTsearchesusingtheNCBIdatabasewerealsoperformedtoscreenfor theprobesequenceinneworpartialsequencesnotyetaddedtoribosomalRNAgene sequencedatabases.

123

Table4.2:FISHprobesappliedinthischapter. [FA]1 Probename Sequence(5´3´) Target Reference (%) EUB338I2 GCTGCCTCCCGTAGGAGT MostBacteria 35 (Amannetal.,1990) EUB338II2 GCAGCCACCCGTAGGTGT Planctomycetales 35 (Daimsetal.,1999) EUB338III2 GCTGCCACCCGTAGGTGT Verrucomicrobiales 35 (Daimsetal.,1999) NonEUB ACTCCTACGGGAGGCAGC ControlprobecomplementarytoEUB338 n/a (Wallneretal.,1993) PAO462b3 CCGTCATCTRCWCAGGGTATTAAC ‘Accumulibacter’ 35 (Zillesetal.,2002a) PAO6513 CCCTCTGCCAAACTCCAG Most’Accumulibacter’members 35 (Crocettietal.,2000) PAO846b3 GTTAGCTACGGYACTAAAAGG ‘Accumulibacter’ 35 (Zillesetal.,2002a) GB4 CGATCCTCTAGCCCACT ‘Competibacter’Group(GB) 35 (Kongetal.,2002a) GB_G1(GAOQ989)4 TTCCCCGGATGTCAAGGC ‘Competibacter’SubgroupG1 35 (Crocettietal.,2002) GB_G24 TTCCCCAGATGTCAAGGC ‘Competibacter’SubgroupG2 35 (Kongetal.,2002a) ALF968 GGTAAGGTTCTGCGCGTT Alphaproteobacteria,exceptRickettsiales 20 (Neefetal.,1999) TFO_DF2185 GAAGCCTTTGCCCCTCAG ClusterIDefluviicoccusrelatedTFO 35 (Wongetal.,2004) TFO_DF6185 GCCTCACTTGTCTAACCG ClusterIDefluviicoccusrelatedTFO 35 (Wongetal.,2004) DF9886 GATACGACGCCCATGTCAAGGG ClusterIIDefluviicoccusrelatedTFO 35 (Meyeretal.,2006) DF10206 CCGGCCGAACCGACTCCC ClusterIIDefluviicoccusrelatedTFO 35 (Meyeretal.,2006) H966 CTGGTAAGGTTCTGCGCGTTGC HelperprobeforDF988 n/a (Meyeretal.,2006) H1038 AGCAGCCATGCAGCACCTGTGTGGCGT HelperprobeforDF988andDF1020 n/a (Meyeretal.,2006) DF988c GCCGCGACGCCCATGTCAAGGG CompetitorforDEF988 Thisstudy MC2649 CTCTCCCGGACTCGAGCC Candidatus‘Monilibacterbatavus’ 35 (Snaidretal.,2002) DF198 ATCCCAGGGCAACATAGTCT ClusterIIIDefluviicoccusrelated 35 Thisstudy SubgroupwithinclusterIIIDefluviicoccus DF1004 TAAGTTTCCTCAAGCCGC 35 DrTadashiNittami related DF1004c TAACTTTCCTCAAGCCGC CompetitorforDEF1004 DrTadashiNittami DF987H GACGCCCATGTCAAGGGC HelperforDEF1004 DrTadashiNittami DF1021H CCAGCCGAACTGAAGGCT HelperforDEF1004 DrTadashiNittami SubgroupwithinclusterIII‘Defluviicoccus’ DF1013 GAACTGAAGGCTCGAGTTTC 3550 Thisstudy related DF1013c GAACTGAAGGCTTGAGTTTC CompetitorforDEF1013 Thisstudy DF997H CCCAAGCCGCGACGCCCA HelperforDEF1013 Thisstudy DF1032H CCTGTGTGGCGTCCAGCC HelperforDEF1013 Thisstudy

124

DF181A CTTTCCCTCACAAGGCAC CloneK42withinclusterIV‘Defluviicoccus’ 30 Thisstudy related DF181B CTTTGCCCCTCAAGGCAC SomeclusterIV‘Defluviicoccus’relatedTFO 30 Thisstudy AMAR839 CTGCGACACCGAACGGCAAGCC Amaricoccusspp. 20 (Maszenanetal., 2000a) Actino221 CGCAGGTCCATCCCAGAC ActinobacterialPAO 30 (Kongetal.,2005) C1Actino221 CGCAGGTCCATCCCATAC Competitor1forActino221 n/a (Kongetal.,2005) C2Actino221 CGCAGGTCCATCCCAGAG Competitor2forActino221 n/a (Kongetal.,2005) Actino658 TCCGGTCTCCCCTACCAT ActinobacterialPAO 40 (Kongetal.,2005) C1Actino658 TCCGGTCTCCCCTACCAC Competitorprobe1forActino658 n/a (Kongetal.,2005) C2Actino658 ATTCCAGTCTCCCCTACCAT Competitorprobe2forActino658 n/a (Kongetal.,2005) 1[FA]=formamideconcentrationinhybridisationbuffer,26appliedinequimolaramountsas:2EUBmixformostBacteria,3PAOmixfor‘Accumulibacter’,4GBmix for‘Competibacter’,5DF1mixforclusterIDefluviicoccusmembers,6DF2mixforclusterIIDefluviicoccusmembers;n/a=notapplicable

125 4.2.6OptimisationofhybridisationconditionsforFISHprobes Optimal hybridisation conditions for newly designed FISH probes were determined as described by Daims et al. (2005). Potential probes were validated by performing hybridisations,withthebiomasscontainingthetargetpopulation,atdifferentformamide concentrations,whichwereincreasedin5%stepsfrom0to60%.Optimalformamide concentration was selected as the concentration just after fluorescence of the target population started to decrease. For the Defluviicoccus cluster III probes (see later) this was determined subjectively by visual assessment by Dr Tadashi Nittami (La Trobe University,Bendigo).FortheDefluviicoccuscluster IVprobes(seelater),imageswere captured at each formamide concentration used and the average relative fluorescence determinedwithAdobePhotoshop7,basedonthefluorescenceofatleast100cells,as describedinSchroederetal.(2009).Aspurecultureswerenotavailableforthispurpose foreitherclusterIIIorIVDefluviicoccusmembers,allclusterIIIprobeswerevalidated usingbiomassfromtheBendigoEBPRplant.TheDF181Aprobewasvalidatedagainst LS2 reactor biomass (see Chapter 6) and DF181B probe against biomass from the Morpeth(NSW)EBPRplant. 4.2.7FISHMAR 4.2.7.1Incubations MARincubationswereperformedwiththeassistanceofDrTadashiNittamiandLachlan Speirs (La Trobe University, Bendigo). Samples were taken from the aerobic tanks of three EBPR wastewater treatment plants (WWTPs) on the east coast of Australia: Bendigo,Victoria;Morpeth,NewSouthWales;Nambour,Queensland.Biomasssamples weresentbycourierandstoredat4°Cuntilrequired.MARincubationswereperformed within48 hof sampling. TheMAR protocolwas basedon themethodsof Lee et al. (1999)andKongetal.(2004),butwithsomemodifications.Eachbiomasssamplewas aeratedfor1hatroomtemperaturetoremoveanyresidualsubstratespresentanddiluted withfilteredsludgewaterfromthesameplanttogiveabiomassconcentrationof1mgSS ml1. Radiolabelledsubstrateswereaddedtogiveatotalradioactivityof10CimgSS1.The following were used: 1[2,33H] aspartic acid, [1(3)3H] glycerol (MPA), [114C]

126 propionicacid(AmericanRadiochemicalsCompany(ARC)),[114C]aceticacid,D[6 3H]glucose,1[G3H]glutamicacid,[9,10(n)3H]oleicacidand[9,10(n)3H]palmitic acid(GEHealthcare).Coldsubstratewasthenaddedtogiveatotalconcentrationof2 mMcarbon.Forincubationsunderanaerobicoranoxicconditionsanadditional2hpre incubationwasincludedunderanaerobicconditionswithcoldsubstratetosaturatethose capableofanaerobicsubstrateuptakebutunabletostorethiscompoundorutiliseitfor growth. Thus only those with the latter abilities should give a positive MAR signal (Andreasen and Nielsen, 2000). To obtain anaerobic or anoxic conditions, vials were cappedandsealedbeforebeingflushedsequentiallywithnitrogen(N2)gasfor10sand placedundervacuumfor1min,aprocessthatwasrepeatedthreetimes.Sampleswere incubated with labelled substrate for 3 h at room temperature (approx. 22 °C) on an orbitalshakerat250rpm.Foranoxicconditionseithernitrite(0.5mMNaNO2)ornitrate

(2mMNaNO3)wasincludedintheincubationswithlabelledsubstrate.Eachincubation wasrepeatedinduplicatewithtwonegativecontrolstoensuresilvergrainformationwas not from chemography: one control excluded labelled substrate, and with the other, biomasswaspasteurisedbyheatingto70°Cfor10minpriortosubstrateaddition(Leeet al.,1999;NielsenandNielsen,2005). 4.2.7.2Fixationandstorage ToterminatetheMARreaction4%[w/v]PFAin1×PBSwasaddedtothebiomass.For anaerobicandanoxicconditionsthiswasinjectedthroughtheneoprenestopper.After1.5 h,sampleswerewashedthreetimeswith1×PBS.Anadditionaltwowasheswithethanol were necessary for biomass samples incubated with long chain fatty acids (oleic and palmiticacids)giventheirlowaqueoussolubility.Followingthesewashes,thebiomass wasresuspendedin50%[v/v]ethanolin1×PBSandstoredat20°Cuntilrequired. 4.2.7.3ScintillationcountingofMARincubatedbiomass ToassesstheadequacyofsamplewashingduringMAR,uptakeofsubstratesinsample incubationsandthelackofuptakeinnegativecontrols,radioactivityofthesampleswas assessed using a liquid scintillation counter (Wallac 1450 Microbeta Plus). 100 l of biomass was centrifuged (10 000x g,5min,22°C)andthesupernatantremovedand addedtoa96wellmicrotitreplate(Wallac).Thebiomasspelletwasresuspendedin100 l of sterile distilled water and also added to the plate. An equal volume of Supermix

127 scintillation cocktail (Wallac) was added and the plate shaken for 30 min on a Wallac DelfiaPlateShakemixer(Wallac)beforecounting. 4.2.7.4FISHanalysisofMARsamples A 40l aliquot of sample afterMARincubation was placed on a glass cover slip and homogenised gently by pressing against a glass slide. FISH and MAR exposure, using LM1Emulsion(GEHealthcare),wasthenperformedasdescribedinLeeetal.(1999), forperiodsofbetween4and14days.AnegativeMARsignalwasrecordediftherewas no observed formation of silver granules associated with the probe defined group of organismsaftera14dayexposuretime.Ifasubstratewasnottakenupaerobicallyitwas assumed it probably would not be taken up under the other conditions. Likewise, if anaerobic uptake was demonstrated for a substrate then anoxic uptake was not determined,asitwouldthenbedifficulttolinkanysubstrateuptaketocellsusingnitrate ornitriteastheirelectronacceptor. 4.2.8Histochemicalstaining 4.2.8.1DAPIstainingforpolyPgranuleinclusions IntracellularpolyPgranulesweredetectedusing4’,6diamidino2phenylindole(DAPI) (Kawaharasakietal.,1999)stainingasdescribedessentiallyinAhnetal.(2007).FISH wasperformedasdescribedinSection2.2.3.Then20lofDAPIsolution(50gml1) wasappliedtoeachwell.After10mintheslidewasrinsedindistilledwateranddried with compressed air. These slides were then viewed by epifluoresence microscopy (Section2.2.4). 4.2.8.2NileblueAstainingforPHAgranuleinclusions Intracellular PHA granules were detected using Nile blue A (Ostle and Holt, 1982) as describedessentiallyinAhnetal.(2007).Initially8loffixedcellsuspensionwasadded to6wellTefloncoatedmicroscopeslidesthathadbeenpreviouslycoatedinVectabond (Vector Laboratories) and air dried. These slides were then immersed in Nile blue A solution(100mgl1in96%[v/v]ethanol)for10minat55°C,rinsedin8%[v/v]acetic acid (in absolute ethanol) for 1 min and then rinsed in distilled water and dried with 128 compressedair.Theywerethenviewedwithepifluoresencemicroscopy(Section2.2.4) using the G2A filter set and the locations of cells of interest recorded. Following microscopy, cells were destained by immersing the slides in 96 % [v/v] ethanol overnight.FISHwasthenperformedasdescribedinSection2.2.3. 4.2.9PHAcyclingexperiments To determine the ability of Defluviicoccus members to carry out aerobic/anaerobic cyclingofpolyhydroxyalkanoates(PHAs),afreshsampleofbiomasswastakenfromthe aerobictankoftheEBPRtreatmentplantinBendigo,Victoria,Australia.Thebiomass wasaeratedovernighttoexhaustanyresidualcarbonsourcesandstoredPHA.Then800 ml of biomass was washed twice, resuspended in the same volume of a synthetic wastewater(Ahnetal.,2009)andstirredina1lSchottbottlespargedwithN2(tocreate an anaerobic environment) for 1 h. Sodium acetate was then added to give a total 1 concentrationof75mgl carbon.After4h,N2spargingwasreplacedwithcompressed air,andthesampleincubatedforafurther7h.Samplesweretakeneveryhourandany PHAstoragedeterminedbyNileblueAstaining(Section4.2.8.2)andmeasurementof acetate uptake. Samples for residual acetate determination were sent to the Advanced Wastewater Management Centre (University of Queensland, Australia) for analysis by highperformanceliquidchromatography(HPLC). 4.2.10Enzymelabelledfluorescence(ELF) ELF was used to visualise exoenzymic activity as described by (Nielsen et al., 2010a) withuptoa4hincubationusedforeachsubstrate.Theseanalyseswereperformedon freshbiomasssamplesfromtheaerobictankoftheBendigoEBPRplant.Thefollowing enzymicactivitieswereevaluatedusingELF97substrates(MolecularProbes):ELF97 Nacetylglucosaminide for chitinase/Nacetylglucosaminidase; ELF97 acetate for esterase;ELF97βDgalactopyranosideforβDgalactosidase;ELF97βDglucuronide forβDglucuronidase;ELF97palmitateforlipase;ELF97phosphateforphosphatase. In theory, hydrolysis of these commercially available fluorescent substrates releases an attachedfluorescencequenchermoleculeandfluorescentbreakdownproductsprecipitate on the cell surface that are visualised with fluorescence microscopy (Nielsen et al., 2010a)(seeSection2.2.4).

129 4.2.11Microsphereadhesiontocells(MAC) MAC assays, for determination of cellular hydrophobicity, were performed on samples fromtheBendigoEBPRplantessentiallyasdescribedbyKragelundetal.(2005),except 2.5 l of the 0.02 % [w/v] sonicated solution of FluoSpheres© fluorescent sulphate microspheres(MolecularProbes)wasmixedwith10lofsludgeand100lofdistilled water. 4.3Results 4.3.1FISHsurveyofBendigobiomass WhensamplesofbiomassfromtheBendigoEBPRplantweresurveyedforthepresenceof the alphaproteobacterial Defluviicoccus TFO cluster II members, with the DF988 probe originallydesignedtotargetthese(Meyeretal.,2006),twoNeissernegative‘Nostocoida limicola II’ filament morphotypes (see Fig. 4.1), differing slightly in their trichome diametersandregularityofcellshape,alsofluorescedwithit(Fig.4.2a)andalsowiththe ALF968 probe. However, neither fluoresced with the DF1020 FISH probe designed to targetthesameDefluviicoccuspopulations(Meyeretal.,2006),northeDF218andDF618 FISH probes for members of the cluster I Defluviicoccus of Wong et al., (Wong et al., 2004). 4.3.216SrRNAsequenceanalysesoftheBendigobiomass Aclonelibraryof75partialsequences(thefirst500bp)ofbacterial16SrRNAgenesfrom theBendigoEBPRplantbiomasscontainedninealphaproteobacterialsequences(datanot shown).ThesefellintotwoOTUsfromwhichonerepresentativecloneofeach(A40and B29)wasselectedforcompletesequencing,andtheresultingsequencesareincludedinthe phylogenetic tree given in Fig. 4.3. Both sequences were most closely related (98.8 % similarity) to an uncultured bacterial clone mle113 (AF280850) recovered from an industrial activated sludge treating pharmaceutical waste (LaPara et al., 2000) and designated as a member of ‘cluster’ III DefluviicoccusbyWong and Liu(2007).These sequences also clustered with clones MC2 (AY428763), Candidatus ‘Monilibacter batavus’(AY590701)andMU073(AM157605)(Fig.4.3). 130 Sequences of A40 and B29 clones were then screened for the presence of the target sequencesfortheDF988probe.TheMC2649probe,designedbyLevantesietal.(2004) against a related partial MC2 sequence (AY428763) and also covering Candidatus ‘Monilibacter batavus’ (AY590701), has a single central mismatch with the 16S rRNA sequences of the A40 and B29 clones (Table 4.3), but the recommended hybridisation stringency(Snaidretal.,2002)wasclearlyadequatetoensurethese‘N.limicola’filament morphotypesdidnotfluorescewiththisprobe(datanotshown). The 16S rRNA from both A40 and B29 clones had three mismatches with the DF988 probe,asshowninTable4.3,butthesewereallterminalofthe22baseoligonucleotide probe. This meant that total complementarity existed with the other 18 nucleotides, and wouldexplainwhythesefilamentsfluorescedwithit.Thus,acompetitorprobe(Manzet al.,1992)wasdesigned(DF988c)withaperfectmatchwiththeA40andB29targetsites. InclusionofthiscompetitorprobeinFISHhybridisationwiththeDF988probeeliminated probe conferred fluorescence in all ‘Nostocoida limicola’ like filaments in the Bendigo EBPRbiomasscommunity(Fig.4.2).ThisstronglysuggeststhattheA40andB29clone sequences were derived from at least some of these filaments and that DF988 probe specificity problems would explain why these fluoresced. This competitor probe also eliminated DF988 probe conferred fluorescence of all alphaproteobacterial ‘Nostocoida limicola’like organisms observed in the fullscale plant biomass samples surveyed here (seelater:Table4.5),Thus,itisrecommendedthattheDF988cprobealwaysbeusedin combinationwiththeDF988probe.

131

Figure4.1:FISHCLSMmicrographsofthe‘Nostocoidalimicola’like,clusterIII‘Defluviicoccus’(seelater),variantspresentintheBendigoEBPRplant. a.c. Composite FISH micrographs of the Bendigo EBPR biomass: EUBmix (FLUOS: green) alone = green; DF198 (CY5: blue) + EUBmix (FLUOS) = light blue; DF1013(CY3:red)+DF198(CY5:blue)+EUBmix(FLUOS)=white/lavender. d.ande.CompositeFISHmicrographsoftheBendigoEBPRbiomass:EUBmix (FLUOS)alone=green;DF1004(CY3)+DF198(CY5)+EUBmix(FLUOS)=white/lavender. e.Includesthecorrespondingphasecontrastimage.Allscalebars represent10m.Intheseimagesthethickermoreabundant‘Nostocoidalimicola’variantisindicatedwithwhitearrowsandthethinnervariantwiththeirregular trichomeisindicatedwiththeredarrows. 132

Figure 4.2: FISH CLSM micrographs showing the effect of the DF988 competitor on DF988 bindingtothe‘Nostocoidalimicola’likeorganismsintheBendigoEBPRplant.a.andb.Phase contrastimageandthecorrespondingFISHimageafterhybridisationwith:a.theDF988probe (CY3:red)aloneandb.theDF988probe(CY3:red)withtheDF988c(unlabelled)competitor probe.

133

Figure 4.3: Maximum likelihood tree of all available complete Defluviicoccus vanusrelated sequences(>1200bp)usingtheARBsoftware(Ludwigetal.,2004).Sequencesobtainedinthis study are presented in boldface type. Brackets to the far right indicate proposed probe defined phylogeneticclusters.Innerbracketsindicateprobecoverage(abrokenlineindicatestheabsence ofsequenceinformationattheprobesite).ForprobedetailsseeTable4.2.‘*’Indicatesselected partialsequences(<1200bp)addedusingthe‘quickadd’functioninARBaftertreeconstruction. Parsimonybootstrapvaluesarecalculatedasapercentageof1000analysisandareonlyindicated forvalues≥75%.○Indicatesabootstrapvalueof≥75%and●indicatesabootstrapvalueof≥95 %.Thescalebarcorrespondstosubstitutionspernucleotideposition.Amorethoroughassessment ofavailableprobecoverageandspecificityisprovidedinAppendix2.

134

Table4.3:MismatchesintargetsitesbetweenFISHprobesandselected16SrRNAsequences MC2649probe 5’ C T C T C C C G G A C T C G A G C C 3’ MC2649target 3’ G A G A G G G C C U G A G C U C G G 5’ ClonesA40,B29,C17andC23 3’ G A G A G G G C C U G A G U U C G G 5’ DF988probe 5’ G A T A C G A C G C C C A T G T C A A G G G 3’ DF988target 3’ C U A U G C U G C G G G U A C A G U U C C C 5’ ClonesA40,B29,C17andC23 3’ C G G C G C U G C G G G U A C A G U U C C C 5’ DF1013probe 5’ G A A C T G A A G G C T C G A G T T T C 3’ DF1013target 3’ C U U G A C U U C C G A G C U C A A A G 5’ Clonemle113(AF280850) 3’ C U U G A C U U C C G A A C U C A A A G 5’ ClonesC17andC23 3’ C U U G A C U U C C G A A U U C A A A G 5’ DF1004probe 5’ T A A G T T T C C T C A A G C C G C 3’ DF1004target 3’ A U U C A A A G G A G U U C G G C G 5’ ‘Monilibacter’(AY590701) 3’ A U U G A A A G G A G U U C G G C G 5’ DF181Aprobe 5’ C T T T C C C T C A C A A G G C A C 3’ DF181Atarget 3’ G A A A G G G A G U G U U C C G U G 5’ CloneZW19(GU390332) 3’ G A A A G G G A G U A U U C C G U G 5’ OtherclusterIVmembers 3’ G A A A C G G G G A G U U C C G U G 5’ DF181Bprobe 5’ C T T T G C C C C T C A A G G C A C 3’ DF181Btarget 3’ G A A A C G G G G A G U U C C G U G 5’ AurantimonasureilyticaT 3’ G A A A C G G G G A G U C C C G U G 5’ CloneZW19(GU390332) 3’ G A A A G G G A G U A U U C C G U G 5’ AMAR839probe 5’ C T G C G A C A C C G A A C G G C A A G C C 3’ AMAR839target 3’ G A C G C U G U G G C U U G C C G U U C G G 5’ CloneK42 3’ G A C G C U G U G G C U U C C C G U U C G G 5’ Targetsequencesmismatchesareingreyboxesanditalicised.

135 4.3.3Probedesignagainstclonesofinterest Twonewprobes(DF198andDF1013)weredesignedagainsttheA40andB29clones. Probe DF198 targets the 16S rRNA sequences of all members of the cluster III DefluviicoccusincludingclonesA40andB29,whileprobeDF1013targetsonlytheA40 andB29clonesequences(Fig.4.3).Twohelperprobes(Fuchsetal.,2000),DF997Hand DF1032HweredesignedtousewiththeDF1013probeasittargetedaregionthoughttobe relativelyinaccessibletoFISHprobing(brightnessregionclassVI(Fuchsetal.,1998)).Of thesehelpers,DF997HincreasedthefluorescencesignalstrengthoftheDF1013probeas assessed subjectively by eye, although the addition of the DF1032H did not noticeably improveit.Acompetitorprobe,DF1013c,wasalsodesignedtoreducethepossibilityof theDEF1013probebindingtothemle113(AF280850)clone16SrRNAsequence,which hasasinglemismatchwithit(Table4.3). FISHanalysiswiththeDF198probeandBendigoEBPRbiomasssampleshowedthatboth morphologicalvariantsofthis‘Nostocoidalimicola’filamentfluorescedwithit(Fig.4.1). Ontheotherhand,onlythethinnerandlessregular‘Nostocoidalimicola’filamentspresent inmuchsmallernumbersfluorescedwiththeDF1013probe(Figs.4.1ac.).Theseresults suggestthatwhilethedominant‘Nostocoidalimicola’inBendigosamplesisamemberof the same cluster, it is phylogenetically distinct from the A40 and B29 clones. A corresponding sequence was not recovered in the clone library, suggesting either DNA extraction problems, despite efforts to avoid this commonly encountered problem (Chapter3),orPCRassociatedbiases(vonWintzingerodeetal.,1997).Henceitsidentity wassoughtbyadifferentapproach. 4.3.4Retrievalof16SrRNAsequencesbymicromanipulationandRTPCR ofthedominant‘Nostocoidalimicola’morphotypeintheBendigoWWTP The flow cytometry method applied in Chapter 2 was thought inappropriate given the probable difficulties in sorting filamentous organisms by FACS (Müller and Nebevon Caron,2010).ThereforethemicromanipulationcellsortingRTPCRmethodwasapplied torecoverthedominant‘Nostocoidalimicola’filamentsfromaBendigobiomasssample, andanotherclonelibrarywasgenerated.Partialsequences(>500bp)of13clonesrevealed that six (designated C17, C23, C38, C41, C43, and C49) had the DF988 probe target

136 sequence, all with the same terminal three nucleotide mismatches (Table 4.3). Five of these(C17,C23,C38,C41andC49)hadtwomismatcheswiththeDF1013probetarget site(Table4.3)whileC43was99.6%similartothecloneA40sequenceobtainedearlier (seeSection4.3.2). These features were consistent with the FISH data forthe dominant ‘Nostocoida limicola’morphotype.Asfourofthefiveclones(C17,C38,C41andC49) hadidenticalpartialsequences,onlyclonesC17andC23werefullysequenced.Bothfell into the same cluster as clones A40 and B29 (Fig. 4.3) (sharing 98.698.9 % sequence similarity).TheysharethesamemarkersequenceswiththeA40andB29clonesatthe targetsitesfortheDF988,MC2649andDF198FISHprobes.Thus,anewprobe,DF1004 that targeted only the C17 and C23 sequences was designed. Because of possible accessibility problems again with the target site (Fuchs et al., 1998), helper probes DF987HandDF1021Hwerealsodesigned.Ofthese,DF987Himprovedthefluorescence signaloftheDF1004probebutapplicationoftheDF1021Hprobeseemedunnecessary.A competitor probe, DF1004c, was also designed to reduce any likelihood of the DF1004 probebindingtothe Candidatus ‘M. batavus’ clone (AY590701), which contains just a singlemismatchwithit(Table4.3). WhenthisDF1004FISHprobewasappliedtogetherwiththehelpersandcompetitortoa sample from the Bendigo plant, only the dominant ‘Nostocoida limicola’ filaments hybridisedwithit(Fig.4.1dande.),suggestingthattheC17andC23clonescontainedthe sequencesfromthisfilament. 4.3.5 Ecophysiology of cluster III Defluviicoccus in the Bendigo EBPR plant The ecophysiology of both morphological filamentous variants of the cluster III ‘Nostocoida limicola’ Defluviicoccus, shown to dominate the Bendigo EBPR biomass community,wasexaminedwithFISHMAR.Thecodominantfilamentinthisplantwas the ‘Chloroflexi’ Eikelboom type 0092 (Speirs et al., 2009), and no filaments in the sample responded positively to the MC2649 probe designed to cover the group containingCandidatus‘M.batavus’(Snaidretal.,2002;Levantesietal.,2004).Thedata obtained are presented in Table 4.4. Both filament variants, targeted by FISH probes DF1004 and DF1013 respectively, showed qualitatively identical substrate assimilation patterns,althoughslightquantitativedifferencesbetweenthemwereapparent(Table4.4). Theresultsshowthatthesefilamentsassimilatedacetateandpropionate stronglyunder bothaerobicandanaerobicconditions(Figs.4.4ad.and4.5ad.;Table4.4),whileweak

137 glutamateassimilationwasalsoapparentinsome Defluviicoccus filaments under these conditions(Fig.4.6a.d.;Table4.4).Noaerobicuptakeofglucose,glycerol,aspartate, glycerol, oleate and palmitate was detected (Table 4.4). Consequently, assimilation of thesesubstratesundertheotherconditionswasnotexamined. 4.3.6 Ecophysiology of cluster III Defluviicoccus in other Australian EBPRplants. FISHMARdatawerealsoobtainedforFISHprobedDefluviicoccusclusterIIIfilaments coveredbytheDF1013probe,intwoothergeographicallyseparateEBPRplants,onein Morpeth,NSWandtheotherinNambour,Queensland(Table4.4).Eventhoughitwas highlyabundantintheNambourplantinthesurveyworkcarriedoutearlierinthisstudy (presented later: Table 4.5), the low abundance of the DF1004 defined phylotype in biomasssamplestakenfortheMARanalysesandheavyattachedepiphyticgrowthmeant unequivocalsubstrateassimilationdataforthisphylotypewasdifficulttoobtain. Table4.4:SummaryofFISHMARdata Biomass Morpeth Nambour BendigoWWTP Source WWTP WWTP Probe DF1004 DF1013 DF1013 eacceptor O2 none O2 none O2 none O2 none Acetate + + + + + + + + Aspartate – n/a – n/a – n/a – n/a Glucose – n/a – n/a – n/a – n/a Glutamate + +/– + +/– +/– – +/– – Glycerol – n/a – n/a – n/a – n/a Oleate – n/a – n/a – n/a – n/a Palmitate – n/a – n/a – n/a – n/a Propionate + + + + + +/– + +/– +=StrongpositiveMARsignal;+/–=WeakpositiveMARsignal;–=NegativeMARsignal; n/a=Notassessed;eacceptor=Electronacceptor;O2=aerobic;none=anaerobic GenerallytheMARdatafrombothplantsfortheDF1013filamentphylotypeagreedwith those obtained for both phylotypes in the Bendigo biomass samples. Thus, acetate and propionateweretakenupunderbothaerobicandanaerobicconditions(Figs4.4e.h.and 4.5e.h.;Table4.4),andagainthere wasnoaerobicassimilationof glucose,glycerol, aspartate,glycine,oleateorpalmitate(Table4.4).

138

Figure 4.4: FISHMAR micrographs measuring 14C labelled acetate assimilation of cluster III Defluviicoccus.a.andb.CompositeFISHimages,andcorrespondingbrightfieldMARimages, with the EUBmix probe (FLUOS: green) and the DF1004 probe (CY3: red).EUBmixalone = green, EUBmix (FLUOS) + DF1004 (CY3) = yellow. c. and h. FISHMAR images with the EUBmixprobe(FLUOS:green)andtheDF1013probe(CY3).EUBmixalone=green,EUBmix (FLUOS) + DF1013 (CY3) = yellow. a., c., e. and g. Aerobic conditions; b., d., f. and h. Anaerobicconditions.a.andb.BendigoEBPRplant;e.andf.MorpethEBPRplant;g.andh. NambourEBPRplant.Silvergraindeposition(brightfieldimages(totherightofFISHimage)) indicatespositiveuptakeforassociatedcells.Allscalebarsrepresent10m.

139

Figure4.5:FISHMARmicrographsmeasuring14ClabelledpropionateassimilationofclusterIII Defluviicoccus.a.andb.CompositeFISHimages,andcorrespondingbrightfieldMARimages, with the EUBmix probe (FLUOS: green) and the DF1004 probe (CY3: red).EUBmixalone = green, EUBmix (FLUOS) + DF1004 (CY3) = yellow. c. and h. FISHMAR images with the EUBmixprobe(FLUOS:green)andtheDF1013probe(CY3).EUBmixalone=green,EUBmix (FLUOS) + DF1013 (CY3) = yellow. a., c., e. and g. Aerobic conditions; b., d., f. and h. Anaerobicconditions.a.andb.BendigoEBPRplant;e.andf.MorpethEBPRplant;g.andh. NambourEBPRplant.Silvergraindeposition(brightfieldimages(totherightofFISHimage)) indicatespositiveuptakeforassociatedcells.Allscalebarsrepresent10m.

140

Figure4.6:FISHMAR micrographsmeasuring 3HlabelledglutamteassimilationofclusterIII Defluviicoccus.a.andb.CompositeFISHimages,andcorrespondingbrightfieldMARimages, with the EUBmix probe (FLUOS: green) and the DF1004 probe (CY3: red).EUBmixalone = green, EUBmix (FLUOS) + DF1004 (CY3) = yellow. c. and h. FISHMAR images with the EUBmix probe (FLUOS: green) and the DF1013 probe (CY3: red). EUBmix alone = green, EUBmix(FLUOS)+DF1013(CY3)=yellow.a.,c.,e.andg.Aerobicconditions;b.,d.,f.and h.Anaerobicconditions.a.andb.BendigoEBPRplant;e.andf.MorpethEBPRplant;g.andh. NambourEBPRplant.Silvergraindeposition(brightfieldimages(totherightofFISHimage)) indicatespositiveuptakeforassociatedcells.Allscalebarsrepresent10m.

141 WhileaerobicglutamateuptakewaspositivefortheDF1013probedfilamentsinsamples frombothplants,itwasnotassimilatedanaerobically,andsubsequentlyanoxically(Fig 4.6e.h.;Table4.4).Thisdiscrepancycanprobablybeattributedtothegenerallylower metabolic activity of filaments in these samples compared to those from the Bendigo plant, rather than basic physiological differences, since both acetate and propionate activityappearedlowerbycomparisonasadjudgedbyintensityofsilvergraindeposition onthecells.Furthermore,detectionofanyanaerobicuptakeofglutamateintheBendigo samplerequired14daysexposure. 4.3.7CarboncyclingbyclusterIIIDefluviicoccus The irregular positive staining reaction for PHA production by these filaments in full scale plants (approx. 20 % only of the FISH positive filaments: data not shown) was examined further. The data obtained clearly showed that acetate was taken up by the filaments anaerobically with a subsequent increase in their PHA content, as judged by NileblueAstainingintensity(Fig4.7aandb.)infilamentsrespondingtotheclusterIII Defluviicoccus probe DF1004. Then during subsequent incubation under aerobic conditions, cellular Nile blue A fluorescence intensity gradually decreased (Fig. 4.7 b and c.), consistent with PHA levels within the cells decreasing. Intracellular polyP granuleswereneverobservedincellsexaminedthroughouttheprofileorinanyfullscale EBPRcommunities(datanotshown). 4.3.8MACandELFanalysis MACanalysisshowedthefilamenthadrelativelylowcellsurfacehydrophobicities,with veryfewofthemicrospheresattachingtothefilament,andmainlyassociatedwiththeir surfaceepiphyticgrowth(Fig4.7d.).ApplicationoftheELFsubstratestoafreshbiomass sample from the Bendigo EBPR plant also showed that none of the substrates gave a positiveresultassociatedwiththedominant‘Nostocoidalimicola’filamentsresponding totheDefluviicoccusDF1004probe(Fig.4.7e.).

142 4.3.9FurtherphylogeneticdiversityamongDefluviicoccusrelated organisms Phylogenetic analysis of the 16S rRNA gene sequences related to Defluviicoccus revealedsomeofthese,includingthoseobtainedfromtheworkdescribedinChapter3, failed to group with any existing sequences of the three previously described Defluviicoccus clusters (Fig. 4.3). These were clones, embraced by OTUK42 (EU834757),whichtogetherformedaseparatefourthcluster(clusterIV)groupingwith 16SrRNAsequencesretrievedfromarangeofenvironments,includingactivatedsludge, urbanaerosols,sedimentsandoralplaques(Fig.4.3).Allmembersoftheclustershared atleast96.7%sequencesimilarities. To help elucidate the occurrence and function of these novel members of cluster IV Defluviicoccus in EBPR communities, two FISH probes were designed to cover this group; probe DF181A covering the K42 clone, and probe DF181B embracing the remaining members (showing at least 98.6 % sequence similarity to each other). The closestnontargetmatchestotheDF181Aprobeallcontainthreeinternalmismatchesto it. With no pure cultures available, the probe was validated against the EBPR SBR communityfromwheretheK42sequenceoriginated(Chapter3),whereithybridisedto smallcocciformingtightclusterswithintheflocs(Fig.4.8aandb.). TheDF181BprobewasvalidatedagainstbiomassfromtheMorpeth(NSW)EBPRplant biomass and Aurantimonas ureilytica 5KACC 11607T (DQ833810). The latter, and severalothersequencesavailableinpublicdatabases,containasinglebasemismatchwith thetargetsequenceofthisprobe(see Table 4.3). A competitor probe (DF181Bc) was designedtoprecludecellswiththismismatch,althoughat30%[v/v]formamidelevel, the fluorescence signal from Aurantimonas ureilytica cells was barely detectable (Appendix 4).Whenthe DF181A and DF181B probes were applied to fullscaleplant biomass samples they always hybridised with cells arranged in distinctive tetrads (Fig. 4.8candd.).

143

Figure 4.7: Micrographs of the cluster III Defluviicoccusrelated organisms in the Bendigo EBPR plant. a.c.: Phase contrast images of biomass from the PHA cyclingexperimentwithcorrespondingNileblueAstainedimages: a.Beforeanaerobicphase; b.Endoftheanaerobicphase; c.Endofaerobicphase. d.Phase contrastimageofthebiomassandcorrespondingfluorescenceimageafterMACbeadincubation.e.Phasecontrastimageandcorrespondingfluorescenceimageafter ELF97acetateforesterase.Targetorganismsareindicatedwithanarrow.Scalebarsrepresent10m. 144 Aftercompletionandpublicationofthisworkanadditionalpartialsequence(741bp)was publishedinthedatabase.Thissequence,obtainedfromsoil(GU390332),groupedwith clusterIVmembers(Fig4.3),being97.9%similartoK42,buthasonecentralmismatch withtheDF181AprobetargetsiteandfourwiththeDF181Bprobe(seeTable4.3). 4.3.10EcophysiologyofclusterIVDefluviicoccus Unfortunately, the cluster IV tetrad forming Defluviicoccus were present at such low abundancesinthethreeplantsamplesexaminedforclusterIIImembers(seeabove)and werealwaysintimatelyassociatedwiththeflocs,thattheirsubstrateuptakepatternswere notrevealedreadilybyFISHMAR.However,evidenceforanaerobicuptakeofacetate wasdemonstratedintheBendigosample(Fig.4.9gandh.),wheretheseorganismswere moreabundant.Theirlow abundancealsomade PHAstaining difficult, althoughcells respondingtotheDF181AprobeintheSBRcommunity(reactorLS2)stainedpositively foranaerobicPHAstorage(Fig.4.9df.).PolyPwasnotdetectedbystaininginDF181A orDF181BpositivecellsinanyfullorlabscaleEBPRcommunity(Fig.4.9ac.). 4.3.11DistributionofDefluviicoccusrelatedorganismsinfullscaleEBPR plants Members of all four Defluviicoccus clusters were common in the fullscale activated sludgeplant communitiesanalysed here although generally as minor populationsonly. The clear exception was with the filamentous cluster III members, which dominated communities of two of the EBPR plants (Table 4.5). The two ‘Nostocoida limicola’ filament morphotype variants of cluster III fluoresced with either DF1004 or DF1013 probes,asintheBendigoplantsample,althoughtheirnumbersvaried,rangingfromsome inafewplantstoverycommonandexcessiveinothers(Table4.5). ClusterIVDefluviicoccusmembersrespondingtotheDF181Aprobe,designedagainsta single sequence from a labscale system, were detected in small numbers only in the KynetonEBPRplant.

145

Figure4.8:FISHCLSMmicrographsofclusterIVDefluviicoccusrelatedorganisms.a.andb.FISHimageoftheLS2biomasswiththeEUBmix,(FLUOS:green), DF181A(CY3:red)andPAOmix(CY5:blue)probes.EUBmixalone(FLUOS)=green;EUBmix(FLUOS)+DF181A(CY3)=yellow/orange;EUBmix(FLUOS)+ PAOmix(CY5)=lightblue.c.andd.FISHimageoftheBranxtonfullscaleEBPRplantwiththeEUBmix,(FLUOS:green),DF181B(CY3)andPAOmix(CY5) probes. EUBmix alone (FLUOS) = green; EUBmix (FLUOS) + DF181B (CY3) = yellow/orange; EUBmix (FLUOS) + PAOmix (CY5) = light blue. The correspondingphasecontrastimageisincludedfora.andd.Allscalebarsrepresent10m.

146

Figure4.9:FISHmicrographsforecophysiologicalstudiesofclusterIVDefluviicoccusrelatedorganisms.a.c.KynetonfullscaleEBPRplantbiomassstainedwith DAPI:a.Phasecontrastimage;b.FISHimagewiththeDF181Aprobe(CY3:red);c.DAPIstainedbiomassimagewherepolyPgranulesarestainedbrightyellow. d.f.LS2biomassstainedwithNileblueA:d.Phasecontrastimage;e.correspondingNileblueAstainedimagewherePHAgranulesstainred; f.corresponding FISHimagewiththeDF181Aprobe(CY5:blue).g.andh.FISHMARimagesofBendigofullscaleEBPRplant:g.FISHimagewiththeEUBmix(FLUOS:green) andDF181B(CY3:red)probes.EUBmix(FLUOS)alone=green,EUBmix(FLUOS)+DF181B(CY3)=yellow; h.CorrespondingbrightfieldMARimage.All scalebarsrepresent10m. 147 Cluster II and III members also dominated in some paper mill waste treatment plants community samples and Defluviicoccus cluster I and II members were abundant in treatmentsystemstreatingwinerywaste(Fig.4.10aandb.;Table4.5).Bothdealwith influents low in P. This suggests that they are not restricted exclusively to EBPR processes,butclearlyhaveothersurvivalstrategiesallowingthemtosurvivePlimiting conditions. 4.3.12ThedistributionofAmaricoccussp.inwastewatertreatmentsystems AstheFISHprobe(AMAR838)designedtocovermembersofthegenusAmaricoccus (Maszenanetal.,2000b)hasonlyasinglebasemismatchwithDefluviicoccusclusterIV 16SrRNAsequences(cloneK24)(Table4.3),someconcernsexistaboutitsspecificity. HowevercoapplicationoftheprobewiththeDF181AprobetotheLS2biomassshowed that the single base mismatch with Defluviicoccus cluster IV sequences is sufficient to discriminate these populations at the recommended formamide concentration of 20 % [v/v](Fig.4.10e.). The AMAR839 probe was also applied to the fullscale EBPR plant communities surveyed (Table 4.5) where Amaricoccus, like Defluviicoccusrelated cluster members, were common, but never dominant. These organisms were also abundant in a system treatingpapermillwasteanddominatedanothertreatingwinerywaste(Fig.4.10candd.; Table 4.5), which suggests they might share a similar ecological niche to the Defluviicoccus.

148

Table4.5:DistributionofGAOandPAOinAustralianwastewatertreatmentplants ’ 4 ’

Defluviicoccus–relatedGAO2 sp. PlantLocation1 5 6 7

2 3 III IV Competibacter I II Accumulibacter ‘ GAO Actinobacterial PAO PAO ‘ DF1013 DF1004 DF198 DF181A DEF18B Amaricoccus EBPR Ballarat,VIC – + – – – – – + ++ ++ ++ Bendigo,VIC + + ++ +++ +++ – + – + ++ + Castlemaine,VIC + ++ – – – – + + + ++ + Coolum,QLD + + ++ ++ ++ – + + + ++ – Dalby.QLD + + ++ ++ ++ – + – + ++ – Kyneton,VIC ++ ++ – – – + + – ++ + + Maroochydore,QLD + + + + + – – + + ++ + Merrimac,QLD + + + + + – – + ++ ++ + Morpeth,NSW + + + + + – + + ++ ++ + Nambour,QLD + + ++ +++ +++ – – – ++ ++ ++ Non–EBPR ATPCityWest,VIC – + + – + – + – ++ ++ + BoulderBay,NSW – ++ – – – – + + + ++ + Branxton,NSW – + – – – – + + – – – DoraCreek,NSW + + + – + – – + + + + Edgeworth,NSW + + + + + – – + + + – Karuah,NSW + + + – + – – + + – – PortFairy,VIC – ++ – – – – + – – – – RaymondTerrace,NSW – + – – – – – + + + – Shortland,NSW + + + + + – – – + + – TanilbaBay,NSW – + ++ + ++ – + + + ++ + Toronto,NSW – – ++ ++ ++ – + + + ++ + PaperMill

149

Tasmania,TAS – +++ – – – – – ++ – – – Albury,NSW – ++ – – – – – – – – – Montreal,Canada – – +++ – +++ – + + + – – WineryWaste WickhamHill ++ + – – – – – – – – – OrlandoWines ++ ++ – – – – – – – – – Tasmania – – – – – – – +++ – – – 1VIC=Victoria;NSW=NewSouthWales;QLD=Queensland; 2– 7FISHdefinedgroupstargetedbyprobes: 2TFO_DF218/TFO_DF618(Wongetal.,2004);3 DF988/DF1020(Meyeretal.,2006);4AMAR839;5GB/GB_G1/GB_G2(Crocettietal.,2002;Kongetal.,2002a);6PAO46b/PAO651/PAO846b(Crocettietal., 2000;Zillesetal.,2002a);7Actino–221/Actino–658(appliedseparately)(Kongetal.,2005).Subjectivequantificationcriteria:+++=veryabundant(approx.>25 %ofbiovolume);++=common(approx.5–25%ofbiovolume);+=sometofew(approx.<5%ofbiovolume);–=notdetected.

150

Figure4.10:FISHmicrographsofputativealphaproteobacterialGAO.a.PhasecontrastimageofbiomassfromtheWickhamHillWinerywastewatertreatmentplant (WWTP)andcorrespondingcompositeFISHimage:EUBmix(FLOUS:green)alone=green;EUBmix(FLUOS)+DF1mix(CY3:red)=yellow. b.Phasecontrast imageofthebiomassfromtheTasmanianpapermillWWTPandcorrespondingcompositeFISHimage:EUBmix(FLUOS)alone=green;EUBmix(FLUOS)+ DF2mix(CY3)=yellow.c.PhasecontrastimageofbiomassfromtheTasmanianwineryWWTPandcorrespondingcompositeFISHimage:EUBmix(FLUOS) alone=green;EUBmix(FLUOS)+AMAR839(CY3)=yellow. d.BiomassfromtheTasmanianwineryWWTPstainedwithNileblueAforPHAinclusions. e. CompositeFISHimageoftheLS2reactorbiomass:EUBmixalone(FLUOS:green)=green;EUBmix(FLUOS)+AMAR839(CY3)=yellow;EUBmix(FLUOS)+ DF181A(CY5)=lightblue.Allscalebarsrepresent10m. 151 4.4Discussion 4.4.1 Description of clusters III and IV of the Defluviicoccusrelated organisms This chapter shows that two variants of a Neisser negative alphaproteobacterial ‘Nostocoida limicola’ morphotype dominating the community of EBPR activated sludge biomassaremembersoftheclusterIIIDefluviicoccusproposedbyWongandLiu(Wong andLiu,2007).Thisisthefirstreportofafilamentousmemberofthisgroup,allofwhose earliermembersgrewasTFOs. ClonespossessingorlackingmarkersequenceselucidatedfrompreliminaryFISHanalyses couldbeidentifiedinthegeneratedclonelibraryfromtheBendigoWWTPandselectedfor furtherexamination.BythisapproachFISHprobescouldbedesignedconfidentlytotarget bothfilamentousDefluviicoccusclusterIIImorphotypevariants,andthosedescribedhere embraceallcurrentlyknownmembersoftheclusterIIIDefluviicoccus.Membersofcluster III are all phylogenetically very closely related (98.1 to 98.8 % 16S rRNA shared similarity) to the ‘Nostocoida limicola’ filament morphotype Candidatus ‘M. batavus’ which,fromthedatapresentedhere,mustnowalsobeconsideredamemberofthegenus Defluviicoccus. FurtheranalysisofavailableDefluviicoccussequencesalsorevealedafourthclusterofthis group. FISH probes designed here were applied to show this group exists in EBPR communities as small cocci, often arranged in tetrads, which is similar to the cell arrangementofclusterIandIImembers(Wongetal.,2004;Meyeretal.,2006). 4.4.2 The ecophysiology of clusters III and IV Defluviicoccus in EBPR systems This study has also shown that members of cluster III Defluviicoccus filaments can assimilate acetate and propionate and accumulate PHA anaerobically, subsequently utilising it aerobically, without any synthesis of polyP. Although comprehensive data couldnotbeobtained formembersof cluster IV Defluviicoccus, because of their low abundancesintheplantexamined,evidenceforanaerobicacetateassimilationwasalso

152 found.Theseobservations,combinedwiththeirabilitytoaccumulatePHAandnotpolyP, support the view that members of both these phylogenetic clusters behave like other Defluviicoccusrelatedorganisms(Wongetal.,2004;Meyeretal.,2006;Burowetal., 2007;WongandLiu,2007),inhavingtheinsituphenotypeexpectedofGAO.Likeother Defluviicoccusrelated organisms (Wong et al., 2004; Meyer et al., 2006; Ahn et al., 2007; Burow et al., 2007; Wong and Liu, 2007; Schroeder et al., 2008), these FISH probed populations possessed a high affinity for acetate and propionate under both aerobicandanaerobicconditions.Noneoftheothersubstratessupplied,withthepossible exception of glutamate which was taken up at very low rates, could be utilised either aerobically or anaerobically, implying that the Defluviicoccus in activated sludge communities are highly specialised feeders. The lack of any ectoenzyme activity in Defluviicoccussupportsthisview,sinceitsuggeststhatthesepopulationsareunableto usehighmolecularweightpolymericsubstrates. TheseresultsareinmarkedcontrasttothosereportedbyKragelundetal.(2006)fortheir filamentousCandidatus‘Monilibacterbatavus’nowalsoshowntobemembersofcluster IIIDefluviicoccus.Althoughtheyshowedsimilaraerobicsubstrateassimilationpatterns totheclusterIIImembersinthisstudy,‘Monilibacter’werereportedashavingnoability foranaerobicsubstrateuptake.ConsequentlyitsphenotypecouldnotbethatofaGAO.A numberofotherphenotypicdifferencesexistbetweenthese.Forexample,contrarytothe data of Kragelund et al. (2006), the filaments in this present study showed no lipase activitywithELF,andstainedNeissernegatively.Slightdifferencesinsubstrateuptake profileshavebeenreportedpreviouslyformembersofclustersIandII Defluviicoccus relatedorganismsindifferentactivatedsludgesamples(Burow etal.,2007;Wongand Liu, 2007; Schroeder et al., 2008), but where tested, never a complete inability for anaerobic substrate assimilation. These differences may reflect strain variations, and Kragelundetal.(2006)usedFISHMARonasinglebiomasssampleonly.Equally,the MC2649probewasdesignedfromapartialsequencefromcloneMC2(581bp)(Snaidr et al., 2002) and has low specificity (Appendix 2). It also targets a number of other alphaproteobacterial sequences and members of the Acidobacteria and Candidatus divisionSBR1093.Furthermore,manydeposited16SrRNAsequencesintheGreengenes database (DeSantis et al., 2006) contain a single, often terminal, mismatch with it. Therefore, the suitability of the MC2649 probe needs reevaluating before it can be confirmed that such marked differences in ecophysiology exist between such closely relatedphylotypes.

153 Survey studies also show that the Defluviicoccusrelated organisms are as prevalent in EBPR andnonEBPR plantsas other known PAOandGAO (Table 4.5), and can be present in larger numbers, suggesting that they do compete effectively with the PAO. Hencetheyshouldnotbeconsideredaslaboratorycuriosities(Burowetal.,2009),butas organismspotentiallyimpactingonbothflocsettlabilityandPremoval.Theirabilityto assimilate substrates anaerobically means that the proposal to use anaerobic or anoxic selectorsforcontrollingthesealphaproteobacterial‘Nostocoidalimicola’filaments,based on the data of Kragelund et al. (2006) for their ‘Monilibacter’ MC2649 defined phylotype,wouldbeunsuitableforboththeDefluviicoccusphylotypesstudiedhere. 4.4.3DistributionofDefluviicoccusGAOinfullscalesystems MembersofallfourDefluviicoccusrelatedclusterswerecommoninthefullscaleplant communities surveyed here, although generally as minor populations only, as reported elsewhereformembersofclusterIandIIDefluviicoccusinEuropeanfullscaletreatment plants(Burowetal.,2007;LopezVazquezetal.,2008a;Nielsenetal.,2010b).Theclear exceptionwaswiththefilamentousclusterIIImembers,whichdominatedcommunities of two of the EBPR plants (Table 4.5), and were possibly responsible for the settling/bulking problems in one of these. Interestingly, unlike many experiences with labscale EBPR reactors (Oehmen et al., 2007), most plant communities contained co existingmembersofmorethanoneDefluviicoccuscluster(Table4.5).Asimilarsituation has been reported in a survey of fullscale plants for Competibacter GAO phylotypes (Kongetal.,2006),andAccumulibacterPAO(Heetal.,2007).Thismightsuggestthat eachphylotypemaybe occupyinganindividualniche,whosenumbersarelikelytobe greater in fullscale systems (He et al., 2007). The presence of additional sequences flanking the ‘probed covered’ cluster II sequences (Fig. 4.3) indicates that further diversity among the Defluviicoccus group may exist in EBPR systems. Dominance of Defluviicoccus in samples from all the plants examined treating paper mill and winery wastes (Table 4.5) probably reflects the low P:C ratios of their feeds (Oehmen et al., 2007).Theability ofpapermillwastetosupportthegrowthof Defluviicoccusrelated organisms has been reported by Bengtsson et al.(2008) where their potential for producing large amounts of PHA for possible manufacture of bioplastics has attracted interest(Bengtssonetal.,2008;Piscoetal.,2009).

154 4.4.4OtheralphaproteobacterialGAO Amaricoccusspp.werealsocommonbutneverabundantinfullscalesystems,probably scavengingthesmallamountofavailablecarbonintheaerobiczone,giventheirinability toassimilatecarbonanaerobically.Theydominatedthecommunityofanaerobicwinery wastetreatmentsystem,wheretheyappearedtoaccumulatelargeamountsofPHA(Fig. 4.10d.).Inpureculture,prolongedperiodsofstarvationisknowntoleadtohigherlevels ofPHAstorage(Aulentaetal.,2003).ThishighPHAstoragecapacityprobablyprovides them with an advantage over most other organisms in being able to survive long starvationperiodsimposedbytheintermittentsupplyofcarboninthistreatmentsystem. ThisisalsoclearlyafeatureofDefluviicoccusmetabolism(Wongetal.,2004;Meyeret al.,2006;Daietal.,2007;Piscoetal.,2009),whichmayexplaintheirjointpresencein thesecommunities. In an earlier survey of Australian fullscale EBPR plants by Beer et al. (2006), the Sphingomonasrelated putative GAO related organisms were observed with the FISH probes designed against them at up to 24 % of the total biovolume. However, their conspicuousabsence fromcommunities of full andlabscale EBPRsystems examined hereandelsewhere(Oehmen et al., 2005a; Meyer et al., 2006; Oehmen et al., 2006a; Oehmenetal.,2006b; Burowetal.,2007;Saundersetal.,2007;Burowetal.,2008a; LopezVazquezetal.,2008b;Pijuanetal.,2008),andsomeoftheinconsistenciesinthe originalpublicationofBeeretal.(2004)(Saunders,2005)promptedfurtherinvestigation intothisgroupoforganisms.ThesefindingsarereportednextinChapter5.

155 5.0 Resolvingtheidentityofthe‘Sphingomonasrelated’ putativeGAOinEBPR

5.1Introduction Given the difficulties in culturing most of the microbial biodiversity present on this planet,ourunderstandingofthecompositionofnaturalcommunitieshasbeenenhanced considerably by applying rRNAbased methods (von Wintzingerode et al., 1997; Hugenholtzetal.,1998;AmannandLudwig,2000;Schleifer,2004;AmannandFuchs, 2008; Zengler, 2009). One technique that has contributed substantially to this, in both qualitative and quantitative terms, is FISH (Amann, 1995; Amann and Fuchs, 2008). Fluorescently labelled DNA oligonucleotides are hybridised in situ to target sequences containedwithintherRNAofthemicrobialpopulationsofinterest,providinginformation about their morphology, relative abundance and spatial arrangement (DeLong et al., 1989;Amann,1995;AmannandFuchs,2008).Incombinationwithothertechniqueslike MAR, FISH can allow the in situ ecophysiology of a population to be resolved at the resolution of a single cell (Lee etal.,1999;Wagner et al., 2003; Nielsen and Nielsen, 2005). OnesuchgroupoforganismsexaminedinthiswayaretheGAO,whichstoreglycogen butnotpolyP,andappeartooutcompetethosethoughtresponsibleforEBPR,known generically as the PAO, under certain still poorly understood operational conditions (Oehmenetal.,2007;McMahonetal.,2010). Crocettietal.(2002)suggestedthatthephylogenetically diverse gammaproteobacterial ‘Competibacter’ were putative GAO, and 16S rRNA targeted FISH probes in combination with staining for polyP and PHA showed they possessed an in situ phenotypeconsistentwiththatofaGAO(Kongetal.,2006).Beeretal.(2004)working in this laboratory also demonstrated by FISH that an alphaproteobacterial population dominatedawastewatercommunityshowingpoorPremoval,andbycloning16SrRNA PCRDGGE analyses, identified these TFO as members of the genus Sphingomonas. TheydesignedtwoFISHprobes,SBR91aandSBR91b,totargetthispopulation(Beer et al., 2004), and by similar methods to thoseof Crocetti et al. (2002) showed it too possessedaGAOphenotypeinsitu.

156 The FISH probe SBR91a designed against the16S rRNA sequence of clone SBR91 (AY254694)hassincebeenusedinsimilarstudies,butnopopulationsrespondingtoit havebeendetectedinanyotherEBPRcommunities(Oehmenetal.,2005a;Meyeretal., 2006;Oehmenetal.,2006a;Oehmenetal.,2006b;Burowetal.,2007;Saundersetal., 2007; Burow et al., 2008a; LopezVazquez et al., 2008b; Pijuan et al., 2008). Furthermore,nosequencescloselyrelatedtothisSBR91clonehaveeverbeenrecovered inclonelibrariesfromotherEBPRcommunitiesdominatedbyalphaproteobacterialTFO (Wongetal.,2004;Meyeretal.,2006).Interestingly,Beeretal.(2004)reportedthatthe SPH120 probe, designed to target Sphingomonas spp. (Neef et al., 1999) failed to hybridisetocellsrespondingtotheSBR91aprobe,despiteitstargetsitebeingpresentin theSBR9116SrRNAclonesequence.Thishasraiseddoubtsabouttheprobeand/or sequence from which it was designed, and therefore the identity of the alphaproteobacterialTFOpresentinthecommunitiestheyanalysed(Saunders,2005). Other Alphaproteobacteria with a GAO phenotype have been identified subsequently. These are all closely related to members of the genus Defluviicoccus, and four phylogeneticallydifferentclusters,I,II,IIIandIV,arecurrentlyrecognised(Wongetal., 2004;Meyeretal.,2006;WongandLiu,2007)(Chapter4).FISHprobesareavailable for members of all four clusters, and these have revealed repeatedly their presence in communitiesfromlaboratoryscaleandfullscaleEBPRsystemsaroundtheworld(Wong etal.,2004;2005a;Meyeretal.,2006;WongandLiu,2006;Ahnetal.,2007;Burowet al.,2007;Daietal.,2007;Lemosetal.,2007;WongandLiu,2007;Burowetal.,2008a; LopezVazquezetal.,2008a;Burowetal.,2009;Nielsenetal.,2010b)(Chapter4). The apparent repeated absence of these ‘Sphingomonasrelated GAO’ in EBPR communitiessuggestedtheneedtoexplainthisanomalybyclarifyingtheiridentityand thus the phylogenetic diversity among the Alphaproteobacteria possessing the GAO phenotype.

157 5.2Materialsandmethods 5.2.1Purecultures Pure cultures used in this study were obtained from the La Trobe University culture collection,withtheexceptionofThermusthermophiluswhichwassuppliedbyProfessor HuwMorgan(WaikatoUniversity,NewZealand).CulturesweremaintainedbyDrSteve Petrovski(LaTrobeUniversity,Bendigo).Organismsandcultureconditionsaregivenin Table5.1. Table5.1:Organismsandcultureconditionsusedinthisstudy Cultureconditions Organism Media1 Temp Acinetobacterbaumanniistr.ATCC19606T R2A 30°C Gordoniaamaraestr.DSMZ43392T PYCa 30°C Gordoniaterraestr.DSMZ43249T PYCa 30°C Rhodococcussp.J71 PYCa 30°C Thermusthermophilusstr.ATCC27634T TM2 55°C Tetrasphaerajenkinsiistr.Ben74T R2A 25°C 1MediacompositionsaredescribedinAppendix5.2Thermusmedia. 5.2.2DNAextraction DNAwasisolatedusingtheMI(Section3.2.2.1)andMV(Section3.2.2.5)methodsfrom biomasssamplesfromthesameSBR9reactorcommunityusedoriginallybyBeeretal. (2004). 5.2.3Clonelibraryconstruction 16SrRNAgeneswereamplifiedwithuniversalprimers,27Fand1525R(Table5.2)as describedinSection2.2.8.1byDrStevePetrovski(LaTrobeUniversity,Bendigo).Five PCRreactionproducts fromeachextractionmethodwerepurifiedusingQIAquick Gel Extraction kits (Qiagen), mixed together and cloned into the pGEMT Easy Vector SystemII(Promega)asdetailedinSection2.2.8.Tenplasmidinsertsweresequencedby AGRF (Brisbane,Australia), andclonesarrangedintoOTUsbasedonamutual99% similarityoftheirpartialsequences(>500bp).Arepresentative16SrRNAsequenceof the single alphaproteobacterial OTU representing 9 of these sequences was then fully sequenced.The OTU Contigwas assembledusing Geneious Pro 3.0.6. Thenucleotide

158 sequencereportedinthischapterwasdepositedintheDDBJ/EMBL/GenBanknucleotide sequencedatabaseswiththeaccessionnumberFJ356059. 5.2.4FISH Cellswerefixedineither4%[w/v]PFAor50%[v/v]ethanolandFISHwascarriedout as described in Sections 2.2.2 and 2.2.3. The FISH probes applied in this study are detailedinTable5.2.Formamidedissociationprofileswereconstructedbymeasuringthe fluorescenceintensityofpositivecellswithAdobePhotoshop™asdetailedin(Schroeder et al., 2009) and curves (base line values set to = 0) and statistics calculated using GraphPadPrism4.Valueswerecorrectedforeachprofileusingacorrectionfactorwhere thetheoreticalfittedcurvewouldintersecttheYaxisat100relativefluorescenceunits (RFU).Baselinefluorescencewassetbasedontheautofluorescenceofthesamebiomass sampleshybridisedwiththeNONEUBprobe. 5.2.4.1PrepermeabilisationofcellsforFISH Rhodococcus sp. J71 and Gordonia sp. cells were pretreated with lysozyme, achromopeptidaseandmildacidhydrolysis,andtheFISHhybridisationperiodextended to16h,asdetailedintheprotocolofKragelundetal.(2007b),toavoidanyproblemsof falsenegativeFISHresultsarisingfromcellwallimpermeability.Slidesweretransferred sequentiallythroughanethanolseriesof50%[v/v],80%[v/v]and96%[v/v]for3min ateachconcentration,andallowedtoairdry.Lysozyme(20l:10mgml1lysozyme(0.5 MEDTA(pH8),1MTrisHCl,(pH7.5))wasaddedtoeachwellandslidesincubated horizontally in a 50 ml centrifuge tube containing damp paper towel to retain high humidity at 37 °C for 30 min. Slides were immersed in distilled water, followed by ethanol,andallowedtoairdry.20lofachromopeptidase(60Uml1in0.01MNaCl, 0.01MTrisHCl,(pH8))wasaddedtoeachwellandslidesagainincubatedhorizontally asabove.Slideswereagainimmersedinethanolandallowedtoairdrybefore20lof 0.1MHClwasaddedtoeachwellandtheslidesthenincubatedatroomtemperaturefor 10min,beforebeingimmersedin96%[v/v]ethanolfor2minandallowedtoairdry. TheFISHhybridisationstepwasthenperformedasdetailedinSection2.2.3.

159

Table5.2:Oligonucleotidesequencesusedinthisstudy. Oligonucleotidename Sequence(5’3’)a TargetOrganisms/Description Form(%)b Reference 27F GAGTTTGATCMTGGCTCAG MostBacteria N/A (Lane,1991) 1525R AAGGAGGTGWTCCARCC MostBacteria N/A (Lane,1991) EUB338Ic GCTGCCTCCCGTAGGAGT MostBacteria 35 (Amannetal.,1990) EUB338IIc GCAGCCACCCGTAGGTGT Planctomycetales 35 (Daimsetal.,1999) EUB338IIIc GCTGCCACCCGTAGGTGT Verrucomicrobiales 35 (Daimsetal.,1999) NONEUB ACTCCTACGGGAGGCAGC ControlprobecomplementarytoEUB338 N/A (Wallneretal.,1993) TFO_DF218 GAAGCCTTTGCCCCTCAG ClusterIDefluviicoccusrelatedorganisms 35 (Wongetal.,2004) DF198 ATCCCAGGGCAACATAGTCT ClusterIIIDefluviicoccusrelatedorganisms 35 (Nittamietal.,2009) SBR91a AAGCGCAAGTTCCCAGGTTG ‘SphingomonasrelatedGAO’ 30 (Beeretal.,2004)

SBR91aRC CAACCTGGGAACTTGCGCTT ‘SphingomonasrelatedGAO’ 30 (Beeretal.,2004: erratum) SBR91aComp(a) AAGCGCARTTCCCAGGTTG CompetitorforclustersI,IIIandIVDefluviicoccusrelated N/A Thisstudy organisms SBR91aComp(b) AAGCGCAATTCCCAGGTTG CompetitorforclusterIDefluviicoccusrelatedorganisms N/A Thisstudy SBR91aInsBulge AAGCGCAATCCCAGGTTG SBR91aprobeminusaninternalbase N/A (adaptedfromBeeret al.,2004) SBR91aComp CAACCTGGGAATTGCGCTT ProposedtargetforSBR91awithinclusterIDefluviicoccus N/A (adaptedfromBeeret Targete relatedTFO al.,2004) ACA23A ATCCTCTCCCATACTCTA Acinetobacter 35 (Wagneretal., 1994b) ACA23ADelBulged ATCCTCTCCCCATACTCTA ACA23Aprobewithadditionalinternalbase 35 (adaptedfrom Wagneretal.,1994b) ACA23AInsBulgeA ATCCTCTCCATACTCTA ACA23Aprobeminusaninternalbase (adaptedfrom Wagneretal.,1994b) ACA23AInsBulgeB ATCCTCTCCCTACTCTAG ACA23Aprobeminusaninternalbaseextendedonebase(3’) (adaptedfrom Wagneretal.,1994b) ACA23ATargete TAGAGTATGGGAGAGGAT TargetsequenceforACA23Aprobe N/A (adaptedfrom

160

Wagneretal.,1994b) HGC69A TATAGTTACCACCGCCGT Actinobacteria(highG+CGrampositivebacteria) 25 (Rolleretal.,1994) HGC69ADelBulged TATAGTTACTCACCGCCGT HGC69Aprobewithanadditionalinternalbase 25 (adaptedfromRoller etal.,1994) HGC69AInsBulge TATAGTTCCACCGCCGT HGC69Aprobeminusaninternalbase 25 (adaptedfromRoller etal.,1994) HGC69ATargete ACGGCGGTGGTAACTATA TargetsequenceforHGC69A N/A (adaptedfromRoller etal.,1994) Gor596 TGCAGAATTTCACAGACGACGC Gordonia 20 (delosReyesetal., 1997) Gor596DelBulged TGCAGAATTTCTACAGACGACGC Gor596probewithanadditionalinternalbase 20 (adaptedfromdelos Reyesetal.,1997) Gor596Target GCGTCGTCTGTGAAATTCTGCA TargetsequenceforGor596 N/A (adaptedfromdelos Reyesetal.,1997) Tth1248 TCCCCGTTGCCGGGTGGC Thermusthermophilus 70 (Byersetal.,1997; Hayesetal.,Inpress) Tth1248DelBulged TCCCCGTTGCCCGGGTGGC Tth1248probewithanadditionalinternalbase 70 (adaptedfromByers etal.,1997) Tth1248Targete GCCACCCGGCAACGGGGA TargetsequenceforTth1248 N/A (adaptedfromByers etal.,1997) Goam192 CACCCACCCCCATGCAGG Gordoniaamarae 30 (delosReyesetal., 1997) a.AlloligonucleotidesusedforFISH(seetext)werelabelledwitheitherFLOUS(5(6)carboxyfluoresceinNhydroxysuccinimideester),CY3orCY5(exceptwhen includedasacompetitor,orhelperprobe)andsuppliedbySigmaGenosys(CastleHill,NSW,Australia); b.ConcentrationofformamidewhenappliedinFISH,N/A =Notapplicable;c.AppliedinequimolaramountsasEUBmix;d.Additionalbaseisinboldandunderlined.e.usedforTmdeterminationexperiments(Section5.2.5).

161 5.2.4.2InsituRNAsetreatment PFA fixed biomass was applied to slides coated with Vectabond (Vector Laboratories, USA) and allowed to air dry. RNAse treatment was performed as detailed in Section 3.2.3.1.FISHwasthencarriedoutasinSection2.2.3. 5.2.5Dissociationtemperature(Tm)determination Themeltingpoints(Tm)ofsetsofDNA/DNAoligonucleotideduplexesweredetermined frommeltcurveanalysisusinganiCyclerIQTMMulticolorRealTimeDetectionSystem (BIORAD,Hercules,CA,USA).Eachreactioncontained0.9MNaCl,20mMTrisHCl (pH 8.0), 5 × SYBR Green and 8 M of each DNA oligonucleotide in 96 well semi skirted PCR plates (Thermo Scientific), sealed with microseal B adhesive seal (BIO RAD),withareactionvolumeof25l.Reactionswereheldat90°Cfor2minandthen at40°Cfor1min.Thetemperaturethenincreasedby0.5°Cevery10suntilreaching95 °C.Eacholigonucleotidewasalsotestedaloneasacontrolagainstselfassociation.Each reactionandcontrolrunwasperformedintriplicate. 5.2.6Thermodynamicstabilityofsinglenucleotideinsertionsanddeletions Free energy values (∆G°) for the RNA/DNA duplexes were calculated using the conditionsof1M[Na+]and37°CandthenearestneighbourvaluesofSugimotoetal. (1995). Although these salt and temperature values differ from those typically used in FISH (0.9M Na+, 46 °C), they are within the range of reasonable error for the nearest neighbourmodel(LangandSchwarz,2007).Sinceno∆G°valuesforsinglenucleotide insertions or deletions in RNA/DNA duplexes have been reported in the literature, the freeenergyvaluesfor RNA/RNAduplexeswereused(Znosko et al., 2002), as single nucleotide insertions and deletions display similar free energy penalties for both RNA/RNAandDNA/DNAduplexes(ZhuandWartell,1999).Althoughafreeenergy model based on empirical values is desirable, given the wide range of hybridisation efficienciesobservedinFISHarisingfromtargetedrRNAsecondarystructure(Fuchset al.,1998),anydeviationresultingfromtheseassumptionsshouldfallwithintheexpected error.

162

The∆G°bulgevalueswerecalculatedusingEquation1and2forpyrimidineandpurine bases,respectively(Znoskoetal.,2002).

∆G°bulge=3.9+0.1∆G°nnkcal/mol (1)

∆G°bulge=3.30.3∆G°nnkcal/mol (2)

where∆G°nnisthecalculatedfreeenergyoftheneighbouringbasepairofthetwo basesflankingthebulge Acorrection factorof0.8kcal/molwasappliedforthesocalledGroup IIbulges(i.e. thosewhereoneoftheneighbouringbasesisidenticaltotheinsertedbase)(Znoskoetal.,

2002).Anadditionalnonnearestneighbourcorrectionfactorwasappliedtothe∆G°bulge to account for the empirically observed lower disruption to the duplex free energy resulting from mismatched and bulged bases at duplex ends (Carlon and Heim, 2006; Pozhitkovetal.,2006).Thiscorrectionfactorwas0.9,0.8and0.7forbulgeslocated3,2 and1nucleotidesfromeitherendoftheduplexrespectively. 5.2.7 Detecting nontarget single base insertions and deletions sites in FISHprobes To enable the detection of nontarget sites containing single nucleotide insertions and deletions, a simple command line program (LOOPOUT) was written in ANSI C. This program(conceivedandconstructedbyDrDanielTillett(LaTrobeUniversity,Bendigo) generatesallpossibleinsertion/deletionvariantsofaselectedFISHprobeandoutputsa FASTAformattedtextfile.Thisfilecontainseachpossibleprobealongwiththebinding ° free energy at each nontarget site and the ∆G bulge of each possible bulged base. The softwareisavailableinWindows,AppleMacOSX,andLinuxx86binaryversionsfrom http://www.ribosome.org/loopout/. 5.3Results 5.3.1TheSBR91putativeGAO16SrRNAclonesequenceisachimera TheoriginalSBR91clone16SrRNAsequence(AY254694)usedtodesigntheSBR91a andSBR91bFISHprobeshadbeenfoundnottobeachimerabyBeeretal.,(2004)after checks with the Chimera Check program (Ribosomal Database Project II) (Cole et al., 163 2003).ItwasincludedsubsequentlyintheGreengenesdatabase(DeSantisetal.,2006), aftertheBellerophonsoftwarealsofailedtorecogniseitasaputativechimera.However, subsequentscreeningofshort(approx.100bp)sectionsofthesequenceagainsttheNCBI GenBank database in this study revealed that the SBR91 clone sequence is indeed chimeric.Thus,thefirst170bpareinthereverseorientationtotherestofthesequence (Fig.5.1),anartefactseeninseveralother16SrRNAsequencesstillavailableinpublic databases(Ashelfordetal.,2005).Thefollowingsequenceregionis96%identicaltoan uncultured gammaproteobacterial clone 16S rRNA sequence (AY741401), while the remainder shares 96 % identity with an uncultured Sphingopyxisrelated 16S rRNA sequence(EF157083).Theentiresequenceis89%identicaltothatofSandaracinobacter sibiricus(Fig.5.1).ThechimericbreakpointoftheSBR91clonesequenceisestimated tobeataroundEschericiacoliposition725asdeterminedbyPintailsoftware(Ashelford et al., 2005). Phylogenetic analysis of individual fragments of the SBR91 sequence clearlyrevealsthechimericnatureoftheclone,withfragmentsclusteringwithinboththe alphaproteobacterialandgammaproteobacterialClassdivisions(Fig.5.2). 5.3.2 Where does the SBR91a probe bind to this chimeric 16S rRNA sequence? Beeretal.(2004)reportedthattheirSBR91aprobetargetedcoccithatalsorespondedto the ALF968 probe designed against the Alphaproteobacteria (Neef et al., 1999). However, both their SBR91a and SBR91b probe target sites fall within the gammaproteobacterial section of the SBR91 clone sequence (see Fig. 5.1). This sequencewasreportedtocontainthetargetsitefortheSPH120probeforSphingomonas spp.(Neefetal.,1999),yetthelatterprobefailedtolightuptheSBR91aFISHpositive cells(Beeretal.,2004).IntheirpaperBeeretal.(2004)detailedthetargetsequenceof theSBR91aproberatherthanitsreversecomplement(correctedinalatererratum(Beer et al., 2004: erratum)). However, when a FISH probe with this reverse complement sequence(SBR91aRC,aspublishedintheerratum:Table5.2)wasappliedtobiomass samplesfromtheoriginalSBR9reactorbiomassinthisstudy,nofluorescentcellswere observed (data not shown), confirming the probe was used in the original published orientationincludedintheBeeretal.(2004)study.

164

Figure5.1:DiagrammaticrepresentationofthechimericnatureoftheSBR9116SrRNAclonesequence.BasenumberingisbasedontheSBR91sequenceas submittedtotheNCBIdatabase(notE.colipositionnumbering).i.=intendedbindingsiteforthenonpublishedSBR91aRCprobesequence(Beeretal.,2004: erratum);ii=potentialbindingsiteforpublishedSBR91aprobe(Beeretal.,2004);iii.=intendedbindingsiteforthenonpublishedSBR91bRCprobe(Beeretal., 2004:erratum);iv.=bindingsitesfortheSPH120probe;v.Estimatedchimericbreakpoint(Pintail).

165

Figure5.2:MaximumlikelihoodphylogenetictreeoftheSBR91sequence,andselectedrelatedsequences,constructedusingtheARBsoftwarepackage(Ludwiget al., 2004). a. Includes the ‘complete’ SBR91 sequence. b. Includes the three chimera fragments of the SBR91 sequence based on the theoretical chimeric breakpoints(seeFig.5.1).SBR91sequenceswereaddedaftertreeconstructionwiththe‘quickadd’functionofARBandindicatedinredandboldfont.TheSBR9 S1cloneobtainedinthisstudyisgiveninblueandboldfont.ProbecoverageoftheSBR91aprobeisshownwithredbrackets.Defluviicoccusrelatedsequenceswith theexactSBR91aprobesitebutasinglemissinginternalbaseareindicatedbythepurplebrackets.Phylogeneticaffiliationsareindicatedwithbracketstotheleft.

166 Apotentialbindingsite,withtwoterminalmismatcheswiththepublishedSBR91aprobe islocatedatE.coliposition654intheSBR91clonesequence(Fig.5.1;Table5.3).The terminalmismatchesmakelittledifferencetothecalculated∆Goftheprobetargethybrid (22.61to20.96kcal/mol:asestimatedwithdefaultsettingsforprobeCheck(Loyetal., 2008)). However, this site is within the Sphingopyxisrelated region of the chimeric sequence that also contains the SPH120 probe target (Fig. 5.1), which as mentioned earlier,doesnotbindtoSBR91aFISHpositivecells. 5.3.3IstheSBR91aFISHprobebindingtotheRNA? Remarkably the TFO dominating the frozen SBR9 reactor biomass sample which had been kept at 20 °C for eight years still gave strong FISH signals with the published versionoftheSBR91aprobeafterPFAfixation(Fig.5.3a).Treatingthissamplewith RNAsebeforeattemptinghybridisationwiththisSBR91aprobeledtoacompletelossof cell fluorescence (Fig. 5.3b.), indicating that it was binding specifically to the RNA withinthesecells. 5.3.4Towhatother16SrRNAsequencesdoesthisSBR91aprobebind? Beeretal.(2004)reporteddifficultiesingenerating16SrRNAclonelibrarydatafrom DNAextractedusingaMoBioextractionkitwhichagreedwiththeirFISHdatashowing thatthealphaproteobacterialTFOdominatedthecommunity.ThereforetwootherDNA extractionmethods,showninanearlierstudytoextractDNAefficientlyfromthePAO andGAOpopulations(Chapter3),wereappliedtotheoriginalfrozenbiomasssample.A small 16S rRNAgene clonelibrary constructed using this extracted DNA astemplates showedthatoften16SrRNAgeneclonessequenced,ninewere97%identicaltothe16S rRNAsequence of Defluviicoccus vanus(AF179678),andidenticaltothesequenceof cloneTFOa44(AY351640)designatedbyMeyeretal.(2006)asamemberofclusterI DefluviicoccusvanusrelatedTFO(seeFig.5.2).Furthermore,applyingtheFISHprobes availablefor theDefluviicoccusrelated members to this SBR9reactor biomass showed the majority of the TFO hybridised with the TFO_DF218 probe for cluster I Defluviicocusrelated sequences. These TFO_DF218 FISH positive cells were largely congruent with those responding to the published version of the SBR91a FISH probe (Fig.5.4a).

167

Table5.3:MismatchesintargetsitesbetweenFISHprobesandselected16SrRNAsequences E.coli Sequenceorigin Sequencec pos.a SBR91aProbe 5’ A A G C G C A A G T T C C C A G G T T G 3’ SBR91(AY254694) 932 3’ U U C G C G U U C A A G G G U C C A A C 5’ SBR91(AY254694) 654 3’ G U G G C G U U C A A G G G U C C A A C 5’ AllclusterIDefluviicoccus 620 3’ C U U C G C G U C A A G G G U C C A A C 5’ 620b 3’ U U C G C G U U – A A G G G U C C A A C 5’ ClustersIIIandIVDefluviicoccus 620 3’ U U C G C G U – C A A G G G U C C A A C 5’ a Eschericia coli position on the 16S rRNA sequence; b. Alignment allowing for the missing base; c Target sequences mismatches are in grey and italicised.

168

169 Figure 5.3: Phase andcorresponding FISH micrographs for competitor probe experiments with bulge probes. a. f. SBR9 biomass: a. SBR91a (CY3) (no pre treatment of biomass); b. SBR91a (CY3) (biomass pretreated with RNAse); c. NONEUB (CY3); d. SBR91a (CY3); e. SBR91a (CY3) + SBR91aComp(a) (unlabelled);f.NONEUB(CY3).g.i.BiomassfromBendigoWWTP:g.SBR91a(CY3);h.SBR91a(CY3)+SBR91aComp(a)(unlabelled);i.NONEUB(CY3). j.l. Acinetobacter baumanniistr. ATCC 19606: j. ACA23aBulge (CY3) + NONEUB (CY5); k. ACA23aBulge (CY3) + ACA23a (CY5); l. ACA23a(CY5) + NONEUB(CY3).Micrographsforeachfluorochrome,ineachrow,weretakenatthesameexposuretimeforcomparison.Wheremultiplefluorochromesarereported theFISHimageissplit.Allscalebarsrepresent10m.

170 Analysis of all available Defluviicoccusrelated 16S rRNA clone sequences with ARB including those obtained in this present study, showed that the binding site for the published SBR91a FISH probe sequence was missing from them. However ‘Probe Match’(Coleetal.,2009)revealedthatsomeDefluviicoccusrelatedsequencescontained the perfect binding site for this SBR91a probe, except that an additional internal nucleotidewasmissingfromitstargetsite.Subsequentanalysisrevealedthatthissame siteoccurredinalmostallavailable16SrRNAsequencesbelongingtoclusterI,IIIand IV Defluviicoccus membersbutnotthoseinclusterII members(Table 5.3; Fig. 5.2), which also contained other base mismatches. When the SBR91a FISH probe with the sequenceaspublished(Beeretal.,2004)wasappliedtobiomassfromtheBendigoEBPR plantknowntocontainfilamentousclusterIIIDefluviicoccusmembers(thesourceofthe majorityofavailablesequencesforthiscluster;Chapter4),thesefilamentsalsogavea strong positive fluorescence. This outcome was confirmed by double probing with the DF198probeforclusterIIIDefluviicoccusmembers(Fig.5.4b.). 5.3.5 Investigating the possibility that bulge FISH probes can still hybridisewiththeirtargetsites TodeterminewhetherthepublishedversionoftheSBR91aFISHprobewasbindingto thecomplementary targetregionsinthe Defluviicoccusrelated sequences, and looping out from the missing base (Fig. 5.5a.) a competitor probe was designed (SBR91a Comp(a)), which was a perfect match for the suspected target region (Table 5.3; Fig. 5.5b). When this competitor probe was applied together with the SBR91a probe to biomass samples from the SBR9 reactor and the Bendigo EBPR community, no fluorescence was evident from the cells which had fluoresced earlier when the same SBR91aprobewasappliedalone(Fig.5.3eandh.).Thissupportsfurthertheclaimthat theSBR91aFISHprobeisbindingtothe16SrRNAofDefluviicoccusrelatedsequences inthisregion.

171

Figure5.4:FISHmicrographsofa.SBR9biomassandb.BendigoWWTPusingthefollowing probes:EUBmix(Fluos=green);DF218(CY5=blue);SBR91a(CY3=red).Green+blue+ red=white;green+blue=lightblue;green+red=yellow.Scalebarsrepresent10m.

Figure5.5:a.DiagrammaticrepresentationoftheSBR91aFISHprobeformingaloopoutto hybridise to the Defluviicoccusrelated sequences. b. Diagrammatic representation of the proposedactionofthecompetitorsequencetotheSBR91aprobe.

172 5.3.6TheconundrumoftheSBR91bprobe Anadditionalprobe,SBR91b,wasdesignedagainsttheSBR91sequenceandappliedto theSBR9biomasstoconfirmthepositiveresultobtainedwiththeSBR91aprobe(Beer etal.,2004).However,itsapplicationtotheSBR9biomassfailedtogiveafluorescence signalfromtheTFOabovebackgroundlevelsasdeterminedwiththeNONEUBnegative controlFISHprobe.Theoriginalpapermentionedthatthefluorescenceconferredbythis probewasweak,andtherecordedhighbackgroundfluorescenceofthe Defluviicoccus clusterswasprobablymisinterpretedbytheauthorsasapositiveFISHsignal. 5.3.7TheabsenceofSBR91apositivecellsinotherstudies ThefailureofthepublishedversionoftheSBR91aprobetohybridisetocellsinEBPR communities which contained cluster I Defluviicoccus populations and analysed elsewhere,mayarisebecausethereversecomplementofitspublishedsequenceinanon lineerratuminMicrobiology(Beeretal.,2004:erratum)wasusedinstead.Alternatively, cellsrespondingtotheclusterIDefluviicoccusFISHprobemaynotallrespondtothis SBR91aprobeinitsoriginalpublishedorientation,asthedatashowninFig.5.4awould suggest. 5.3.8Doestheproblemofbindingtonontargetsitescontaininginsertions ordeletionsoccurwithotherFISHprobes? TheresultsobtainedwiththeSBR91aFISHprobeledtoaninvestigationtoseeifthe ability of this probe to bind to nontarget sites containing nucleotide insertions or deletions is unique to it, or is a more general problem and found with other probes. Revealingothersimilarexampleswouldalsoprovidefurtherevidencetosupporttheview that‘bulge’bindingwasactuallyresponsibleforthehybridisationoftheSBR91aprobe to‘Defluviicoccus’members. Consequently,FISHprobesweresynthesisedtocreate‘insertion’and‘deletion’variants of four FISH probes (ACA23A, HGC69A, Gor596 and Tth1238), all whose target organismsarefoundfrequentlyinactivatedsludgecommunitiesandareavailableaspure cultures(Tables5.1and5.4).Thesepossesseitheranadditionalnucleotide,referredto hereas‘deletionbulgeprobes’sincetheymimictheeffectofasinglebasedeletionin 173 therRNAtemplate,orhaveasinglenucleotidedeleted,whilemaintainingthesametarget site. The latter are referred to here as ‘insertion bulge probes’, since they mimic the effectofasinglebaseinsertioninthetemplate.An‘insertionbulgeprobe’versionofthe SBR91a probe was also synthesised. All deleted and inserted bases were centralised sincemicroarrayhybridisationstudiessuggestthatthislocationisthemostdisruptiveto theformationofastablehybridisedduplex(Naiseretal.,2008). When applied as FISH probes to pure cultures of their respective target organisms, positive fluorescencesignalswereobtained in allcaseswiththe deletionbulge probes, despitetheadditionalcentralnucleotide(Fig.5.6b,fandk.).Thesingleexceptionwas theGor596DelBulgeforGordoniasp.(Fig.5.6pandq.).However,itshouldbenoted thatthefluorescencesignalintensitywiththenormalGor596probewasweak,requiring extendedexposuretimes.Therefore,evenaslightdropinintensitywiththebulgeprobe mayhavebeensufficienttoeliminateanysuchfaintfluorescence. Toconfirmthatthedeletionprobeswerebindingtothesamesiteasthenormalprobes, the ACA23A probe and the ACA23ADelBulge probe, labelled with different fluorophores,wereappliedtocellsofAcinetobacterbaumanii.Bothgeneratedareduced cellfluorescence comparedtothat obtained wheneachprobe wasappliedindividually (Fig5.3j.l.).Thesedatawiththedeletionprobesagreewithearlierstudiesonnucleotide duplexes,wheresinglebaseinsertions/deletionshadonlyaminordestabilisingeffecton theduplexfreeenergyvalues(ZhuandWartell,1999;Znoskoetal.,2002).

174

Table5.4:SummaryofdataforvariationsinbindingenergiesforbulgeFISHprobes. Tm(°C)c [FA]md ∆G°e Oligonucleotide Hybridsequencea Typeb f f ° f (∆Tm(°C)) (∆[FA]m) (∆G bulge) SBR91aComp(b) 82.2±0.7 40±2 24.5 SBR91a I 76.0±1.2 37±3 20.9 (6.2) (3) (3.6) SBR91aInsBulge II 76.5±0.0 25±2 20.7 (5.7) (15) (3.8) ACA23A 75.3±0.7 60±2 23.7 ACA23ADelBulge II 71.7±0.7 53±2 20.9 (3.6) (7) (2.8) ACA23AInsBulge(a) II 68.5±1.2 19±2 17.9 (6.8) (41) (5.8) ACA23AInsBulge(b) I ND 41±3 20.2 (19) (3.5) HGC69A 79.3±0.7 32±4 24.3 HGC69ADelBulge I 73.0±1.2 <11±3 20.7 (6.3) (>21) (3.6) HGC69AInsBulge I 73.5±2.2 <16±7 20.1 (5.8) (>16) (4.2) Gor596 83.3±0.7 ND 26.2

175

Gor596DelBulge I 79.7±0.7 ND 21.7 (3.6) (4.5) Tth1248 84.0±2.8 ND 34.8 Tth1248DelBulge II 80.7±1.9 ND 29.1 (3.2) (5.7) Goam192 ND ND 30.4 Goam192(againstRhodococcus I ND ND 27.4 sp.J71) (3.0) Errorsarepresentedas95%confidenceintervals.ND=Notdetermined. a. ProposedrRNAtargetsequencesaregiveninbold. b. The‘bulged’baseintypeIisnotneighbouredbyalikebasewhereintypeIIitis. c. Tm=Experimentallydetermineddissociationtemperature(∆Tmisgiveninparenthesis) d. [FA]m=Formamideconcentrationmeltingpoint(%[v/v])(∆[FA]misgiveninparenthesis). ° 1 ° e. ∆G values(kcalmol estimatedusingthe‘LOOPOUT’program(version0.52)(‘∆G bulge’). f. Differencesarerelatedtotheexactmatchduplexestotakeintoaccountthedifferencesinprobelength.

176

177 Figure5.6:FISHmicrographsforbulgeprobeexperiments.a.d.SBR9biomass:a.SBR91aComp(b)(CY3);b.SBR91a(CY3);c.SBR9InsBulge(CY3);d. NONEUB (CY3); e.i. Acinetobacter baumannii:e. ACA23A (CY3); f. ACA23ADelBulge (CY3); g. ACA23AInsBulge(a) (CY3); h. ACA23AInsBulge(b) (CY3);i.NONEUB(CY3);j.m.Tetrasphaerajenkinsii:j.HGC69A(CY3);k.HGC69ADelBulge(CY3);l.HGC69AInsBulge(CY3);m.NONEUB(CY3).n.s. Gordoniasp.(n.,p.andr.Gordoniaterraeando.q.ands.Gordoniaamarae):n.ando.Gor596(CY3);p.andq.Gor596DelBulge(CY3)r.ands.NONEUB (CY3).t.v.Thermusthermophilus:t.Tth1248(CY3);u.Tth1248DelBulge(CY3); v.NONEUB(CY3).Micrographsforeachfluorochrome,ineachrow,were takenatthesameexposuretimeforcomparison.Allscalebarsrepresent10m.

178 A more pronounced effect was seen with those probes containing a deleted base (simulatinginsertionsintherRNA).ApplyingtheACA23AInsBulgeprobe,whichlacks aCnucleotideatposition9(Table 5.4), led to a reduction in the fluorescence signal intensitycomparedtothatobtainedwiththeACA23Aprobe(Fig.5.6g).Thisprobably arisesfromanadditionallargeduplexfreeenergypenaltyoftheprobefromhavingone less base (Znosko et al., 2002), which could be confirmed by designing a ‘Insertion’ probe with an additional base added to the 3’ end of the ACA23A probe (ACA23A BulgeIns(b)).Thisprobewasdesignedtogiveatheoretical∆G°withitsperfectmatch (23.9 kcal mol1)as closeas possibletothat oftheACA23A probe (23.7 kcalmol1) (Table5.4). InthiscaseFISHhybridisationimpartedastrongpositivesignaltotheA. baumanniicellsattherecommendedformamidehybridisationconcentration(Fig.5.6h.). TheHGC69AInsBulgeprobeaffectedthefluorescencesignalintensityinasimilarway to that observed with the corresponding insertion duplex probe (HGC69ADelBulge) ° (Fig. 5.6l.), which reflects the similarity of the calculated ∆G bulge values for thesetwo probes(Table5.4). 5.3.9 Can the binding efficiency of FISH probes to nontarget sites containinginsertionordeletionsbepredictedfromtheoreticalfreeenergy calculations? Since the process of FISH probe binding is complicated by several factors, including rRNA template secondary structure (Fuchs et al., 1998; Yilmaz et al., 2006), possible effects of insertions and deletions in the FISH target site on probe binding were investigatedbycarryingoutaseriesofformamidetitrationexperiments(Fig.5.7).Each formamide dissociation curve was then compared to the theoretical free energy calculationsandtheexperimentallydetermined∆Tmforthesameprobeset(Table5.4). ° The∆Tmand∆G bulgevaluesfortheinsertionanddeletionduplexescorrespondedwell, as might be expected given that these theoretical values are calculated from a model based on free solution duplex formation (Table 5.4). The outcomes of the formamide ° dissociationexperimentsweremorecomplex.Nevertheless,duplexeshaving∆G bulgeof lessthan3.8kcalmol1allgave∆[FA]mvaluesoflessthan20%,alevelwhichcanmake selectiveprobebindingtothetargetsiteoverthenontargetsitesdifficultorimpossibleto achievebyexperimentalhybridisationoptimisation(Yilmazetal.,2008).

179 ° 1 Thesedatasuggestthatatentative∆G bulgethresholdofatleast4kcalmol canbeusedto screenFISHprobesinsilicoforpossibleproblematicnontargetbinding.Again,asFISH probebindingisinfluencedbyfactorslikerRNAsecondarystructure(Fuchsetal.,1998), anytheoreticallycalculatedthresholdcanonlybeanestimateofthepotentialfornon targetbinding,andpossibleexclusionrequiresexperimentalconfirmation(Yilmazetal., 2008). 5.3.10Arenontargetsitescontaininginsertionsanddeletionscommonly foundforexistingFISHprobes? A survey against the Ribosomal Database Project II (RDPII) 16S rRNA sequence databaseof50publishedFISHprobesrevealedthat70%matchednontargetsequences withsinglebaseinsertionsordeletions(Table5.5).Whilethefrequencyofoccurrenceof thesesitesismuchlowerthanforsinglebasemismatches(approx.26times),onaverage therewere55.7sequenceswithinsertion/deletionsitesdetectedforeachprobe.Sincethe continuallyexpandingRDPIIdatabasecontainsonlyaverysmallsubsetofthe16SrRNA sequence diversity existing in nature (Amann and Ludwig, 2000; Amann and Fuchs, 2008), it is likely that many more as yet undetectable, but potentially problematic, ‘insertion/deletion’nontargetsequencesexistinnaturalcommunities. 5.3.11 Screening for nontarget sites containing single nucleotide insertions and deletions and predicting the likelihood of FISH probe binding. SincethemostcommonlyusedFISHprobedesignsoftwarepackagesdonottakeinto accountthepossibilityofnontargetinsertion/deletionsites,asoftwaretool(LOOPOUT) is described here to screen for these in current rRNA gene sequence databases. The software generates all possible single nucleotide insertion/deletion combinations for a ° ° given FISH probe and the corresponding theoretical ∆G and ∆G bulge values for each variant. LOOPOUT generates a FASTA format file compatible with the ProbeCheck program(Loyetal.,2008),whichenablesanyprobetobescreenedagainst16SrRNA gene sequence databases and its possibility of binding to nontarget insertion/deletion sitesdetermined.

180

Figure5.7:FormamidedissociationcurvesforselectedFISHprobesandtheir‘bulge’variants. Fluorescence is represented as corrected RFU for each probe, and error bars represent 95 % confidenceintervalsbasedonfiftyindividualreadingsforeachpoint.a.SBR91aprobesapplied to the SBR9 biomass of Beer et al. (2004); b. ACA23A probes applied to Acinetobacter baumannii;c.HGC69AprobesappliedtoTetrasphaerajenkinsii.

181

Table5.5:Surveydatashowingthefrequencyofsinglebaseinsertions/deletionsforselectedFISHprobesequences. Bulgesb,c Single ∆G° Probe TargetGroup E.coliposition Hits a bu Reference Mis Ins Del Tot lge <4.0d 21N Eikelboomtype021NstrainII26 652669 17 216 10(3) 0 10(3) 10 (Wagneretal., 1994a) ACA652 Acinetobacter 652669 4118 1975 70(14) 619(4) 689(18) 71 (Wagneretal., (ACA23A) 1994b) actino1011 Tetrasphaera japonica, EBPR clone Ebpr19, Ebpr20 10111029 142 197 0 2(2) 2(2) 1 (Liuetal.,2001) (Actinobacteria) Actino221 ActinobacterialPAO 221238 5 984 0 0 0 0 (Kongetal.,2005) Actino658 ActinobacterialPAO 658675 27 134 1 3(3) 4(4) 1 (Kongetal.,2005) ALBO577 Alcaligenes,Bordetellaandcloserelatives 577593 1466 4040 25(7) 86(3) 111(10) 34 (Friedrichetal., 2003) AMAR839 Amaricoccusspp. 839860 52 76 0 3(2) 3(2) 0 (Maszenanetal., 2000a) Amx820 Anaerobicammoniumoxidisingbacteria,Candidatus‘Brocadia 820841 212 16 1 4(1) 5(2) 5 (Schmidetal., anammoxidans’andCandidatus‘Kueneniastuttgartiensis’ 2001) Apr820 Candidatus‘Anammoxoglobuspropionicus’ 820840 44 4 0 0 0 0 (Kartaletal.,2007) Ban162 (B. Candidatus‘Brocadiaanammoxidans’ 162179 20 33 0 0 0 0 (Schmidetal., anam.) 2001) Bfu613 Candidatus‘Brocadiafulgida’ 613636 11 56 0 0 0 0 (Kartaletal.,2008) Cate1013 Candidatus‘Catenimonasitalica’ 10131032 1 0 0 0 0 0 (Levantesietal., 2004) CHL1851 FilamentousbacteriumEikelboomType1851 592611 31 26 0 0 0 0 (Beeretal.,2002) Combo Candidatus‘Combothrixitalica’ 10311050 3 0 0 0 0 0 (Levantesietal., 1031 2004) CteA Comamonastestosterone 462481 352 54 3(3) 1 4(4) 3 (BatheandHausner, 2006) DEN124 Acetatedenitrifyingcluster 124143 1 259 0 10(1) 10(1) 0 (Ginigeetal.,2005) DEN581 Acetatedenitrifyingcluster 581600 107 7050 1 6(2) 7(3) 1 (Ginigeetal.,2005) DEN67 Methanolutilisingdenitrifyingcluster 6784 38 2545 3(1) 0 3(1) 3 (Ginigeetal.,2005) DLP Nocardioformactinomycetesp. 182202 88 146 0 0 0 0 (Schuppleretal., 1998) EU251238 Filamentous‘Chloroflexi’ 12381257 12 0 0 0 0 0 (Kragelundetal., 2007a) 182

G123T Thiothrix eikelboomii, T. nivea, T. unzii, T. fructosivorans, T. 697714 346 4369 2(1) 1 3(2) 2 (Kanagawaetal., defluvii,Eikelboomtype021NgroupI,II,III 2000) G1B Eikelboomtype021NgroupI 10291046 24 54 26(1) 4(1) 30(2) 26 (Kanagawaetal., 2000) G2M Eikelboomtype021NgroupII 842859 33 7 0 2(2) 2(2) 1 (Kanagawaetal., 2000) G3M Eikelboomtype021NgroupIII 9961013 27 135 0 0 0 0 (Kanagawaetal., 2000) Gam1019 Some‘Competibacter’ 10191036 6 113 8(3) 192(2) 200(5) 8 (Nielsenetal., 1999) Gam1278 Some‘Competibacter’ 12781297 58 447 3(1) 1159(2) 1162(3) 3 (Nielsenetal., 1999) GAOQ431 ‘Competibacter’ 431448 98 1644 1 0 1 1 (Crocettietal., 2002) GAOQ989 ‘Competibacter’ 9891006 63 232 4(2) 0 4(2) 4 (Crocettietal., 2002) GB Novelgammaproteobacterialgroup 612628 124 13 0 0 0 0 (Kongetal.,2002a) GB_4 Novelgammaproteobacterialgroup 10201037 18 29 0 3(1) 3(1) 0 (Kongetal.,2002a) GB_7 Novelgammaproteobacterialgroup 10001017 14 27 6(1) 0 6(1) 6 (Kongetal.,2002a) GB_G2 Novelgammaproteobacterialgroup 9891006 36 331 27(1) 0 27(1) 27 (Kongetal.,2002a) GLP1 Gordoniasp.SMKN27, Gordoniasp.SMKN12,Gordoniasp. 174193 4 47 0 0 0 0 (Schuppleretal., SMKN17, Gordona sp. SMKN14, (nocardioform 1998) actinomycetes) GLP2 Gordoniasp.SMKN29,Gordoniasp.SMKN15,(nocardioform 178197 8 3 0 4(3) 4(3) 0 (Schuppleretal., actinomycetes) 1998) GLP3 Nocardioformactinomycetesp. 182202 1 86 0 0 0 0 (Schuppleretal., 1998) Goam192 Gordoniaamarae 192209 34 166 21(1) 44(2) 65(3) 62 (delosReyesetal., 1997) Gor596 Gordonia(Gordona) 596617 271 15 1 1 2(2) 1 (delosReyesetal., 1997) H71014 ActivatedsludgecloneH7 10141031 41 135 2(2) 0 2(2) 2 (Juretschkoetal., 2002) HHY Haliscomenobacterhydrossis 655672 42 120 0 5(1) 5(1) 0 (Wagneretal., 1994a) HoAc1402 Acidobacteria,activatedsludgeclonesA22,A34,H3,H44,S6 14021419 6173 26100 11(7) 8(4) 19(11) 14 (Juretschkoetal., 2002)

183

Kst157 Candidatus‘Kueneniastuttgartiensis’ 157174 40 3 0 0 0 0 (Schmidetal., 2001) LDI Leptothrixdiscophora 649666 909 5322 30(5) 68(6) 98(11) 29 (Wagneretal., 1994a) LMU Leucothrixmucor 652669 11 852 19(2) 0 19(2) 19 (Wagneretal., 1994a) MLP Mycobacterium sp. SMKN23, Mycobacterium sp. SMKN22, 182202 27 25 0 0 0 0 (Schuppleretal., (nocardioformactinomycetes) 1998) MNP1 Nocardioformactinomycetes 152172 15202 5971 28(20) 23(8) 51(27) 38 (Schuppleretal., 1998) MPA Candidatus‘Microthrix’ 645662 19 213 0 9(3) 9(3) 3 (Erhartetal.,1997) Myc657 Mycobacterium subdivision (mycolic acidcontaining 657672 6398 1178 21(13) 12(5) 33(18) 16 (Davenportetal., actinomycetes) 2000) MZ1 Thaueraspp.mzt1t 646664 1600 2791 7(7) 114(4) 121(11) 7 (Lajoieetal.,2000) NEU MosthalophilicandhalotolerantNitrosomonasspp. 653670 205 2434 43(3) 25(3) 68(6) 43 (Wagneretal., 1995) NIT3 Nitrobacterspp. 10351052 102 592 1 2(1) 3(2) 1 (Wagneretal., 1996) Theprobesscreenedwerethefirst50onthelist‘bacteriaofrelevancetowastewatertreatment’asofJuly2009onprobeBase(Loyetal.,2007).Only thoseprobesvalidatedinsituwereused.ProbeswerescreenedwithProbeMatch(Coleetal.,2009)settodetectuptoasingleerror.a.Probesitewith onesinglemismatch.b.Probesitewithasinglemissing(Del)oradditionaltargetsitebase(Ins).c.Thenumberofdifferentbulgesequencevariationsis giveninparenthesis.d.Calculatedaskcalmol1with‘LOOPOUT’(Section5.3.11).

184

Figure5.8:BoxplotanalysisofbulgemismatchesforselectedFISHprobesequences.Theprobesscreenedwerethefirst50onthelist‘bacteriaofrelevanceto ° wastewatertreatment’asofJuly2009onprobeBase(Loyetal.,2007)andaresummarisedinTable5.5.∆G bulgevaluesarecalculatedusingLOOPOUT.Thenumber ° ofbulgemismatchescontributingtotheanalysisforeachprobearegiveninparenthesisaftertheprobename.Thedottedlinemarksthe∆G bulge<4.0threshold.

185 Thedistributionof∆G°bulgevaluesforthe50probesscreenedearlierisshowninFig. 5.8. Using the ∆G°bulge threshold of 4 kcal mol1 as predictive of sites where hybridisationmaybedifficulttoseparatebyformamideconcentrationmanipulation,29 ofthese50probeshadnontargetsitesbelowthe4kcalmol1threshold,withanaverage of9.4sitesforeachprobe(Table5.5).Ourdatasuggestthat∆G°bulgevaluesbelowthe4 kcalmol1thresholdmayresultinfalsepositivesandthatcautionneedstobeexercised whenitisnotpossibletodetermineexperimentallyifprobebindingatsuchsitescanbe eliminatedbyformamideconcentrationoptimisation. 5.3.12 A case study of the presence of a nontarget single nucleotide insertionsiteresultinginaFISHfalsepositive TheGoam192probewasusedtodemonstratethepotentialimplicationsofthisproblemin FISH analyses. This probe was originally designed to target Gordonia amarae, an organism frequently observed in foaming activated sludge plants (de los Reyes et al., 1997).Insilicoanalysisshowsthatnontargetsitesforthisprobearealsopresentinthe 16SrRNAsequenceoffourculturedactivatedsludgeisolates,RhodococcusstrainsJ27, J71andJ72(respectiveaccessionnumbers:X85240;X85241;X85242)(Soddelletal., 1998), and Cellulosimicrobium sp. HPC22 (AY838324). These sites all have a single nucleotideinsertionbetweenpositions3and4oftheGoam192probe(Table5.4),witha ° 1 predicted ∆G bulgeof3.0kcalmol . When the Goam192 probe was appliedtoapure cultureofRhodococcussp.J71,apositiveFISHfluorescencesignalwasobtainedafter thehybridisationconditionsdescribedbydelosReyesetal.(1997)wereused(Fig.5.9). Thisobservationisimportantsinceboththeintendedtargetandtheorganismscontaining thenontargetsequencearefoundinactivatedsludge.

186

Figure5.9:FISHmicrographsofRhodococcussp.J71cells.a.PhasecontrastandcorrespondingFISHimagewiththeGoam192probe(CY3).b.Phasecontrastand correspondingFISHimagewiththeNONEUBprobe(CY3).Scalebarsrepresent10m.

187 5.4Discussion This study has revealed that the SBR91 sequence used to design FISH probes for the ‘SphingomonasrelatedGAO’(Beeretal.,2004)wasinfactacomplexchimera,madeup ofsequencefromatleastthreesources.Thispaperhasnowbeenretracted(Beeretal., 2009).ChimerasarefrequentlycomprisedofsequencesfromtwoseparateDNAtemplate sources,althoughmorecomplexchimerasareheldinpublicdatabases(Ashelfordetal., 2005). A survey of these databases has estimated that about 9 % of all sequences submittedinclonelibrarysetsarechimeric,whichindicatestheextentoftheproblems withthechimeracheckprotocolscurrentlyavailable,whichisexacerbatedbyanapparent lackoftheirimperativeimplementation(Ashelfordetal.,2006).Onesuggestiononhow theirreliabilitymightbeimprovedistheuseofmultiplecheckprograms,aschimeras missedbyoneareoftendetectedbyanother(Ashelfordetal.,2006).Inthecaseofthe SBR91chimericclonesequence,thePintailsoftware(Ashelfordetal.,2005)wouldhave detecteditssequenceanomalies.Themanualassessmentcompletedinthisstudyshould alsohaverevealedtheanomalies,showingthedangersinrelyingonavailablesoftware programsaloneandtheirselfprofessedroleasadvisorytoolsonly. This study has revealed that the Sphingomonasrelated GAO are in fact members of clusterIDefluviicoccusrelatedorganisms.WesuggestthattheSBR91aprobeisableto bindtothisDefluviicoccussequencebyformingabulgeoutoveramissingbase. IthasbeendemonstratedexperimentallyherethatsuccessfulbindingofFISHprobesto theirrRNAtargetsitesmayoccurevenwhenanadditionalnucleotideispresentineither the probe or its target sequence. Furthermore, in some cases, FISH hybridisation conditionscouldnotbeoptimisedtoeliminatesuchnontargetbinding,posingasimilar problemtothatreportedwithduplexmismatches(Yilmazetal.,2008). Thepossibilityoffalsepositivesresultingfromthissituationisamajorconcernforall quantitativeandqualitativestudieswhereFISHisemployed.CurrentFISHprobedesign softwareincludingARB(Ludwigetal.,2004)andprobeCheck(Loyetal.,2008)make noallowanceforsuchaneffect,astheydonottakeintoaccounttheframeshiftresulting from single base deletion/insertions, and instead assess these sequences as having multiplemismatches(PozhitkovandTautz,2002)(seeTable5.3).Microarraydatafrom RNA/DNAhybridssuggeststhatsinglebaseinsertionsanddeletionsarelessdestabilising

188 thansinglebasepairmismatches(Naiseretal.,2008).Thisisespeciallytrueforwhatare knownas‘GroupII’insertions,wheretheadditionalnucleotideisflankedbyalikebase (ZhuandWartell,1999).Thesehaveahigherbindingaffinitythan‘GroupI’insertions (ie.thosewithnonidenticalflankingnucleotides),resultingfroma‘zipping’oftheprobe duringhybridisation(Naiseretal.,2008).Microarraydataonsinglenucleotideinsertions anddeletionsduplexeshasrevealedthatterminal‘GroupII’bulgeloopscanhavesimilar fluorescence intensities to the actual complementary nonbulge duplex (Naiser et al., 2008). While systematic thermodynamic studies similar to those performed for DNA:RNA hybridisations in solution (Ke and Wartell, 1995; Zhu and Wartell, 1999; Znoskoetal.,2002),orformicroarrays(Naiseretal.,2008)areclearlyrequired,thedata presented here suggest that the presence of nontarget sites containing a nucleotide insertion/deletioncanhaveimportantconsequencesforFISHanalyses. A search of the 16S rRNA sequence databases has revealed that these sites are not unusual among existing FISH probes. An in silico examination of 50 existing probe sequences showed the existence of such nontarget sites for the majority. Furthermore, basedonthefindingsofthisstudy,manyofthesenontargetsiteshavetheoreticalfree energydifferencesbelowthelevelwherebindingdiscriminationfromthecorrectsiteby optimisingthehybridisationstringencyconditionsbecomesdifficult.Allthesinglebase insertionsanddeletionsusedherewerelocatedinthemiddleoftheprobesequencewhere theyexertthehighestpotentialdestabilisingeffect(Naiseretal.2008).Sincethereisa high probability that many insertions or deletions will be located close to the terminal endsoftheprobes,andthatcurrentdatabasescontainonlyafractionoftheestimatedtotal sequence diversity (Amann and Ludwig, 2000), the potential for false FISH positives mustbeconsiderable. To the best ofour knowledge, insertions/deletions in nontarget sequencescan only be detectedbyProbeMatch(Coleetal.,2009)forsequencesintheRDPIIorbyusingthe PROBEprogram(PozhitkovandTautz,2002).UnlikePROBE,LOOPOUTprovidesan ° ° estimateofthe∆G and∆G bulgevaluesofprobesbindingtonontargetsitesthatcontain insertionsanddeletions.Thereforeitcanbeusedtoscreenforpossibleproblematicprobe sequences.The∆G°valuesgeneratedalsomakethesoftwarecompatiblewithprograms developedforbasemismatchdetection,wheretheimpactofrRNAsecondarystructure andprobeprobeinteractionsistakenintoaccount(YilmazandNoguera,2007;Yilmazet al.,2008).Furthermore,LOOPOUTallowsaccesstoothersequencedatabasesthroughits

189 compatibility with probeCheck. While it is recognised that theoretical free energy calculations are not always predictive in FISH, reflecting complexity of the template, suchdatashouldassistintheprobedesignprocessbyidentifyingthoseprobeswiththe potential for nontarget binding before undertaking expensive and time consuming laboratorybasedvalidation(AmannandLudwig,2000;Yilmazetal.,2008).Ifitisnot possibletodesignprobesforadesiredpopulationafterscreening,thencompetitorprobes, which have been applied successfully to eliminate false positive signals in FISH for mismatch sites (Manz et al., 1992), were also shown in this work to be effective in discriminatingtargetsitesfromnontargetsitescontaininginsertionsanddeletions.Itis alsoadvisabletoadoptamultipleFISHprobeapproachandapplyahierarchicalsetof probes,tominimisetheriskoffalsepositiveidentification(Daimsetal.,2005). 5.5Concludingremarks ThisstudyhasshownthattheSphingomonasrelatedGAOdescribedbyBeeretal.(2004) are in fact members of cluster I Defluviicoccusrelated organisms. Furthermore, non target FISH probe sites containing single base insertions or deletions can lead to false positivesinFISHanalysisandthesearethereforeageneralproblemwiththetechnique. Giventhefrequencyofoccurrenceofthesesitesamongexistingprobes,thisfindingisof concerntoallFISHusers.Itishopedthatthisworkwillleadtomoregeneralscreening for potential nontarget single base insertion and deletions sites during theFISH probe designprocess.

190 6.0 TheinfluenceofpHonthemicrobialcommunity presentinalaboratoryscaleEBPR 6.1Introduction UnderstandingtheconditionsthatcompetitivelyfavorthePAOovertheGAOwillallow bettercontrolandoperationofEBPRsystems.Unfortunatelyfewinvestigationsintothe influence of operational parameters on PAO: GAO competition have characterised the PAO/GAO populations present in their systems (Seviour et al., 2003; Oehmen et al., 2007).Insteadtheprevalenceofeitherphenotypeisextrapolatedfromchemicalprofile data,basedonmeasurementsliketheanaerobiccarbonuptaketoPreleaseratio(Seviour etal.,2003;Oehmenetal.,2007;McMahonetal.,2010;Oehmenetal.,2010b),since thereisnoanaerobicPreleasebytheGAO. Operational pH is one such parameter that has attracted attention. Increased EBPR efficiencyhasbeenreportedinlabscalesystemsoperatingathigherpH(>7.0)(Bondet al.,1998;Bondetal.,1999b;Filipeetal.,2001c;Jeonetal.,2001;Levantesietal.,2002; Schuler and Jenkins, 2002; Serafim et al., 2002b; Oehmen et al.,2005a;Zhang et al., 2005)andisthoughttoresultfromanadvantagethePAOhaveovertheGAOatpH >7.0.Serafimetal.(2002b)suggestthattheelevateddemandforenergyathigherpHis bettermetbythePAOwhichrelyonbothpolyPandglycogenasenergysources,unlike theGAOwhichrelytotallyonthelatter.AnaerobicsubstrateuptakestudiesoverapH rangeof6.5to8.0,withundefinedenrichedcultureshavegenerateddatasuggestingthat theGAOincrease glycogenconsumptionathigherpH(Filipe et al., 2001b) to satisfy their energy requirements. However, while acetate uptake by the PAO appears independentofpH(Filipeetal.,2001d),itisreducedwiththeGAO,thusgivingthePAO an advantage at higher pH (Filipe et al., 2001b). However, the value of such data is compromised by the lack of accompanying microbiological data on the identity of the PAOandGAO. In the small number of laboratory studies where community responses to pH changes havebeenmonitored,higherpHvaluesappeartofavour‘Accumulibacter’(Bondetal., 1999a;Oehmenetal.,2005a;Zhangetal.,2005).Somecorrelationwasalsoobserved betweenincreasedabundanceof‘Accumulibacter’ and elevated pH in fullscale EBPR

191 systems in the Netherlands (LopezVazquez et al., 2008a). Very little is known of the impactofpHonindividualGAOpopulations.Inperhapstheonlycomprehensivestudyto date,Oehmenetal.(2005a)appliedFISHtocommunitiesintworeactors,onedominated byanunknownalphaproteobacterialTFOandtheother‘Competibacter’,toshowaclear community shift away from these GAO populations in favor of ‘Accumulibacter’ members when pH increased from 7 to 8. Unfortunately the identity of the main alphaproteobacterial GAO in their reactor could not be identified further as the FISH probesavailablethendidnotcoverthemajorityoftheTFOcommunity.Thisillustrates the importance of continued efforts to identify these important populations in EBPR systemsandconstantreappraisalandupdateofthetoolsnecessary,whichhasbeenthe focusoftheworkreportedinthisthesis. Thus,inworkdescribedinthischapter,aSBREBPRprocesswasrun,operatingunder different defined pH conditions, to obtain a better insight into how the microbial communitycompositionmightrespondtochangesinpHoveralongterm.KnownPAO andGAOpopulations,includingthosenewlydescribedin Chapter 4, were monitored withFISH. 6.2Materialandmethods 6.2.1Reactoroperation The reactor was operated and maintained by Dr Johwan Ahn (La Trobe University, Bendigo).TheSBR(referredtoasLS2inChapters2,3and4)witha1.0literworking volume(B.Braun)wasoperatedatabout20oC.Itwasfedwithasyntheticwastewaterof the following composition (per liter): 512.5 mg of CH3COONa, 85.3 mg of

NaH2PO42H2O,100.8mgofNH4Cl,180mgofMgSO47H2O,72mgofKCl,14mgof

CaCl22H2O,2mgofnallylthiourea,5mgofyeastextract,5mgofpeptoneand0.3ml 1 1 1 oftraceelements(1.5gl FeCl3.6H2O,0.15gl H3BO3,0.03gl CuSO4.5H2O,0.18gl 1 1 1 1 1 KI,0.12gl MnC12.4H2O,0.06g1 Na2MoO4.2H2O,0.12gl ZnSO4.7H2O,0.15gl 1 CoCl2.6H2Oand10gl EDTA(Smoldersetal.,1994b).nallylthioureawasincludedin themediatoinhibitnitrification.ThisiscommonpracticeinEBPRstudieswithlabscale reactorstomaketheresultingchemicalprofileseasiertodetermine.Mixedliquortaken fromtheaerobicreactorofaMUCTfullscaleEBPRprocessinCastlemaine,Victoria, Australiawaswashedand500mlsettledbiomasswasusedastheseedtoinoculatethe

192 SBR.Thereactorwasoperatedonacycleof6h,consistingofa5minfillingphase,a 115minanaerobicphase,a195minaerobicphase,a30minsettlingphase,anda15min withdrawphase.Biomasswasmixedduringtheanaerobicandaerobicphasesbyasingle agitatorwith6Rushtonturbineblades(6cmdiam.)at300rev.min1.Tomaintainaerobic conditions about 450 ml min1 of air was bubbled through a stainless steel diffuser. Reactor pH was strictly controlled with an Ingold pH electrode and pH controller (LH505,LHFermentation)byadding0.25NHClor0.25NNaOHwhenrequired.The reactorwasoperatedatpH7.5forthefirst27days,thenpH7.0untilday77,6.5untilday 184,pH7.5untilday256,pH7.0untilday351,pH6.5untilday425andfinallyswitched backtopH7.5untilday447.Attheendoftheaerobicphase,about35.7mlofexcess sludgewasdiscardedtomaintainameancellretentiontime(sludgeage)of7days.After settling,about464.3mloftheeffluentwasdiscarded. 6.2.2Chemicalanalysis All chemical analyses were performed by Dr Johwan Ahn (La Trobe University, Bendigo). Analysis of P, biomass polyP and total suspended solids were performed according to Standard Methods (APHA et al., 1998). Acetate was determined with a HPLC(LC10Ai,Shimadzu)equippedwithananioncolumn(ShodexkC811,Shodex Denko).TodetermineintracellularlevelsofPHAandglycogen,biomasssampleswere collected and immediately frozen in a mixture of dry ice and methanol, followed by lyophilisation.ForPHA,biomasswasincubatedat100oCfor24hwithchloroformand acidified methanol (10 % [v/v] sulfuric acid) (Ahn et al., 2007). Identification and quantification of PHA methyl esters were conducted by a gas chromatograph (3900, Varian)equippedwithachrompackcapillarycolumn(CPSil5CB,Varian)andaflame ionisationdetector.Poly(3hydroxybutyricacidco3hydroxyvaleric)acid(Aldrich)and sodium 3hydroxybutyrate (Lancaster) were used as standards. No polyβ hydrohyvalerate(PHV)wasdetectedinanyofthereactorsamples.Forglycogen,sludge samples were autoclaved with 0.6 N HCl at 121 oC for 1 h. After cooling to room temperature, glycogen concentrations were measured as glucose equivalents using a hexokinaseenzymaticglucosekit(Thermo).

193 6.2.3FISHanalyses Biomasssampleswerecollectedattheendoftheaerobicphase(unlessotherwisestated) forFISHanalysisandimmediatelyfixedin4%[w/v]formaldehydeforGramnegative and50%[v/v]ethanolforGrampositivecellsasdetailedinSection2.2.2.Allsamples before day 100 were collected by Drs Michael Beer and Sarah Schroeder (La Trobe University,Bendigo).Granulatedsampleswerehomogenisedwithapelletpestlepriorto FISH, which was carried out as described in Sections 2.2.3 with the probes listed in Table6.1. For FISHanalysis ongranule sections, 30 m thicksections were prepared from fixed granulesembeddedinTissueTekOCTCompound(4583,ProSciTech)usingacryostat (CM1850,Leica),andplacedongelatincoatedmicroscopicslides.TheOCTcompound wasremovedbysoakingtheslidesindistilledwaterandFISHperformedasdescribed earlier (Section 2.2.3.). Populations were quantified (qFISH) as described in Section 2.2.5. Values are expressed for each probe as a percentage of the total cell area fluorescing with the EUBmix probes, and all qFISH errors are represented as standard errors. 6.2.4Histochemicalstaining TodetectpolyPandPHAinthecells,DAPI(Kawaharasakietal.,1999)andNileblueA (OstleandHolt,1982)respectivelywereusedasdescribedinSections4.2.8. 6.2.5FISHMAR TheprotocolusedwasbasedonthemethodsofLeeetal.(1999)andKongetal.(2004). Samplesforanaerobicacetate,andaerobicP,uptakedeterminationweretakenfromthe endof theaerobic andanaerobic cycles respectively andused undiluted. Radioactively labeledsubstrateswereaddedtogiveatotalradioactivityof12.5Ciml1and0.25Ci ml1 for P (33P Phosphate (GE Healthcare) and acetate ([l14C] Acetic acid (GE Healthcare)), respectively. Cold substrates were added to give a total concentration identicaltothoseinthelabscalereactor.IncubationconditionsareasinSection4.2.7.1. AcetateandPincubationswere1h(anaerobic)and2h(aerobic)respectively(basedon their uptake profiles for the reactor). Each incubation was repeated with two negative

194 controlstoensureanysilvergrainformationwasnotduetochemography(Nielsenand Nielsen, 2005) (Section 4.2.7.1). Then FISHMAR was carried out as described in Sections4.2.7.24.2.7.4exceptthat1×PBSwassubstitutedwith0.1Msodiumcitrate HClbuffered(pH2.0)forthewashstepsinvolvingthelabeledPsubstrateexperiments (Kongetal.,2004). 6.2.6Electronmicroscopicanalysisofgranules For scanning electronmicroscopy (SEM) andtransmission electron microscopy (TEM) (performedbyDrJohwanAhn(LaTrobeUniversity,Bendigo), granuleswerefixedin 2.5%[v/v]glutaraldehydesolutionand1%[w/v]osmiumtetroxidefor2heachatroom temperature,andthendehydratedthroughanacetoneseries(0100%[v/v]).ForSEM, granulesweredriedwithacriticalpointdryer(CPD030,BalTec),andgold/palladium coated using a sputter coater (E5100, Polaron). Coated specimens were examined in a SEMmicroscope(S150,Cambridge)at1020kV. ForTEM,granuleswereinfiltratedwithSpurr’sepoxyresin,andlefttohardenovernight atabout6570oC.Theyweresectionedwithadiamondknife(DDK)onanLKBBromma ultramicrotome,andthenstainedwith2%[w/v]uranylacetateand2%[w/v]leadcitrate for15mineach.SpecimenswereexaminedbyaJeolJEM100CXelectronmicroscopeat 100kV. 6.2.7DNAextraction Total DNA was extracted from ethanol fixed biomass samples using the MI and MV extractionmethodsdescribedinSections3.2.2.1and3.3.3.5,respectively. 6.2.8DGGEanalysis DGGEanalysiswasperformedasdetailedinSection3.2.8.DNAextractsobtainedwith eachextractionmethod(MVandMI)wereamplifiedseparatelyandthenequalamounts pooled for the electrophoresis step. Standards were prepared by separate amplification and DGGE of cloned 16S rDNA inserts to determine their migration positions for comparisonwithwholecommunityDGGEprofiles.

195

Table6.1:ListofoligonucleotideFISHprobesusedinthischapter [FA]1 Probename Sequence(5´3´) Target Reference (%) EUB338I2 GCTGCCTCCCGTAGGAGT MostBacteria 35 (Amannetal.,1990) EUB338II2 GCAGCCACCCGTAGGTGT Planctomycetales 35 (Daimsetal.,1999) EUB338III2 GCTGCCACCCGTAGGTGT Verrucomicrobiales 35 (Daimsetal.,1999) NONEUB ACTCCTACGGGAGGCAGC ControlprobecomplementarytoEUB338 n/a (Wallneretal.,1993) BET42a GCCTTCCCACTTCGTTT Betaproteobacteria 35 (Manzetal.,1992) BET42acompetitor GCCTTCCCACATCGTTT CompetitorforBET42a n/a (Manzetal.,1992) PAO462b3 CCGTCATCTRCWCAGGGTATTAAC ‘Accumulibacter’ 35 (Zillesetal.,2002a) PAO6513 CCCTCTGCCAAACTCCAG ‘Accumulibacter’ 35 (Crocettietal.,2000) PAO846b3 GTTAGCTACGGYACTAAAAGG ‘Accumulibacter’ 35 (Zillesetal.,2002a) RHC439 CNATTTCTTCCCCGCCGA Rhodocyclusspp.,mostmembersofthe 30 (Hesselmannetal.,1999) ‘Accumulibacter’cluster,Azospiralineage ZRA23a CTGCCGTACTCTAGTTAT MostmembersoftheZoogloealineage,notZ. 35 (RosselloMoraand resiniphila Wagner,1995) GAM42a4 GCCTTCCCACATCGTTT Gammaproteobacteria 35 (Manzetal.,1992) GAM42a_T1038_G10314 GCCTTTCCACATGGTTT RepresentativesoftheXanthomonasgroup 35 (Siyambalapitiyaand Blackall,2005) GAM42a_T10384 GCCTTTCCACATCGTTT RepresentativesoftheXanthomonasgroup 35 (Siyambalapitiyaand Blackall,2005) GAM42a_A1041_A10404 GCAATCCCACATCGTTT RepresentativesoftheXanthomonasgroup 35 (Siyambalapitiyaand Blackall,2005) GAM42acompetitor4 GCCTTCCCACTTCGTTT CompetitorprobeforGAM42a n/a (Manzetal.,1992) GB5 CGATCCTCTAGCCCACT ’Competibacter’ 35 (Kongetal.,2002a) GB_G15 CGATCCTCTAGCCCACT ’Competibacter’groupG1 35 (Kongetal.,2002a) GB_G25 TTCCCCGGATGTCAAGGC ’Competibacter’groupG2 35 (Kongetal.,2002a) ACA23a ATCCTCTCCCATACTCTA Acinetobacter 35 (Wagneretal.,1994b) ALF968 GGTAAGGTTCTGCGCGTT Alphaproteobacteria,exceptRickettsiales 20 (Neefetal.,1999) TFO_DF862 AGCTAAGCTCCCCGACAT Defluviicoccusvanus 35 (Wongetal.,2004) TFO_DF2186 GAAGCCTTTGCCCCTCAG ClusterIDefluviicoccusrelatedTFO 35 (Wongetal.,2004) TFO_DF6186 GCCTCACTTGTCTAACCG ClusterIDefluviicoccusrelatedTFO 35 (Wongetal.,2004) DF9887 GATACGACGCCCATGTCAAGGG ClusterIIDefluviicoccusrelatedTFO 35 (Meyeretal.,2006)

196

DF10207 CCGGCCGAACCGACTCCC ClusterIIDefluviicoccusrelatedTFO 35 (Meyeretal.,2006) H966 CTGGTAAGGTTCTGCGCGTTGC HelperprobeforDF988 n/a (Meyeretal.,2006) H1038 AGCAGCCATGCAGCACCTGTGTGGCGT HelperprobeforDF988andDF1020 n/a (Meyeretal.,2006) DF988c GCCGCGACGCCCATGTCAAGGG CompetitorforDEF988 Chapter4 DF198 ATCCCAGGGCAACATAGTCT ClusterIIIDefluviicoccusrelated‘Nostocoida 35 Chapter4 limicola’ DF1004 TAAGTTTCCTCAAGCCGC SubgroupwithinclusterIIIDefluviicoccus 35 Chapter4 related‘Nostocoidalimicola’ DF1004c TAACTTTCCTCAAGCCGC CompetitorforDEF1004 Chapter4 DF987H GACGCCCATGTCAAGGGC HelperforDEF1004 Chapter4 DF1013 GAACTGAAGGCTCGAGTTTC SubgroupwithinclusterIIIDefluviicoccus 3550 Chapter4 related‘Nostocoidalimicola’ DF1013c GAACTGAAGGCTTGAGTTTC CompetitorforDEF1013 Chapter4 DF997H CCCAAGCCGCGACGCCCA HelperforDEF1013 Chapter4 DF181A CTTTCCCTCACAAGGCAC CloneK42withinclusterIVDefluviicoccus 30 Chapter4 relatedTFO DF181B CTTTGCCCCTCAAGGCAC SomeclusterIVDefluviicoccusrelatedTFO 30 Chapter4 AMAR839 CTGCGACACCGAACGGCAAGCC Amaricoccusspp. 20 (Maszenanetal.,2000a) Nso1225 CGCCATTGTATTACGTGTGA Betaproteobacterialammoniaoxidising 35 (Mobarryetal.,1996) bacteria Ntspa662 GGAATTCCGCGCTCCTCT genusNitrospira 35 (Daimsetal.,2001a) Ntspa662comp GGAATTCCGCTCTCCTCT CompetitorforNtspa662 n/a (Daimsetal.,2001a) HGC69a TATAGTTACCACCGCCGT Actinobacteria(highG+CGrampositive 25 (Rolleretal.,1994) bacteria) Actino_1011 TTGCGGGGCACCCATCTCT SomeTetrasphaeraspp. 30 (Liuetal.,2001) Actino221 CGCAGGTCCATCCCAGAC ActinobacterialPAO 30 (Kongetal.,2005) C1Actino221 CGCAGGTCCATCCCATAC Competitor1forActino221 n/a (Kongetal.,2005) C2Actino221 CGCAGGTCCATCCCAGAG Competitor2forActino221 n/a (Kongetal.,2005) Actino658 TCCGGTCTCCCCTACCAT ActinobacterialPAO 40 (Kongetal.,2005) C1Actino658 TCCGGTCTCCCCTACCAC Competitorprobe1forActino658 n/a (Kongetal.,2005) C2Actino658 ATTCCAGTCTCCCCTACCAT Competitorprobe2forActino658 n/a (Kongetal.,2005) LGC354A8 TGGAAGATTCCCTACTGC MostFirmicutes(Grampositivebacteriawith 35 (Meieretal.,1999) lowG+Ccontent) LGC354B8 CGGAAGATTCCCTACTGC MostFirmicutes(Grampositivebacteriawith 35 (Meieretal.,1999) 197

lowG+Ccontent) LGC354C8 CCGAAGATTCCCTACTGC MostFirmicutes(Grampositivebacteriawith 35 (Meieretal.,1999) lowG+Ccontent) CFX12239 CCATTGTAGCGTGTGTGTMG phylumChloroflexi(greennonsulfurbacteria) 35 (Björnssonetal.,2002) GNSB9419 AAACCACACGCTCCGCT phylumChloroflexi(greennonsulfurbacteria) 35 (Gichetal.,2001) CHL1851 AATTCCACAACCTCTCCA Type1851filamentousbacterium 35 (Beeretal.,2002) PLA46 GACTTGCATGCCTAATCC Planctomycetales 30 (Neefetal.,1998) PLA886 GCCTTGCGACCATACTCCC Planctomycetales 35 (Neefetal.,1998) PLA886comp GCCTTGCGACCGTACTCCC CompetitorprobeforPLA886 n/a (Neefetal.,1998) CF319a TGGTCCGTGTCTCAGTAC MostFlavobacteria,someBacteroidetes,some 35 (Manzetal.,1996) Sphingobacteria CF319b TGGTCCGTATCTCAGTAC someFlavobacteriaandSphingobacteria 35 (Manzetal.,1996) CFB719 AGCTGCCTTCGCAATCGG MostmembersoftheclassBacteriodetes,some 30 (Welleretal.,2000) FlavobacteriaandSphingobacteria CFB286 TCCTCTCAGAACCCCTAC MostmembersofthegenusTannerellaandthe 50 (Welleretal.,2000) genusPrevotellaoftheclassBacteriodetes 1[FA]=formamideconcentrationinhybridisationbuffer,29appliedinequimolaramountsas:2EUBmix,3PAOmix,4Gam42a_mix,5GBmix,6DF1mix,7DF2mix,8 LGCmix,9CFXmix;n/a=notapplicable;NoteR=A:G,Y=C:T,M=A:C,K=G:T,S=G:C,W=A:T

198 6.3Results 6.3.1EffectofpHonEBPRPerformance ThedailyvariationinfinaleffluentPlevelsinsamplestakenattheendsoftheanaerobic andaerobicstagesoftheSBRoperatingatpH7.5,7.0and6.5aregivenin Fig. 6.1. InitiallytheSBRwasoperatedatpH7.5.TheamountofanaerobicPreleaseincreased steeplyoverthefirst20days,toabout110.7mgPl1,andthepolyPbiomasscontent reached about 9.7 % [w/w] after day 27. These values are typical for EBPR processes withacetateasthecarbonsourceandconsistentwithamicrobialcommunitydominated byPAO(Oehmenetal.,2007).WhenthepHwaschangedfrom7.5to7.0onday28,the Preleasedunderanaerobicconditionsfellinitiallytoabout62.1mgPl1onday47,but thengraduallyincreasedto82.6mgPl1.BiomasspolyPcontentalsodecreasedtoabout 6.8%[w/w].Onday77,operatingpHwasagainloweredfrom7.0to6.5,ashiftwhich ledtoaslightdecreaseinthelevelofPreleasedanaerobicallyto71.1mgPl1.BiomassP content had also fallen to 6.0 % [w/w] at pH 6.5. This trend is consistent with an increasingpresenceofGAOnotaccumulatingpolyPintheircells,andagreeswiththose seenbyFilipeetal.(2001a)andJeonetal.(2001). Ontheotherhand,amarkedimprovementinEBPRcapacitywasobservedwhenthepH waschangedbackfrom6.5to7.5,where90.9mgPl1ofanaerobicPreleaseand7.6% [w/w]biomassPcontentweremeasured,increasingfrom6%[w/w]atpH6.5.Despite further changes to the pH, efficient P removal was achieved for the remainder of the reactoroperation(datanotshown).

199

Figure6.1:DailyeffluentPconcentrationsattheendofanaerobicandaerobicstagesoftheSBR underdifferentoperationalpHconditions.DataprovidedbyDrJohwanAhn. 6.3.2EffectofoperatingpHonreactorchemicalprofiles ThechemicalprofilesexhibitedbythecommunitiesgrownatthesedifferentpHvalues aregiveninFig.6.2.TheyshowthetypicalpatternsforEBPRprocessescarriedoutin SBRsystemsfedacetate(Minoetal.,1998;Oehmenetal.,2007).Thus,underanaerobic conditions, P release corresponded to acetate assimilation and an increase in biomass PHA content and glycogen utilisation, while complete P uptake and glycogen replenishment paralleled PHA utilisation in the subsequent aerobic stage. These observations are consistent with the existing EBPR activated sludge models. When operationalpHwasdecreased,anaerobicbiomassPHAproductionfellfrom4.0mMCat pH7.5to2.2mMCatpH7.0,and2.0mMCatpH6.5.Ontheotherhand,glycogen utilisationlevelsincreasedmarkedlyfrom1.9mMatpH7.5to3.1mMCatpH7.0and then8.1mMCatpH6.5.ThesedataagainsupporttheviewthattheGAOphenotypehad becomeincreasinglydominantinthecommunityasoperationalpHdecreased.

200

Figure6.2:TypicalprofilesoftheEBPRchemicaltransformationsoccurringintheSBRunderdifferentoperationalpHconditions. a.pH7.5;b.pH7.0;c.pH6.5. Samplesweretakenafter27days(pH7.5),76days(pH7.0)and133days(pH6.5).Glycogen,PHAandacetateallexpressedasmMcarbonequivalents.Data providedbyDrJohwanAhn.

201 6.3.3 Effect of operating pH on microbial community structure and ecophysiology FISH analysis with general broad target group probes (see Table 6.1) revealed that the communitywasalwaysdominatedbymembersoftheBetaproteobacteria,andthat,during the different periods of operation, alphaproteobacterial TFO, Gammaproteobacteria, ‘Chloroflexi’andmembersoftheBacteroidetesgroupwerealsoabundant(Table6.2;Fig. 6.3).AftertheinitialdropinpH,DGGEandFISHanalysissuggestedadropinpopulation diversitywithinthereactorcommunity(Figs.6.5and6.3).TheBacteroidetesgroup,present assmallrodsandthinfilaments(Fig.6.4a)at10%ofthetotalbiomasscommunityonday 17,slowlydisappearedfromthesystemovertime(Table 6.2; Fig. 6.3). The filamentous ‘Chloroflexi’,includingthetype1851morphotyperespondingtotheCHL1851probe(Fig. 6.4bandc.),persistedinthereactorwheretheirabundanceshowedastatisticallysignificant positivecorrelationwithincreasingoperatingpH(Fig.6.7). Table6.2:qFISHdataforreactor Sample1 qFISHprobe(s) pH Day PAOmix2 DF9883 DF10204 DF181A5 GBmix6 CFXmix7 CFB319a8 7.5 27 40.4±1.6% 2.0±0.2% 1.2±0.1% 1.0±0.1% <1.0% 10.0±0.8% 11.7±0.6% 7.0 72 67.7±3.5% 6.0±0.7% 5.0±0.5% 2.1±0.4% <1.0% 3.6±0.6% 3.4±0.4% 6.5 96 65.2±3.0% 5.7±0.6% 4.1±0.6% <1.0% <1.0% 1.9±0.4% 3.1±0.7% 6.5 179 68.7±2.7% 4.7±0.5% 3.2±0.4% 1.3±0.5% <1.0% 3.0±0.5% <1.0% 6.5 180 75.9±2.6% 4.5±0.9% 4.0±0.6% 2.3±0.6% 2.0±1.0% 3.4±0.7% 1.1±0.4% 7.5 218 78.3±2.0% 2.0±0.2% 2.4±0.3% <1.0% <1.0% 7.4±0.2% <1.0% 7.0 303 62.3±2.6% 4.1±0.8% 2.6±0.3% <1.0% 6.5±1.7% 1.5±1.1% <1.0% 6.5 387 56.6±2.7% 7.4±0.6% 5.6±0.6% <1.0% 9.5±1.2% 1.9±0.2% <1.0% 1Sampledetails:includingthedayofoperationandtheoperatingpHatthetimeofsampling.28FISH probesusedinqFISHanalysistotarget:2‘Accumulibacter’;34ClusterIIDefluviicoccus;5ClusterIV Defluviicoccus; 6 ‘Competibacter’; 7 ‘Chloroflexi’; 8 some Flavobacteria, Bacteroidetes and Sphingobacteria. FISH analysis revealed that the betaproteobacterial cells were almost exclusively ‘Accumulibacter’, which were the dominant population throughout the operation of the reactorirrespectiveofthepHconditions(Table6.2;Figs.6.3and6.5).Ecophysiologydata revealedthatmembersofthisgroupbehavedaccordingtothePAOmodelsatallthreepH conditions,accumulatingacetate(Fig.6.8)asPHAanaerobically(Fig.6.9)andutilisingthe stored PHA aerobically with P assimilation (Fig. 6.10) and storage (Fig. 6.11). The only other population observed to accumulate polyP aerobically were the actinobacterial PAO

202 responding to the Actino658 probe (Fig. 6.12 g.i.). However these were detected in the earlypH7.5FISHsamplebutrarelyseeninsubsequentsamples,probably reflectingtheir inabilitytoutiliseacetateasacarbonsource(Kongetal.,2005). WhenthepHwasdecreasedfrom7.5to7.0the‘Accumulibacter’PAOlevelsincreasedand remained relatively unchanged following a subsequent decrease in pH to 6.5 before increasingwhenthepHwaschangedbackto7.5andreducingagainwithsubsequentdrops to6.5via7.0(Table6.2;Fig.6.3).However,itshouldbenotedthattheinitialincreaseinthe ‘Accumulibacter’,aftertheinitialdropinpHfrom7.5to7.0,mayhavesimplybeendueto continuedacclimatisationofthebiomasstothereactor,giventheshort27daypH7.5period, andthefactthatnoFISHanalysiswascompletedontheinitial‘seed’biomass.Despitebeing the only PAO present in apparent abundance, ‘Accumulibacter’ population levels did not show any statistically significant correlation with either the anaerobic P release levels or operatingpH(Fig.6.13and6.14).However,therewasahighcorrelationbetweenpHand anaerobicPrelease(Fig.6.14).

203

Figure6.3:CommunitycompositionprofilewithchangingoperationalpHinthelabscalereactor(LS2).OperationalpHatthetimeofsamplingis indicatedwithabrokenredline.RawdataispresentedinTable6.2.

204

Figure6.4:CompositeCLSMFISHmicrographsofpopulationsofinterestinthelabscalereactor.a.Phasecontrastimageandcorrespondingcomposite FISHimage:EUBmixalone(FLUOS:green),CF319a(CY3:red)+EUBmix(FLUOS:green)=yellowandPAOmix(CY5:blue)+EUBmix(FLUOS: green)=lightblue.b.andc.CompositeFISHimages:EUBmixalone(FLUOS:green),CHL1851(CY3:red)+EUBmix(FLUOS:green)=yellowand PAOmix(CY3:blue)+EUBmix(FLUOS:green)=lightblue. d.PhasecontrastimageandcorrespondingcompositeFISHimageofthesamefieldof view:EUBmixalone(FLUOS:green),DF181A(CY3:red)+EUBmix(FLUOS:green)=yellowandPAOmix(CY5:blue)+EUBmix(FLUOSgreen)= lightblue.Allscalebarsrepresent10m.

205

Figure 6.5: DGGE analysis of the labscale reactor EBPR community over time. Lanes: S = Standards prepared from a mixture of selected 16S rDNA clone inserts (see Fig. 6.6) with pre determinedmigrationpositions.Theseinclude:K90=Legionellasp.relatedclone(EU834765);K8 and K60 = ‘Accumulibacter’related clones (EU834753 and EU834760); K42 and K85 = Defluviicoccusrelated clones (EU834757 and EU834764); G54, G5, G18, G6 and G112 = ‘Competibacter’related clones (FJ356053, FJ356049, FJ356052, FJ356050 and FJ356056); 17 = Reactorcommunitysamples.TimesandtheoperationalpHatthetimeofsamplingwere:1=day17, pH7.5;2=day72,pH7.0;3=day96,pH6.5;4=day179,pH6.5;5=day218,pH7.5;6=day 303,pH7.0;7=day387,pH6.5.

206

207 Figure 6.6: Maximum likelihood tree of the complete sequences obtained from the LS2 reactor communityfromday96(datafromChapter3)andselectedrelatedsequences(allsequenceswereat least1250bplong)usingtheARBsoftwarepackage(Ludwigetal.,2004).Sequencesobtainedfrom theday96clonelibraryareinboldtypefaceandsequencesobtainedfromtheLS2reactorareall given in red. Clone frequency for each OTU is indicated in parenthesis. FISH probe coverage is showningreenandbroadphylogeneticallocationisgiveninpurple.ForprobedetailsseeTable6.1. Parsimonybootstrapvaluesarecalculatedasapercentageof1000analysisandareonlyindicatedfor values≥75%.○Indicatesabootstrapvalueof≥75%and●indicatesabootstrapvalueof≥95%. Thescalebarcorrespondstosubstitutionspernucleotideposition.

208

Figure6.7:LinearregressionanalysisofoperationalpHagainsttotalclusterIIDefluviicoccus, and ‘Chloroflexi’, population size determined by qFISH. The plot and statistical analysis were completedusingtheGraphPadPrism4softwareprogram.‘*’Denotedstatisticalsignificanceof R2values. TEMof‘Accumulibacter’cells,duringthefirst pH6.5period,revealedtheycontained sparsenumbersofsmallelectrondensepolyPgranules,butinsteadmostofthecellwas filled with electron transparent material (Fig. 6.15b). Occasional larger polyP granules appearedtohavebecomedislodgedduringsectioning,resultinginobviousholesinthe sections. Subjectively DAPI staining suggested that aerobic P storage within cells appearedgenerallylowerformembersofthisgroupaftertheinitialdropfrompH7.5at day27,wherethedensemicrocoloniespresentatpH7.5and7.0gaveamuchbrighter positivefluorescence(Fig.6.11).

209

210

Figure6.8:FISHMARmicrographsforanaerobic14Cacetateuptakeexperimentsforthe‘Accumulibacter’.a.d.pH6.5(day422);e.h.pH7.0(day341);i.l.pH 7.5(day446).a.,c.,e.,g.,i.andk.CompositeFISHimages:EUBmixalone(FLUOS:green)andPAOmix(CY3:red)+EUBmix(FLUOS:green)=yellow;b.,d., f.,h.,j.andl.CorrespondingpositiveMARbrightfieldimagesforadjacent(left)FISHimages.Silvergraindepositionindicatespositiveuptakeforassociatedcells. Allscalebarsrepresent10m.

211

Figure6.9:MicrographsofNileblueAstained‘Accumulibacter’PAO.a.f.pH6.5(day387);g.l.pH7.0(day303);m.r.pH7.5(day446).a.,d.,g.,j.,m.andp. Phasecontrastimagesofthereactorbiomass;b.,e.,h.,k.,n.,andq.correspondingFISHimages:PAOmix(FLUOS:green);c.,f.,i.,l.,o.andr.CorrespondingNile blueAstainedfluorescence.Allscalebarsrepresent10m.

212

213

Figure 6.10: FISHMAR micrographs for aerobic 33P phosphate uptake experiments. a.d. pH 6.5 (day 422): a. and c. Composite FISH images for the ‘Accumulibacter’:PAOmix(CY3:red)+EUBmix(FLUOS:green)=yellow.b.andd.CorrespondingbrightfieldMARpositiveimages;e.j.pH7.0(day341):e., g.andi.CompositeFISHimagefore.andg.alphaproteobacterialTFO:ALF968(CY3:red)+EUBmix(Flous:green)=yellowand i.‘Competibacter’:GB_G1 (CY3:red)+EUBmix(FLUOS:green)=yellow.f.,h.andj.CorrespondingbrightfieldMARnegativeimagesforthetargetorganisms;k.n.pH7.5(day446):k. andm.CompositeFISHimagesforthe‘Accumulibacter’:(PAOmix(CY3:red)+EUBmix(Flous:green)=yellow). l.andn.CorrespondingbrightfieldMAR positiveimages.Allscalebarsrepresent10m.

214

Figure6.11:MicrographsofDAPIstained‘Accumulibacter’:a.c.pH7.5(day27);d.f.pH7.0(day72);g.i.pH6.5(day96);j.l.pH7.0(day341);m.o.pH6.5 (day422);p.r.pH7.5(day446);a.,d.,g.,j.,m.andp.Phasecontrastimagesofthereactorbiomass;b.,e.,h.,k.,n.andq.;Correspondingfieldofviewcomposite FISHimageswithEUBmixalone(FLUOS:green)andPAOmix(CY3:red)+EUBmix(FLUOS:green)=yellow;c.,f.,i.,l.,o.andr.CorrespondingDAPIstained images.DNAstainslightblueandpolyPgranulesstainlightyellow.Allscalebarsrepresent10m.

215

Figure6.12:MicrographsofDAPIstainedpopulationsofinterest:a.c.pH7.5(day27)fortheFlavobacteriaBacteroidetesgroup(CFB319a);d.f.pH7.0(day72), for the cluster IV Defluviicoccus (DF181A); g.i. pH 6.5 (day 96), for the Actinobacteria (HGC69A); j.l. pH 7.0 (day 341), for the cluster II Defluviicoccus (DF2mix);m.o.pH6.5(day422),forthe‘Chloroflexi’(CFXmix);p.r.pH7.5(day446)forthe‘Competibacter’(GBmix);a.,d.,g.,j.,m.andp.Phasecontrast imagesofthereactorbiomass;b.,e.,h.,k.,n.andq.;CorrespondingfieldofviewcompositeFISHimageswithEUBmix(Flous=green)andtargetgroupprobe (CY3=red)(red+green=yellow/orange);c.,f.,i.,l.,o.andr.CorrespondingDAPIstainedimages.DNAstainslightblueandpolyPgranulesstainlightyellow. Arrowshighlightcellsofinterest.Allscalebarsrepresent10m.

216

Figure 6.13: Linear regression analysis of total ‘Accumulibacter’ cell biovolume against the concentrationofsupernatantPattheendoftheanaerobicphase.Theplotandstatisticalanalysis wascompletedusingtheGraphPadPrism4softwareprogram.ThedeviationoftheR2valuefrom 0wasdeterminedtobestatisticallyinsignificant. TheAmaricoccus,andclusterIDefluviicoccusFISHprobesboundtosomeTFOpresent inthesecommunities,butveryrarely,andclusterIIIDefluviicoccusmemberswerenever detected.OftheprobestargetingclusterIVDefluviicoccus,theDF181Aprobeboundto freelydispersedTFOaswellasclusteredcocciwithinthebiomass(Fig.6.4d),butthese cells were always low in abundance and eventually disappeared from the community (Table6.2;Fig.6.3).TheDF1020probe,targetingclusterIIDefluviicoccusboundtothe majorityoftheTFOpresent.TheDF988probehybridisedwiththesameTFO,butalso with small cocci arranged in clusters (Fig. 6.16), indicating morphological and phylogenetic diversity exists among cluster II members in this system. Unlike the ‘Accumulibacter’,DF988FISHpositivecells,theirabundanceappearedtobestatistically significantlyrelatedtopH,showinganegativecorrelationwithincreasingoperatingpH overtherangeappliedhere(Table6.2;Fig.6.3and6.7).

217

Figure 6.14: Linear regression analysis of operational pH against total ‘Accumulibacter’ cell biovolumeandtheconcentrationofsupernatantPattheendoftheanaerobicphase.Theplotand statistical analysis was completed using the GraphPad Prism 4 software program. Statistical significanceofR2valuesaredenotedbya‘*’.

Figure6.15:Electronmicroscopemicrographs:a.SEMofagranuleproducedatpH7.0;b.TEM ofaPAOcellinasampletakenattheendoftheaerobicstageatpH6.5(DrJohwanAhn).

218

Figure6.16:CompositeCLSMFISHmicrographsofclusterIIDefluviicoccus.a.PhasecontrastofthereactorbiomassandthecorrespondingcompositeFISHimage: EUBmixalone(FLUOS:green),DF988(CY3:red)+EUBmix(FLUOS:green)=yellowandPAOmix(CY5:blue)+EUBmix(FLUOS:green)=lightblue .b.and d.CompositeFISHimage:EUBmixalone(FLUOS:green),DF988(CY3:red)+EUBmix(FLUOS:green)=yellowandDF1020(CY5:blue)+DF988(CY3:red)+ EUBmix(FLUOS:green)=white/lavender.c.ande.CompositeFISHimage:EUBmixalone(FLUOS:green),DF2mix(CY3:red)+EUBmix(FLUOS:green)= yellowandPAOmix(CY5:blue)+EUBmix(FLUOS:green)=lightblue.Allscalebarsrepresent10m.

219 ‘Competibacter’ were rarely detected until the sample taken at day 303 of operation, where they increased after a drop in pH from 7.5 to 7.0. Their numbers then further increasedwhenpHwasdroppedfurtherto6.5(Table6.2;Fig.6.3).TheFISHpositive cells appeared as characteristic ‘Competibacter’ large coccobacilli (Fig. 6.17). Interestingly, their population increase appeared to be at the expense of the ‘Accumulibacter’ population, suggesting some direct competition, while cluster II ‘Defluviicoccus’abundancealsoincreasedduringthisperiod(Table6.2;Fig.6.3.). Both the ‘Competibacter’ and cluster II Defluviicoccus cells assimilated acetate and accumulated PHA anaerobically (Figs. 6.186.21), without any subsequent aerobic P assimilationorpolyPstorage(Fig6.10ej.,6.12j.,l.,p.andr.)indicatingtheyconformed totheproposedGAOphenotype. 6.3.4EffectofoperatingpHonbiomassorganisation ChangingpHalsohadamarkedinfluenceontheorganisationofthebiomassintheSBR (Fig.6.22).Thus,atpH7.5andtheearlystagesatpH7.0,biomassappearedasloosely associatedflocswithavisiblefilamentousmatrix(Fig.6.22ac).FISHanalysesshowed they contained large numbers of often spherical and densely packed microcolonies of ‘Accumulibacter’cells(Fig.6.22ac).ThenatpH7.0,thebiomasschangedandvisually gradually became granulated, a transformation coinciding with the recovery of EBPR performancefollowingthepHchange(Fig.6.1).Farfewerflocswerealsopresent.These granules(upto1mmindiameter)wereregularly sphericalwithsmoothoutersurfaces (Fig.6.15a),andFISHanalysisatpH7.0and6.5showedthattheycontainedmuchlarger aggregatesof‘Accumulibacter’cells(Figs.6.23d.g.and6.23)andafew‘Chloroflexi’ filamentous bacteria (Fig. 6.23d). Some of the larger clusters in individual granules appeared to be aggregates of smaller microcolonies of ‘Accumulibacter’, indicating a possiblestartingpointfortheirformation(Fig.6.22dg).AtpH6.5thegranulesincreased insizetoabout23mmindiameter,andFISHofthinsectionsrevealedtheyconsisted almost entirelyof ‘Accumulibacter’ cells(Fig.6.23). Only occasional small clustersof ‘Competibacter’ (Fig. 6.23c) and cluster II Defluviicoccus (Fig. 6.23e) were observed, butthesewererandomlydistributedwithnoevidenceofspatialpopulationstratification.

220

Figure6.17:CompositeCLSMFISHmicrographsof‘Competibacter’.a.,d.ande.CompositeFISHimage:EUBmixalone(FLUOS:green),GB_G1(CY3:red)+ EUBmix(FLUOS:green)=yellowandPAOmix(CY5:blue)+EUBmix(FLUOS:green)=lightblue.b.Phasecontrastimageofthereactorbiomassshowingthe distinctivecoccobacillimorphologyof‘Competibacter’cells.c.PhasecontrastimageofthereactorbiomassandcorrespondingcompositeFISHimageofthesame fieldofview:EUBmixalone(FLUOS:green),GB_G1(CY3:red)+EUBmix(FLUOS:green)=yellowandPAOmix(CY5:blue)+EUBmix(FLUOS:green)= lightblue.Allscalebarsrepresent10m. 221

222

Figure6.18:FISHMARmicrographsforanaerobic14Cacetateuptakeexperimentsforthe‘Defluviicoccus’.a.d.pH6.5(day422);e.h.pH7.0(day341);i.l.pH 7.5(day446).a.,c.,e.,g.,i.andk.CompositeFISHimageswithEUBmixalone(FLUOS:green)andDF2mix(CY3:red)+EUBmix(FLUOS:green)=yellow;b., d.,f.,h.,j.andl.CorrespondingpositiveMARbrightfieldimagesforadjacent(left)FISHimages.Allscalebarsrepresent10m.

223

224

Figure6.19:FISHMARmicrographsforanaerobic14Cacetateuptakeexperimentsforthe‘Competibacter’.a.d.pH6.5(day422);e.h.pH7.0(day341);i.l.pH 7.5(day446).a.,c.,e.,g.,i.andk.CompositeFISHimages:EUBmixalone(FLUOS:green)andGBmix(CY3:red)+EUBmix(FLUOS:green)=yellow;b.,d.,f., h.,j.andl.CorrespondingpositiveMARbrightfieldimagesforadjacent(left)FISHimages.Allscalebarsrepresent10m.

225

Figure6.20:MicrographsofNileblueAstainedclusterII‘Defluviicoccus’.a.f.pH6.5(day387);g.l.pH7.0(day303);m.r.pH7.5(day446).a.,d.,g.,j.,m. and p. Phase contrast images of the reactor biomass; b., e., h., k., n., and q. corresponding FISH images: DF2mix (Flous = green); c., f., i., l., o. and r. CorrespondingNileblueAstainedfluorescence.Allscalebarsrepresent10m.

226

Figure6.21:MicrographsofNileblueAstained‘Competibacter’.a.f.pH6.5(day387);g.l.pH7.0(day303);m.r.pH7.5(day446).a.,d.,g.,j.,m.andp.Phase contrastimagesofthereactorbiomass;b.,e.,h.,k.,n.,andq.correspondingFISHimageswithGBmix(Flous=green);c.,f.,i.,l.,o.andr.CorrespondingNileblue Astainedfluorescence.Allscalebarsrepresent10m.

227 qFISHanalysisofabiomasssamplemanuallyenrichedwithgranules(approximately>2 mm in diameter) indicated that the ‘Accumulibacter’ were at a higher abundance in granuleswhencomparedtothetotalbiomassatday257(Fig.6.24).Thisdifferenceis likely to be even more substantial given that this quantitative comparison was made againstthetotalbiomasscommunity(Fig6.24)whichwasalsodominatedbygranulated biomass,albeittoasmallerextent. Whenthe pH was switchedback to7.5again after day 184, the granules appeared to becomelessstableandbegantodisintegratewithin24h,sothattheygraduallywereseen much less commonly. They had been largely replaced after several days with loosely aggregated biomass with a higher level of observed filamentous bacteria. These were restricted largely to members of the ‘Chloroflexi’. These changes in aggregate organisationwerereflectedinbiomassmixedliquorsuspendedsolids(MLSS)valuesthat changedfrom2900(±25)mgl1atinitialpH7.5(day27)risingto4500(±50)mgl1at pH7(day76)and5600(±50)mgl1atpH6.5(day183),beforefallingto3570(±30)mg l1whenpHwasincreasedto7.5(day218). WhenthepHwasthendroppedtopH7.0atday351,granulationwasagainobserved, with individual granules increasing in size following a further drop to 6.5 at day 425. Thesegranulesbecameevenlarger(someapproaching5mmindiameter)andappeared less dense and more loosely associated than the granules observed earlier. Sectioning revealedthepresenceofvisibleinternalcavities,although,becauseoftheirfragilenature, repeated attempts at FISH analysis to determine population arrangement within them wereunsuccessful(datanotshown).

228

229

Figure6.22:FISHmicrographsofbiomass:ac.(providedbyDrSarahSchroeder)SampletakenatpH7.5(day17).a.Phaseconstrast;b.afterFISHwithRHC439 probe(CY3:red);c.afterDAPIstainingshowingpolyPfluorescence(yellow);d.andf.PhasecontrastimagesoftheLS2biomasstakenpHpH7.0(day72);e.and g.CorrespondingfieldsofviewafterFISHprobingwithPAOmixprobes(CY3).Allscalebarsrepresent20m..

230

231

Figure6.23:CLSMFluorescentimagesofsectionsofgranulesproducedatpH6.5(day180). a.Phasecontrastmicrographofgranulesectionandcorresponding FISHimage(below)overlayshowingbacteriahybridisedwith:EUBmixonly(FLUOS:green);PAOmix(CY5:blue)andEUBmix(FLUOS:green)=lightblue; b.e. CompositeFISHimageswith:EUBmixonly(FLUOS:green);PAOmix(CY5:blue)+EUBmix(FLUOS:green)=lightblue; c.GBmix(CY3:red)+EUBmix (FLUOS:green)=yellowd.CFX1223/GNSB941(CY3:red)+EUBmix(FLUOS:green)=yelloworange; e.DF988(CY3:red)+EUBmix(FLUOS:green)= yellow.Allscalebarsrepresent40m.Arrowsareusedtohighlightcellsofinterest.

232

Figure6.24:Comparisonofthetotalcommunitycompositionwiththatpresentinthegranules alone.Forthegranulesample,granulesgreaterthanapprox.>2mmweremanuallyselectedand processedasdescribedinSection6.2.3.RawdataispresentedinTable6.2. 6.4Discussion TheinfluencesofculturepHonlongtermcommunitystructure,andcompetitionbetween organismswithPAOandGAOphenotypesinalabscaleEBPRSBRwereinvestigated withthesuiteofprobesnowavailableforknownPAOandGAO.Theseincludedthe probesdesignedinChapter4. Unlikethefewstudiesapplyingmolecularcommunityprofiling(Oehmenetal.,2005a; Zhangetal.,2005;LopezVazquezetal.,2008a),ashiftawayfromthe‘Accumulibacter’ PAOwasnotobservedasthepHwaslowered.Instead,‘Accumulibacter’populationsize

233 increasedandtheycontinuedtodominatethecommunityinthereactorrunformorethan 15months.FewornoDefluviicoccusor‘Competibacter’GAOcellswereseen. The cluster II ‘Defluviicoccus’ population did show a linear relationship between its relative abundance and decreasing operational pH, agreeing with findings for the unidentifiedalphaproteobacterialGAOofOehmenetal.(2005a).However,thefailureof thesealphaproteobacterialGAOtobecomedominantover‘Accumulibacter’atlowerpH (≤7.0)contradictsthefindingsofthepreviousstudy,whereintwoseparatereactors,the alphaproteobacterial and ‘Competibacter’ GAO populations dominated at a pH of 7.0 withashiftto‘Accumulibacter’dominanceonlyafterashiftinthepHto8.0(Oehmenet al., 2005a). However, contrary to the previous study, evidence presented here suggests that pH also influenced biomass structure, where at lower pH conditions (≤7.0), and relativelyhighershear,thestructureofthebiomasschangedfromaflocculartoagranular organisation.Apparentenrichmentofthe‘Accumulibacter’inthesegranulesallowstheir continueddominance,duetotheirsuperiorsettleabilitytostandardactivatedsludgeflocs, despite exposure to pH conditions thought to favor ‘Competibacter’ and the alphaproteobacterialGAO(Oehmenetal.,2005a;Oehmenetal.,2007). The late appearance in these granules of ‘Competibacter’ probably reflects their low abundance in the seed inoculum. A switch from ‘Competibacter’ dominance to dominancebytheDefluviicoccusrelatedGAOwasrecordedafter85daysoperationofan anaerobic:aerobicmembranebioreactor(WongandLiu,2006).Thismarkedchangewas also attributed to the low level of Defluviicoccus in the initial seed culture used. It eventually dominated because it was thought to be slightly better adapted to the long sludgeageusedintheirstudy(Wongetal.,2006).Theprolongedoperationalperiodat pH6.5inthisstudyprobablygavethe‘Competibacter’cellsanopportunitytoeventually becomeestablished.IncreasingthereactorpHto7.5ledtothedisintegrationofthefirm spherical granules, and as the ‘Competibacter’ are reportedly favoured at lower pH (Oehmen et al., 2005a) their population size as expected, increased dramatically when operating pH dropped apparently at the expense of the ‘Accumulibacter’ (Table 6.3). Whether‘Accumulibacter’wouldstillhavedominatedastheydidhereiftheseedhad containedhigherinitiallevelsof‘Competibacter’isaninterestingquestion. OnlyoneotherreportisknownwherepHhasbeenreportedtoinfluenceEBPRgranule stability (Lemaire et al., 2008a) in a reactor treating an abbatoir waste feed, granules

234 becamelessstableatpH6.5thanatpH7.5.Thesetrendsaretheoppositetothosefound here,althoughanypossibleinfluencesoflongtermexposuresongranularstabilitytopH shifts were not followed by them (Lemaire et al., 2008a). The flocs forming in this presentstudywerealsomuchmoreregularlysphericalandsmootherthantheirs(Lemaire etal.,2008a)(Fig.6.15a),andnosurfaceattachedprotozoawereseen,possiblybecause ofthehighershearused.Thisexampleclearlyillustratestheproblemsofassumingthata singlemechanismisresponsibleforallbiomassgranulationprocesses. Thus, biomass in the reactor operating at pH 7.5 and the early stages of pH 7.0 was organised almost entirely as small flocs containing mostly microcolonies of densely packed ‘Accumulibacter’ cells staining positively for polyP. These occupied a large portionoftheflocvolume(Fig.6.22ac),suggestingthattheycouldpersistthereunder theimposedshearforcesbetterthanmostotherflocassociatedpopulations,whichmay havebecomephysicallydislodgedasflocseroded.TheabilityofPAOmicrocoloniesto withstand high shear and tolerate physical stress better than other floc populations has beendocumented(Larsenetal.,2006).Consequently,undertheconditionsappliedhereit maybethatthepersistingflocseventuallybecamehighlyenrichedwith‘Accumulibacter’ microcolonies, and the granules then formed, possibly by subsequent microcolony co aggregation(Fig.6.22dg). SuchamechanismisnotinconsistentwiththeTEMdataofLemaireetal.(2008a),which show clearly delineated and spatially related heterogeneities in cell density and exocellular polymeric substances (EPS) matrix appearance within individual granules. This is exactly what might be expected if aggregation of different individual microcolonies was involved in their formation. It might also explain the presence of regular cell free channels, which were also seen in these EBPR granules (Fig. 6.23). Furthermore this proposal provides a mechanism for the reported increases in their diameter, which may also involve increases in sizes of individual coaggregated microcoloniesfromPAOreplication. Because of theiroperational attractions,interest inusing granulated biomass insteadof flocsinSBRsystemsisincreasing.Their rapid settlingratesprovideanopportunityto generateandsustainveryhighbiomasslevels(deKreukanddeBruijn,2004;deKreuket al.,2005a),allowingshortertreatmenttimesinsmallerreactors.Whethergranulesalways arise from preexisting flocs is unclear from the literature because the early stages in

235 granule formation have not always been followed. Encouraging slow growth rates of populationswithpreexistinghighcellcoaggregationpropensitiesmayassist(deKreuk andvanLoosdrecht,2004;LiuandTay,2004;Lietal.,2006),butlesscertainiswhether imposedcellstarvation(LiuandTay,2006)leadingtoincreasedEPShydrophobicityin theflocmatrixdoes(Liuetal.,2007a).ShortSBRsettlingtimes(Ivanovetal.,2006), where more loosely aggregated biomass is lost from the reactor may also influence biomassaggregation(McSwainetal.,2005)andoperatingtemperature(deKreuketal., 2005b),shear(Chenetal.,2007)anddissolvedoxygenconcentrations(MosqueraCorral et al., 2005) all seem to determine granule stability. However, explanations for these events,wheregiven,arenotalwayspersuasive,andtheremaybeseveralquitedifferent mechanismsinvolvedingranuleproduction.ForexampletheobservationsofWeberetal. (2007)suggestingthatprotozoaandfungiwerecrucialinitiallyinprovidingthematrix forbacterialgrowthandEPSproductionintheirgranulesisquitedifferenttothesituation withthoseexaminedhere.Consequently,asdiscussedabove,itmaynotbepossibleto sustainaunifiedmechanistictheoryforgranulation,asitsonecommonfeatureisthatit seemstooccurmainlyinSBRsystems(Liuetal.,2005). Interestingly,despitetheobservedtrendsinthemicrobialpopulation,thechemicalprofile dataindicatedaclearshiftinthedominantphenotypeofthecommunityoverthisperiod and an observed linear relationship between levels of anaerobic P release, reflecting higher PAO activity, and increasing operational pH. This finding agrees with earlier observations(Smoldersetal.,1994a;Liuetal.,1996a;Romanskietal.,1997;Bondet al.,1999a;Bond et al., 1999b; Pijuan et al., 2004b; Oehmen et al., 2005a; Liu et al., 2007b).Smoldersetal.(1994a)suggestedthatelevatedpolyPhydrolysisisrequiredto meettheincreasedenergydemandforacetatetransportintothePAOcellsatahigherpH, becauseofthelargerpHgradientacrossthecellmembrane.Chemicaldata(Figs.6.1and 6.2)obtainedfromtheSBRreactorinthisstudyalsoshowedthatPlevelsincellstakenat theendof the aerobicstagesfromtheinitial pH 7.0 and6.5periods fell,whiletheir glycogen contents increased. Such observations are consistent with a population shift fromaPAOtoaGAOdominatedcommunity(Oehmenetal.,2007). Serafim et al. (Serafim et al., 2002b) suggest that the increase in energy required for acetateuptakeatahighpHisbettermetbythePAOwhohavepolyPasanadditional energy source. Less apparent is the advantage the GAO phenotype has at lower pHs. Filipe et al. (Filipe et al., 2001a) showed that under these conditions aerobic P

236 assimilationandgrowthwereinhibitedintheirPAOenrichedculture,butnotintheGAO enrichment,atpH<7.0.However,thereasonsforthisarenotclear,especiallysincethe identitiesoftheirPAOandGAOpopulationswerenotdetermined. Complicating any interpretation of the chemical transformations presented here is the potentialimpactonorganismbehaviourofsubstratediffusiongradientsintogranulesof increasingsize(Meyeretal.,2003).Falkentoftetal.(2001)suggestedthatincreasesin biofilmthicknessmaycreatelimitationsinPdiffusionrates.Furthermore,microsensors couldrevealthatduringtheaerobicEBPRphase,oxygendidnotpenetratebeyondthe outer100200mofgranules,thuscreatingacentralanoxiczone(Meyeretal.,2003; Kishida et al., 2006). This effect may explain why ‘Accumulibacter’ have been seen restricted to granule outermost layers (Lemaire et al.,2008b).Nileblue A stainingof granule sections from an aerobic:anaerobic SBR community dominated by ‘Competibacter’showed thatmicrobial activity did not occur beyondthe aerobic outer layer, even though inactive GAO were detected further in Meyer et al. (2003). Microsensors would be valuable in determining the distribution of active cells in the granulesgeneratedinthepresentstudy. However,anyinactivityoflayered‘Accumulibacter’cellsdoesnotexplainthechanges notedhereatthedifferentoperatingpHinthelevelsoftheglycogentransformationsin these granules. TEM micrographs of individual tentatively identified ‘Accumulibacter’ cells in samples taken from the initial pH 6.5 reactor period showed they always containedlargeamountsofelectrontransparentmaterial(Fig.6.15b).Thisisunlikelyto bePHA,sincenonecouldbedetectedchemicallybyGCorafterNileblueAstainingof cellstakenattheendoftheaerobicstage(Fig.6.2),whichshowedonlyafewcontained PHAgranules(datanotshown).ThereforeitseemsprobablethatthispHshiftdoesnot resultinmajorincreasesinGAOpopulations,butthatthe‘Accumulibacter’ there rely increasingly under these conditions on intracellular glycogen cycling for the supply of anaerobicreducingequivalents(Fig.6.2).Thissuggestionissupportedbytheobservation ofgenerallylowerpolyPstoragelevelsin‘Accumulibacter’cellsatlowerpHvalues(data notshown).Theabilityof‘Accumulibacter’PAOtoadopttheGAOphenotypehasalso beenshowntooccurunderPlimitation(Zhouetal.,2008)andhighCa2+concentrations (Barat et al.,2006;Barat et al.,2008).Thepresenceof‘Accumulibacter’ cells in full scaleEBPRplantsnotaccumulatingpolyPhasalsobeenreportedwidely(Zillesetal., 2002a; Zilles et al., 2002b; Kong et al.,2004; Wong et al., 2005; Beer et al., 2006).

237 Whilesomemayhavebeeninactive,Kongetal.(2004)didshowwithFISHMARthat cells responding to the ‘Accumulibacter’ probes would take up acetate anaerobically withoutaerobicpolyPcycling. The possibility that different PAO phylotypes exist in EBPR systems with different P storagecapacitiesortolerancestopHalsodeservesattention.DGGEprofilesofthe16S rRNAgenespresentinthecommunitiesexaminedhere,withtheexceptionoftheinitial pH 7.5 sample (taken on day 17), all possessed the same dominant band, which was identifiedputativelyas‘Accumulibacter’(Fig.6.5).Howevertheresolvingpowerofthe 16S rRNA gene in revealing diversity within this group has been questioned (see Chapter1)andtheppkgeneisthoughttoprovideahigherphylogeneticresolution(Heet al.,2006;McMahon et al.,2007b).TheinferenceofdominancebasedonPCRDGGE band fluorescence intensity is also questionable, bearing in mind the biases associated withallPCRbasedmethods(vonWintzingerode et al.,1997;Nocker et al.,2007;de Araújoand Schneider,2008).Application ofthe ppk gene based quantitative realtime PCRmethod(Heetal.,2006)tothisreactorcommunitiesmayhaveelucidatedwhether different‘Accumulibacter’phylotypesoccurredatthedifferentpHconditionsused. 6.5Concludingremarks Smooth regular granules consisting almost exclusively of ‘Accumulibacter’ were generated in an anaerobic: aerobic EBPR SBR operating at high shear rate, coinciding withadropinoperatingpHfrom7.5to7.0andthen6.5.IncreasingpHbackupto7.5 saw them disintegrate partially. It is proposed that these granules form from existing flocs, consisting mainly of ‘Accumulibacter’ PAO microcolonies, which coaggregate initiallyintosmallsphericalgranulesthatincreaseinsize,probablybythesameprocess. Chemical profiles and cell staining suggest that the GAO phenotype becomes more dominant as pH falls. The recorded increases in consumption of glycogen to replace polyP(Fig.6.2)asananaerobicenergysourceasseenbydecreasesinlevelofPrelease, areconsistentwiththisproposal(Oehmenetal.,2007),butFISHdatareveallittleorno change in granule community composition. Instead, the PAO store aerobically little intracellular polyP but considerable glycogen, consistent with a partial switch in phenotypefromaPAOtoGAO.Thisstudyillustratestheimportanceofdetailedsemi quantitative community composition studies, since at the commencement of this study

238 only cluster I ‘Defluviicoccus’ members had been described and consequently FISH probeswereavailableonlyfortheirdetection.

239 7.0 ConclusionsandFutureDirections

7.1Conclusions Theworkpresentedinthisthesissoughttoclarifythetrueextentofthephylogeneticand physiologicaldiversityamongtheGAOpresentinEBPRsystemswheretheirpresenceis thought to reduce P removal efficiency. Particular attention was paid to the alphaproteobacterialrelated GAO and overcoming the difficulties reported in the literature which had hampered their experimental identification. The major findings of thisstudyare: • The effectiveness of different DNA extraction methods for the Defluviicoccus relatedorgansismswasaddressed,andthereportedproblemsobtainingDNAofa suitable quality for PCR were probably the consequence of their propensity to formencapsulatedclustersofcellswithinflocsresistanttolysis.Flowcytometric and micromanipulation based enrichment techniques partially overcame these biases.SuchapproachesmaybeespeciallyappropriatewhereGAOpopulations are present at very low abundances, as is often the case with fullscale EBPR systems(Kongetal.,2006;Burowetal.,2007;Nielsenetal.,2010b). • Theapplicationandoptimisationofsuchextractionandenrichmenttechniquesled to the identification of two additional phylogenetic clusters of Defluviicoccus related organisms, and ecophysiological studies with FISHMAR revealed that they,likemembersofthetwopreviouslydescribedclusters,possessedtheGAO phenotype. The ability to assimilate acetate and synthesise PHA anaerobically wouldsuggestthesecouldcompeteforsubstrateswiththePAOinEBPRsystems. • UnexpectedlytheclusterIIImembersidentifiedwerenotthecharacteristictetrad shaped cells distinctive of all previous Defluviicoccus populations, but instead exhibited a filamentous ‘Nostocoida limicola II’ morphotype and embraced the bulkingfilamentCandidatus‘Monilibacterbatavus’.Thus,theseGAOmayalso beimportantinsettlingproblemsinfullscalesystems.

240 • DistributionstudiesfoundthattheseDefluviicoccusrelatedorganismsandcluster IIImembersinparticular,dominatedsomelargescaleEBPRplantcommunities. Therefore, they should be considered as important populations in EBPR communities,andnotashasoftenbeenthecaseinthepast,laboratorycuriosities only. • OfotherputativealphaproteobacterialGAO,Amaricoccuswereconfirmedtobe unimportant in anaerobic: aerobic EBPR systems, reflecting their inability to assimilatesubstratesanaerobically.However,thesemaybeimportantmembersof aerobic industrial treatment plants where high C: P feed ratios are present, and mayshareasimilarecologicalnicheundersuchconditionswithDefluviicoccus relatedGAO. • TheputativeSphingomonasrelatedalphaproteobacterialGAOwereidentifiedas membersofclusterIDefluviicoccus.Theevidencepresentedhererevealsthatthe original SBR91a FISH probe, designed against a chimeric artificial 16S rRNA sequence and applied in the incorrect orientation, hybridised to Defluviicoccus cluster I members by forming a bulge over a ‘missing’ base in an otherwise perfectly matched sequence, leading to false positive FISH results. Such a possibilityhasneverbeendemonstratedpreviouslybutrequiresattentioninany FISHprobedesignexercise. • Detailed examination of all the ‘Competibacter’related 16S rRNA sequences currently available also revealed further phylogenetic diversity beyond the currentlydescribedsevensubgroupsforthisGAOgroup. • The application of the updated PAO and GAO FISH probe sets to a labscale EBPR SBR community revealed that it was always dominated by ‘Accumulibacter’. There appeared to be a partial shift within ‘Accumulibacter’ from a PAO to a GAO phenotype with decreasing operating pH. The granular structure of this reactor biomass was thought to ensure that ‘Accumulibacter’ continuedtodominateinthesystem.

241 7.2Futurework TheincreaseintheknownphylogeneticdiversityamongtheGAOgroupsrevealedinthis study suggeststhat furtherbiodiversityis almost certainto exist among them, andthat probabilityjustifiestheneedforcontinuedstudiesofthiskind.Thereisalsoaneedto directthesestudiesatmorefullscaleplantcommunitiesofhighercomplexitythanthose inlabscalereactorswheremostofthecurrent16SrRNAsequenceinformationderives. The marked phenotypic differences among the FISH probe defined GAO phylotypes reportedfromdifferentstudiessuggestthatagenegivinghigherresolutionmayhelpin nichediscriminationamongthem.TheFACSenrichmenttechniqueappliedinthework described in this thesis may allow the difficult link between the phylogeny of any candidategenestotheconventional16SrRNAgenetoberesolved The ppk gene is one candidate gene that hasbeen successfully applied toresolve finer scalephylogeneticdiversityamongthe‘Accumulibacter’PAO.Thepossibilityfromthis study that different clades contribute to the suggested metabolic flexibility of the ‘Accumulibacter’ to cope with changing operating conditions observed in this study deserves further attention. As with the ‘Accumulibacter’ (He et al., 2007) and ‘Competibacter’ (Kong et al., 2006), members of the different subgroups of the DefluviicoccusrelatedGAOalsoappeartocoexistinfullscalesystems.Furtherinsitu studies, and comparative genomic analysis will help to reveal if majorfunctional differencesexistbetweenthesephylogeneticsubgroupsandincreaseourunderstanding ofwhatrolethisdiversitymightplayintheirecology TheapplicationofFISHMARhasbeeninvaluableintheinsitustudyoftheseorganisms, butitonlyprovidesasnapshotofanorganism’secophysiology,anddoesnotgenerate readily high quality quantitative data on substrate uptake kinetics. RamanFISH microscopy (Huang et al.,2007)andNanoSIMS(Li etal.,2008)shouldbeappliedto answer the critically important question of whether the PAO or GAO populations assimilate substrates faster anaerobically, and under what operating conditions is each favouredinthisway.OneoutcomewouldbetoresolvetheinfluenceofpHonPAO:GAO competition, particularly its influenceon thekeymetabolicfeatures thought to provide theGAOwithanadvantageatlowoperatingpH.

242 AcomprehensiveunderstandingofGAOphysiologywillcomemostreadilyfrompure culturestudiesofthese.WithnextgenerationDNAsequencingprotocolsnowbecoming cheaperandmorereliable,itbecomesacomparativelysimpletasktosequencealltheir genomicDNA,wherealltheirmetabolicpotentialwillberevealed.Defluviicoccusvanus iscurrentlytheonlypopulationwithademonstratedGAOphenotypeavailableinpure culture. Having such information will provide detailed insight into how this organism behavesinEBPRsystemsprovidingsubsequentknowledgeabouthowtheirgrowthmight becontrolledandtoprovidethePAOwithanadvantage.Genomeannotationhasbeen invaluable to our understanding of the ‘Accumulibacter’ and with the associated proteomicandtranscriptomicstudiesoftheseorganismsinsituwilladdressmanyofthe unanswered questions in EBPR microbiology. The application of this approach to the GAOwillnodoubtbejustasfruitful.

243 8.0 Appendices Appendix 1: Assessment of probe defined ‘Competibacter’ phylotype diversity

244

245 Figure A1.1: Maximum likelihood tree of all available complete ‘Competibacter’related sequences(>1200 bp) using theARB software (Ludwig et al., 2004). Brackets to the far right indicateproposedprobedefinedphylogeneticclusters.Innerbracketsindicateprobecoverage(a brokenlineindicatestheabsenceofsequenceinformationattheprobesite).Forprobedetailssee Table A1.1. ‘*’ Indicates selected partial sequences (< 1200 bp) added using the ‘quickadd’ functioninARBaftertreeconstruction.Parsimonybootstrapvaluesarecalculatedasapercentage of1000analysisandareonlyindicatedforvalues≥75%.○Indicatesabootstrapvalueof≥75% and ● indicates a bootstrap value of ≥ 95 %. The scale bar corresponds to substitutions per nucleotideposition.

246

TableA1.1:Assessmentofprobesavailableforthe‘Competibacter’GAO Perfectmatch Mismatch Name Proposedtarget Notes Ref (Ecoli.Pos) [FA] Target Non Single Weak Accounted % group target Mismatch for‡ GB All‘Competibacter’ 35 64/69 5* 5* 2* 0 • Perfectlymatchesanother (Kongetal., (655671) gammaproteobacterialsequenceisolatedfrom 2002a) soil(FM242308)and4‘Chloroflexi’ sequencesisolatedfromwastewater • Singleweakmismatcheswithtwomembers oftheGammaproteobacteriaisolatedfrom activatedsludge(AB247497andDQ232432) • Conclusion:Currentlythebestoptionto covertheGBgroup.Providesbettercoverage andspecificitythanGBmix(GB_G1and GB_G2)probes GAOQ989 AllGroup1ofGB 35 46/56 9* 127** 79** 25 • AlsoappliedasamixwithGB_G2tocover (Crocettietal., (GB_G1) 55 wholeGBgroup 2002) (9881005) • Perfectlytargetsanother GB_G1comp Competitorfor gammaproteobacterialsequencefromsoil (GB_G2) GAOQ989 (FM242308) (9881005) • WeakmismatchtomembersofGroup2 coveredbyGB_G1competitorprobe • Alsohasweakmismatchwithcloselyrelated sequences(FJ623321andFJ623304) • Conclusion:CanbeusedtoexcludeGB_G2 groupsequences. GB_G2 AllGroup1ofGB 35 13/13 9* 230** 160** 53 • UsedasamixwithGB_G1probestocover (Kongetal., (9881005) 55 wholeGBgroup 2002a) GB_G2comp Competitorfor • Perfectlymatches9nontargetsequences (GB_G1) GAOQ989 including4clusteringwithinthe (9881005) Gammaproteobacteria(DQ499324,

247

DQ499296,DQ499304andDQ499327)from abiofilm). • MismatchtomembersofGroup1members coveredbyGB_G2competitorprobe • Hasweakmismatchesto3sequences clusteringwithintheGBgroup(AB255053, AJ504486andFJ438010). • Conclusion:Canbeused(withcaution)to excludemostmembersoftheGB_G1group GB_1and2 AllmembersofGB 20 18/19 5** 0 0 0 • MustbeusedwithGB_2to‘confirm’‘sub (Kongetal., (587603) subgroup1and2 group1’sequences 2002a) • Doesnotcoveradequatelyany phylogeneticallydefinedclusterwithinthe GB • Conclusion:Notuseful GB_2 Allsubgroup2 ND 14/15 0 21** 21** 0 • Weakmismatchtoanumberofcloselyrelated (Kongetal., (6598) nontargetsequences 2002a) • Conclusion:Usewithcautiontocoversub group2members GB_3 Allsubgroup3 ND 6/6 0 0 0 0 • Conclusion:Usetocoversubgroupmembers (Kongetal., (642659) 2002a) GB_4 Allsubgroup4 35 10/12 0 24** 24** 16 • Weakterminalmismatchtomostsubgroup2 (10201038) memberscoveredbyGB_4forwhichanun GB_4Comp Competitorfor validatedcompetitorprobeisavailable (10201038) GB_4 • Hasweakmismatchestoothersequences clusteringwithintheGBgroup(CU922396, CU921394,DQ413125andCU927451) • Conclusion:Usewithcautiontocoversub group4members 248

GB_5 Allsubgroup5 ND 7/7 0 1 1 0 • Theonlyweakmismatchingsequenceisfrom (Kongetal., (69102) aeukaryoticorganism 2002a) • Conclusion:Usetocoversubgroup5 members Gam1019 Allsubgroup6 35 3/3 1 49** 49** 0 • Perfectlymatchesasingleunidentified (Nielsenetal., (GB_6) bacterialsequencefromsediment 1999) (10201038) • Weakmismatcheswith49sequencesincluded 1withintheGBcluster(EF203182)andtwo partialsequenceswithinsubgroup4. • Conclusion:Usewithcautiontocoversub group6members GB_7 Allsubgroup7 35 5/6 7** 20** 0 18 • Perfectlymatches6nontargetsequences (Kongetal., (10001018) withintheGB(DQ413125,CU927451, 2002a) GB_7Comp Competitorfor FJ623329,FJ623304,FJ623321and (10001018) GB_7 FJ517040) • Singlemismatcheswithmostsequencesin subgroups4and5thatarecoveredbyGB_7 competitorprobe • Singlemismatcheswithtwoothersequences withintheGBgroupthatarenotcoveredby thecompetitorprobe • Conclusion:Notuseful Gam1278 DGGEBands 33 43/69 4** 293* 64* 0 • Originallydesignedtocover3DGGE16S (Nielsenetal., (12791298) rRNAgenefragments(AF093777,AF093780 1999) andAF093781)clusteringwithintheGB group.However,itonlycovers2ofthese. AssessedhereforcoverageoftheentireGB group. • Doesnottargetadefinedphylogeneticgroup withintheGBgroup,andmatches43GB sequencesincludingmembersofsubgroup1, 249

2,4,6and7. • Conclusion:Notuseful GAOQ431 Some 35 43/69 18** 705** 113** 0 • Matches14nontargetgammaproteobacterial (Crocettietal., (431448) ‘Competibacter’ sequences. 2002) • Perfectmatchtoasequenceclusteringwithin the‘new’clusterwithintheGB(FJ516904) andweakmismatchestotheothermembers. Cannotbeusedtoexcludethiscluster. • Conclusion:Notuseful ProbeswerevalidatedagainsttheSILVAdatabase(Version102:February2010)updatedwith Competibacterrelatedsequences.Partialsequences(<1200)were consideredbutwerenotincludedinanalysessummary.*IndicatesthatsomeofthesesequencesaremembersoftheGammaproteobacteriapotentiallymakingthem difficulttoeliminateusingthehierarchalprobeapproach(Daimsetal.2005).**IndicatethatsomeofthesesequencesalsoclusterwithintheCompetibacterrelated sequences.‡Thesesinglebasemismatcheshavebeentested,oftenwithacompetitorprobe,fortheirabilitytopreventnontargethybridisation.

250 Appendix2:Defluviicoccusrelatedprobecoverageassessment.

Fig.A2.1:MaximumlikelihoodtreeofallavailablecompleteDefluviicoccusrelatedsequences (>1200 bp) using the ARB software (Ludwig et al., 2004). Brackets to the far right indicate proposedprobedefinedphylogeneticclusters.Innerbracketsindicateprobecoverage(abroken lineindicatestheabsenceofsequenceinformationattheprobesite).ForprobedetailsseeTable A2.1.‘*’Indicatesselectedpartialsequences(<1200bp)addedusingthe‘quickadd’functionin ARBaftertreeconstruction.Parsimonybootstrapvaluesarecalculatedasapercentageof1000 analysisandareonlyindicatedforvalues≥75%.○Indicatesabootstrapvalueof≥75%and● indicatesabootstrapvalueof≥95%.Thescalebarcorrespondstosubstitutionspernucleotide position.

251

TableA2.1:AssessmentofprobesavailablefortheDefluviicoccusrelatedGAO Perfectmatch Mismatches Name Proposedtarget [FA] Target Non Single Notes Reference (Ecoli.Pos) ‘Weak’ % group target Mismatch DEF438 AllclusterI 20 6/6 0 20** 17** • OriginallydesignedtotargettheD.vanus (Kongetal.,2001) (440483) sequence(AF179678) • Publishedintheincorrectorientation • TargetsallclusterImembersexceptonepartial sequence(althoughonlyasingleweakmismatch) • Containsweakmismatchestosequenceswithin clusterIIandperipheral(partials)toclustersIand II. • Acompetitorprobe(5’ GTCATCATCGTCRCAGGCG3’)wouldcover all17weakmismatchesbutrequiresempirical validation. • Conclusion:SupersededbyTFO_DF776 TFO_DF862 Defluviicoccusvanus 35 1/1 4* 7** 5** • Hasfournontargethits,twoofwhichare (Wongetal.,2004) (830847) membersofclusterIII(AB445107and AB445108)aswellastwoother alphaproteobacterialsequencesisolatedfromthe ocean(GQ350596andGQ350586) • WeakmismatcheswithsequenceswithinclustersI (partial)andIIIandothersperipheraltoclustersII (partial)andIII. • Conclusion:Usefulonlytoconfirmtheabsenceof D.vanusinasample TFO_DF218 AllclusterI 2535 6/6 0 44** 14** • Weakmismatchesincludesequencesperipheralto (Wongetal.,2004) (186210) clusterI • Conclusion:SupersededbyTFO_DF776

252

TFO_DF618 MostofclusterI 2535 5/6 0 2 0 • TargetsmostofclusterIsequenceswithasingle (Wongetal.,2004) (586603) weakmismatchtoD.vanus • Conclusion:ApplyinamixwithTFO_DF776to coverallclusterIalthoughnoevidencetosuggest itisrequired TFO_DF776 AllofclusterI 30 6/6 0 3 0 • Conclusion:Currentlythebestoptiontocoverall (WongandLiu, (744762) clusterIsequencescanalsobeappliedwith 2007) TFO_DF618asamixtocoverthewholecluster TFO_DF629 AllofclusterII ND 12/12 1** 51** 11** • HitsonesequenceperipheraltoclusterII (WongandLiu, (597614) (EU133261) 2007) • Hasasingleweakmismatchwith1completeand 12partialsequencesperipheraltoclusterII • Hassinglemismatcheswithalmostallmembersof allfourclusters • Doesnotimpartfluorescenceoncommunities knowntocontainorganismswithaperfectmatch (Chapter2).Possiblyduetoinaccessibilityof targetsite(regionIV(Fuchsetal.,1998)) • Conclusion:Notuseful. DF988 AllofclusterII 35 12/12 0 3** 3** • Weakmismatchwith2sequencesand1partial (Meyeretal.,2006) (9881008) sequenceperipheraltoclusterII. DF988c Competitorfor • Threeterminalmismatcheswith25sequences (9881008) DF988 includingmostclusterIIImembers.Shownto H966 HelperforDF988 requireacompetitorprobetopreventbinding (966987) (DF988c)(Chapter4) H1038 HelperforDF988 • Conclusion:BestavailableprobeforclusterIIbut (10371063) usewithadditionalcaution DF1020 AllofclusterII 35 12/12 3 9** 9** • Althoughcoveringtheknownsequencediversity (Meyeretal.,2006) 253

(10201036) ofclusterII,itdoesnothavethesamecoverageas H1038 HelperforDF1020 DF988. (10371063) • LikeDF988hasasingleweakmismatchwith AY921916,asequenceperipheraltoclusterII. • Perfectmatchwith3Verrucomicrobiasequences (EU652671,AM040118andAY907804)isolated fromsedimentandseawater. • Conclusion:UsedwithDF988asamixmayonly servetolowerprobespecificity.Canbeapplied singlytotargetcurrentlyunknowndiversitywithin clusterII. DEF827 Sequenceswithin 20 1/1 4 66** 55** • Coversallpartialsequencesitwasdesigned (Kondoetal.,2007) (826843) subgroupIofcluster againstplusacloselyrelated‘complete’sequence II • Perfectlymatchesfournontargetsequences,2 membersoftheAlphaproteobacteria(EF092190 andGQ348482)(bothhavecentralmismatchesto theALF968probe),onememberofthe Gammaproteobacteria(EU800829)andonefrom theFirmicutes(GQ502547). • Hasweakmismatcheswith7otherclusterII sequences • Conclusion:Notuseful DEF636 SubgroupIIIof 20 1/1 0 8** 1** • Coversallpartialsequencesitwasdesigned (Kondoetal.,2007) (636653) clusterII against,plusacloselyrelated‘complete’sequence • Singlemismatcheswith7clusterIIsequences • WeakmismatchwithaclusterIIpartialoutside proposedsubgroup(DQ250537) • Conclusion:Usewithextracaution DF198 AllofclusterIII 35 5/5 0 0 0 • Conclusion:UsetocoverallclusterIIImembers (Chapter4) (197229) 254

MC2649 Candidatus 35 1/1 62* 2009** 615** • Designedtocoverapartialsequence(AY428763), (Snaidretal.,2002) (649666) ‘Monilibacter laterusedtocoverCandidatus‘Monilibacter batavus’ batavus’(Levantesietal.,2004). • Matches62nontargetsequencesfromtheAlpha andDeltaproteobacteria,Veruccomicrobia, Acidobacteria,ActinobacteriaandtheArchaea • The615weaklymismatchedsequencesinclude sequenceswithinclusterIVandperipheralto clustersIandIImembers • 42ofthe615mismatchesprovideadequate discriminationtopreventbinding.Theseinclude othermembersofclusterIII(Chapter4) • Conclusion:Newprobesetrequiredforthissub cluster DF1004 Subgroupofcluster 35 2/2 0 1** 1** • Competitorprobe(DF1004c)designedtocover (Chapter4) (10041020) III weakmismatchtoCandidatus‘Monilibacter DF1004c Competitorfor batavus’sequence(AY590701),butnottested (10041020) DF1004 empirically DF987H HelperforDF1004 • Conclusion:Applywithcaution (9871004) DF1013 Subgroupofcluster 3550 2/2 0 1** 1** • Competitorprobe(DF1013c)designedtocover (Chapter4) (10131031) III weakmismatchtonontargetmemberofclusterIII DF1013c Competitorfor (AF280850),butnottestedempirically (10131031) DF1013 • Conclusion:Applywithcaution DF997H HelperforDF1013 (9971012) DF181A Subgroupofcluster 30 2/2 0 0 0 • Weakterminalmismatchwithtwo‘Chloroflexi’ (Chapter4) (181198) IV sequences(FJ623314andFJ623367),both identifiedasputativechimeras • Weakmismatchtoapartialsequenceclustering withclusterIV,notcoveredbyDF181B,isolated fromsoil(GU390332)

255

• Conclusion:Applyseparatelytocoverthesub clusterorincombinationwithDF181Bforwhole cluster. DF181B Subgroupofcluster 30 4/4 0 13** 0 • Allsequenceswithsinglebasemismatchcovered (Chapter4) (181198) IV byDF181Bcandvalidatedempirically • Conclusion:Applyseparatelytocoverthesub DF181Bc Competitorfor clusterorincombinationwithDF181Aforwhole (181198) DF181B cluster.Additionalpartialsequencenotcovered mayrequireadditional/newprobesforthiscluster Probes were validated against the SILVA database (Version 102: February 2010) (Pruesse et al., 2007) updated with Defluviicoccusrelated sequences. Partial sequences(<1200)wereconsideredbutwerenotincludedinanalysessummary.*IndicatesthatsomeofthesesequencesarealsotargetedbythegeneralALF968 probeforAlphaproteobacteria(Neefetal.,1999)makingthemdifficulttoeliminateusingthehierarchalprobeapproach(Daimsetal.,2005).**Indicatethatsome ofthesesequencesalsoclusterwithintheDefluviicoccusrelatedsequences.

256 Appendix3:Preparationprotocolfor4.5MNaTCA 1. Trichloroaceticacid(TCA)wascontinuouslymixed,withamagneticstirrer,inasterile beaker on ice with a small volume of sterile distilled water (only enough water to allow stirringasa4.5MisclosetosaturationandNaOHsolutionisalsoadded). 2. 10MNaOHwasslowlyaddedwithadroppingfunnel,neverallowingthesolutionto exceed50°C,untiltheTCAisalmostneutralised(basedonaprecalculatedamount). 3. ThepHofthesolutionwasadjustedto6.77.3using2MNaOHsolutionandthefinal volumemadeuptogiveafinalconcentrationof4.5MNaTCA. 4. The final solution is stored at 20 °C as breakdown of the NaTCA occurs at 4 °C precipitatingoutduringthe2propanolstepasabrownpellet.

257 Appendix4:ClusterIVDefluviicoccusprobeoptimisation

Fig.A4.1:FormamidedissociationcurveforclusterIVDefluviicoccusprobes.Formamidetitration wasperformedasdescribedbySchroederetal.(2009).RFU=relativefluoresecentunitscalculated asthehighestfluorescentvalueforeachcurve.

258 Appendix5:Mediacomposition Components Concentration R2A Peptone 0.5gl1 Casaminoacids 0.5gl1 Yeastextract 0.5gl1 Dextrose 0.5gl1 Starch 0.5gl1 1 K2HPO4 0.3gl 1 MgSO4 0.05gl Sodiumpyruvate 0.3gl1 PYCa Peptone 5gl1 Yeastextract 3gl1 Calciumchloride 1gl1 Glucose 1gl1 Thermusmedium(CMD)(Sharpetal.,1995) Tryptone 1gl1 Yeastextract 1gl1 Castenholtzsalts(10×) 100mll1 Cantenholtzbasalsalts 10×Concentrate Nitrilotriaceticacid 1g CaSO4.2H2O 0.6g MgSO4.H2O 1g NaCl 0.08g KNO3 1.03g NaNO3 6.89g Na2HPO4 1.11g 1 FeCl3solution(0.28gl ) 10ml Nitch’straceelementssolution 10ml Nitch’straceelementssolution 1 H2SO4 0.5mll 1 MnSO4.H2O 2.2gl 1 ZnSO4.7H2O 0.5gl H3BO3 0.5gl1 1 CuSO4 0.016gl 1 Na2MoO4.2H2O 0.025gl 1 CoCl2.6H2O 0.046gl

259 Appendix6:Publicationsformingchaptersinthisthesis

260 9.0 References Acinas, S.G., KlepacCeraj, V., Hunt, D.E., Pharino, C., Ceraj, I., Distel, D.L., and Polz, M.F.(2004)Finescalephylogeneticarchitectureofacomplexbacterialcommunity.Nature 430:551554.

Acinas,S.G.,SarmaRupavtarm,R.,KlepacCeraj,V.,andPolz,M.F.(2005)PCRinduced sequence artifacts and bias: insights from comparison of two 16S rRNA clone libraries constructedfromthesamesample.ApplEnvironMicrobiol71:89668969.

Ahn, J., Daidou, T., Tsuneda, S., and Hirata, A. (2002) Characterization of denitrifying phosphateaccumulating organisms cultivated under different electron acceptor conditions usingpolymerasechainreactiondenaturinggradientgelelectrophoresisassay.WaterRes36: 403412.

Ahn, J., McIlroy, S., Schroeder, S., and Seviour, R.J. (2009) Biomass granulation in an aerobic:anaerobicenhanced biological phosphorus removal process in a sequencing batch reactorwithvaryingpH.JIndMicrobiolBiotechnol36:885893.

Ahn, J., Schroeder, S., Beer, M., McIlroy, S., Bayly, R.C., May, J.W., Vasiliadis, G., and Seviour, R.J. (2007) Ecology of the microbial community removing phosphate from wastewater under continuously aerobic conditions in a sequencing batch reactor. Appl EnvironMicrobiol73:22572270.

Akar, A., Akkaya, E.U., Yesiladali, S.K., Çelikyilmaz, G., Çokgor, E.U., Tamerler, C., Orhon,D.,andÇakar,Z.P.(2006)AccumulationofpolyhydroxyalkanoatesbyMicrolunatus phosphovorusundervariousgrowthconditions.JIndMicrobiolBiotechnol33:215220.

Amann,R.,andFuchs,B.M.(2008)Singlecellidentificationinmicrobialcommunitiesby improvedfluorescenceinsituhybridizationtechniques.NatRevMicrobiol6:339348.

Amann, R., Fuchs, B.M., and Behrens, S. (2001) The identification of microorganisms by fluorescenceinsituhybridisation.CurrOpinBiotechnol12:231236.

261 Amann,R.,andLudwig,W.(2000)RibosomalRNAtargetednucleicacidprobesforstudies inmicrobialecology.FEMSMicrobiolRev24:555565.

Amann, R.I. (1995) In situ identification of microorganisms by whole cell hybridization with rRNAtargeted nucleic acid probes. In Molecular Microbial Ecology Manual Akkermans, A.D.L., van Elsas, J.D., and de Bruijn, F.J. (eds). Boston: Kluwer Academic Publishers,pp.3.3.6/115.

Amann,R.I.,Binder,B.J.,Olson,R.J.,Chisolm,S.W.,Devereux,R.,andStahl,D.A.(1990) Combination of 16S rRNAtargeted oligonucleotide probes with flow cytometry for analyzingmixedmicrobialpopulations.ApplEnvironMicrobiol56:19191925.

Amann,R.I.,Ludwig,W.,andSchleifer,K.H.(1995)Phylogeneticidentificationandinsitu detectionofindividualmicrobialcellswithoutcultivation.MicrobiologicalReviews59:143 169.

Andreasen,K.,andNielsen,P.H.(2000)GrowthofMicrothrixparvicellainnutrientremoval activatedsludgeplants:studiesofinsituphysiology.WaterRes34:15591569.

APHA, AWWA, and WEF (1998) Standard methods for the examination of water and wastewater. Washington: American Public Health Association (APHA), American Water WorksAssociation(AWWA)andWaterEnvironmentFederation(WEF).

Ardern,E.,andLockett,W.T.(1914)Experimentsontheoxidationofsewagewithouttheaid offilters.JSocChemInd33:523–539.

Argaman, Y. (1991) Biological nutrient removal. In Biological degradation of wastes. Martin,A.M.(ed).London:Elsevier,pp.85101.

Ariefdjohan, M.W., Savaiano, D.A., and Nakatsu, C.H. (2010) Comparison of DNA extraction kits for PCRDGGE analysis of human intestinal microbial communities from fecalspecimens.NutrJ9:23.

Arun,V.,Mino,T.,andMatsuo,T.(1988)Biologicalmechanismofacetateuptakemediated by carbohydrate consumption in excess phosphorus removal systems. Water Res 22: 565 570. 262 Ashelford, K., Weightman, A., and Fry, J. (2002) PRIMROSE: a computer program for generatingandestimatingthephylogeneticrangeof16SrRNAoligonucleotideprobesand primersinconjunctionwiththeRDPIIdatabase.NucleicAcidsRes30:34813489.

Ashelford,K.E.,Chuzhanova,N.A.,Fry,J.C.,Jones,A.J.,andWeightman,A.J.(2005)At least1in2016SrRNAsequencerecordscurrentlyheldinpublicrepositoriesisestimatedto containsubstantialanomalies.ApplEnvironMicrobiol71:77247736.

Ashelford,K.E.,Chuzhanova,N.A.,Fry,J.C.,Jones,A.J.,andWeightman,A.J.(2006)New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras.ApplEnvironMicrobiol72:57345741.

Aulenta,F.,Dionisi,D.,Majone,M.,Parisi,A.,Ramadori,R.,andTandoi,V.(2003)Effect of periodic feeding in sequencing batch reactor onsubstrate uptake and storage rates by a purecultureofAmaricoccuskaplicensis.WaterRes37:27642772.

Auling,G.,Pilz,F.,Busse,H.J.,Karrasch,S.,Streichan,M.,andSchon,G.(1991)Analysis ofthepolyphosphateaccumulatingmicroflorainphosphoruseliminating,anaerobicaerobic activated sludge systems by using diaminopropane as a biomarker for rapid estimation of Acinetobacterspp.ApplEnvironMicrobiol57:35853592.

Barat, R., Montoya, T., Borrás, L., Ferrer, J., and Seco, A. (2008) Interactions between calciumprecipitationandthepolyphosphateaccumulatingbacteriametabolism. Water Res 42:34153424.

Barat, R., Montoya, T., Borrás, L., Seco, A., and Ferrer, J. (2006) Calcium effect on enhancedbiologicalphosphorusremoval.WaterSciTechnol53:2937.

Bark,K.,Kämpfer,P.,Sponner,A.,andDott,W.(1993)Polyphosphatedependentenzymes insomecoryneformbacteriaisolatedfromsewagesludge.FEMSMicrobiolLett107:133 138.

Barnard,J.,andAbraham,K.(2006)KeyfeaturesofsuccessfulBNRoperation.WaterSci Technol53:19.

Barnard,J.L.(1974)CutPandNwithoutchemicals.WaterWastesEng11:3336. 263 Barnard,J.L.(1975)Biologicalnutrientremovalwithouttheadditionofchemicals. Water Res9:485490.

Barnard,J.L.,andSteichen,M.T.(2006)Whereisbiologicalnutrientremovalgoingnow? WaterSciTechnol53:155164.

Barr,J.J.,Slater,F.R.,Fukushima,T.,andBond,P.L.(Inpress)Evidenceforbacteriophage activity causing community and performance changes in a phosphorus removal activated sludge.FEMSMicroEcol:DOI:10.1111/j.15746941.2010.00967.x.

Bathe, S., and Hausner, M. (2006) Design and evaluation of 16S rRNA sequence based oligonucleotide probes for the detection and quantification of Comamonas testosteroni in mixedmicrobialcommunities.BMCMicrobiol6.

Beacham, A., Seviour, R., Lindrea, K., and Livingston, I. (1990) Genospecies diversity of Acinetobacterisolatesobtainedfrombiological nutrientremovalpilotplantofamodified UCTconfiguration.WaterRes24:2329.

Beer,M.,Kong,Y.H.,andSeviour,R.J.(2004)Aresomeputative glycogen accumulating organisms (GAO) in anaerobic:aerobic activated sludge systems members of the α Proteobacteria?Microbiology150:22672275.

Beer,M.,Kong,Y.H.,andSeviour,R.J.(2009)Aresomeputative glycogen accumulating organisms (GAO) in anaerobic:aerobic activated sludge systems members of the α Proteobacteria?:Retraction.Microbiology155:2460.

Beer,M.,Seviour,E.M.,Kong,Y.,Cunningham,M.,Blackall,L.L.,andSeviour,R.J.(2002) PhylogenyofthefilamentousbacteriumEikelboomType1851,anddesignandapplicationof a 16S rRNA targeted oligonucleotide probe for its fluorescence in situ identification in activatedsludge.FEMSMicrobiolLett207:179183.

Beer, M., Stratton, H., Griffiths, P., and Seviour, R. (2006) Which are the polyphosphate accumulating organisms in fullscale activated sludge enhanced biological phosphate removalsystemsinAustralia?JApplMicrobiol100:223243.

264 Bengtsson,S.,Werker,A.,andWelander,T.(2008)Productionofpolyhydroxyalkanoatesby glycogen accumulating organisms treating a paper mill wastewater. WaterSciTechnol 58 (2):323330.

Bey,B.S.,Fichot,E.B.,Dayama,G.,Decho,A.W.,andNorman,R.S.(2010)Extractionof highmolecularweightDNAfrommicrobialmats.Biotechniques49:631640.

Björnsson, L., Hugenholtz, P., Tyson, G.W., and Blackall, L.L. (2002) Filamentous Chloroflexi(greennonsulfurbacteria)areabundantinwastewatertreatmentprocesseswith biologicalnutrientremoval.Microbiology148:23092318.

Blackall, L., Seviour, E., Bradford, D., Rossetti, S., Tandoi, V., and Seviour, R. (2000) 'CandidatusNostocoidalimicola',afilamentousbacteriumfromactivatedsludge.IntJSyst EvolMicrobiol50:703709.

Blackall,L.L.,Crocetti,G.R.,Saunders,A.M.,andBond,P.L.(2002)Areviewandupdateof themicrobiologyofenhancedbiologicalphosphorusremovalinwastewatertreatmentplants. AntonievanLeeuwenhoek81:681691.

Blackall,L.L.,Rossetti,S.,Christensson,C.,Cunningham,M.,Hartman,P.,Hugenholtz,P., andTandoi,V.(1997)Thecharacterizationanddescriptionofrepresentativesof'G'bacteria fromactivatedsludgeplants.LettApplMicrobiol25:6369.

Bond,P.L.,Erhart,R.,Wagner,M.,Keller,J.,andBlackall, L.L.(1999a) Identificationof some of the major groups of bacteria in efficient and nonefficient biological phosphorus removalactivatedsludgesystems.ApplEnvironMicrobiol65:40774084.

Bond, P.L., Hugenholtz, P., Keller, J., and Blackall, L.L. (1995) Bacterial community structures of phosphateremoving and nonphosphateremoving activated sludges from sequencingbatchreactors.ApplEnvironMicrobiol61:19101916.

Bond, P.L., Keller, J., and Blackall, L.L. (1998) Characterisation of enhanced biological phosphorusremovalwithdissimilarphosphorusremovalperformances. WaterSciTechnol 37(45):567571.

265 Bond,P.L.,Keller,J.,andBlackall,L.L.(1999b)Anaerobicphosphatereleasefromactivated sludgewithenhancedbiologicalphosphorusremoval.Apossiblemechanismofintracellular pHcontrol.BiotechnolBioeng63:507515.

Bonot,S.,Courtois,S.,Block,J.C.,andMerlin,C.(2010)ImprovingtherecoveryofqPCR gradeDNAfromsludgeandsediment.ApplMicrobiolBiotechnol87:23032311.

Boon, N., Windt, W., Verstraete, W., and Top, E.M. (2002) Evaluation of nested PCR DGGE(denaturinggradientgelelectrophoresis)withgroupspecific16SrRNAprimersfor the analysis of bacterial communities from different wastewater treatment plants. FEMS MicrobiolEcol39:101112.

Bourrain, M., Achouak, W., Urbain, V., and Heulin, T. (1999) DNA Extraction from activatedsludges.CurrMicrob38:315319.

Bradford,D.,Hugenholtz,P.,Seviour,E.M.,Cunningham,M.A.,Stratton,H.,Seviour,R.J., and Blackall, L.L. (1996) 16S rRNA Analysis of isolates obtained from GramNegative, filamentousbacteriamicromanipulatedfromactivatedsludge.SystApplMicrobiol19:334 343.

Brdjanovic, D., Logemann, S., and van Loosdrecht, M.C.M. (1998a) Influence of temperature on biological phosphorus removal: process and molecular ecological studies. WaterRes32:10351048.

Brdjanovic, D., Slamet, A., van Loosdrecht, M.C.M., Hooijmans, C.M., Alaerts, G.J., and Heijnen,J.J.(1998b)Impactofexcessiveaerationonbiologicalphosphorusremovalfrom wastewater.WaterRes32:200208.

Brdjanovic,D.,vanLoosdrecht,M.C.M.,Hooijmans,C.M.,Alaerts,G.J.,andHeijnen,J.J. (1997)Temperatureeffectsonphysiologyofbiologicalphosphorusremoval.JEnvironEng 123:144153.

Brdjanovic,D.,vanLoosdrecht,M.C.M.,Hooijmans,C.M.,Alaerts,G.J.,andHeijnen,J.J. (1998c)Minimalaerobicsludgeretentiontimeinbiologicalphosphorusremovalsystems. BiotechnolBioeng60:326332.

266 Brdjanovic, D., van Loosdrecht, M.C.M., Hooijmans, C.M., Mino, T., Alaerts, G.J., and Heijnen,J.J.(1998d)Bioassayforglycogendeterminationinbiologicalphosphorusremoval systems.WaterSciTechnol37(45):541547.

Brodisch, K.E.U. (1985) Interaction of different groups of microorganisms in biological phosphateremoval.WaterSciTechnol17:8997.

Buchan,L.(1983)Possiblebiologicalmechanismofphosphorusremoval.WaterSciTechnol 15:87103.

Bürgmann, H., Pesaro, M., Widmer, F., and Zeyer, J. (2001) A strategy for optimizing qualityandquantityofDNAextractedfromsoil.JMicrobMethods45:720.

Burkholder, J.M. (2002) Cyanobacteria. In Encyclopedia of environmental microbiology. Bitton,G.(ed).NewYork:JohnWiley&Sons,pp.952982.

Burow, L., Mabbett, A., McEwan, A., Bond, P., and Blackall, L. (2008a) Bioenergetic models for acetate and phosphate transport in bacteria important in enhanced biological phosphorusremoval.EnvironMicrobiol10:8798.

Burow, L.C.,Kong, Y., Nielsen,J.L., Blackall, L.L.,and Nielsen,P.H. (2007)Abundance and ecophysiology of Defluviicoccus spp., glycogenaccumulating organisms in fullscale wastewatertreatmentprocesses.Microbiology153:178185.

Burow,L.C.,Mabbett,A.N.,andBlackall,L.L.(2008b)Anaerobicglyoxylatecycleactivity during simultaneous utilization of glycogen and acetate in uncultured Accumulibacter enrichedinenhancedbiologicalphosphorusremovalcommunities.ISMEJ2:10401051.

Burow, L.C., Mabbett, A.N., Borras, L., and Blackall, L.L. (2009) Anaerobic central metabolicpathwaysactiveduringpolyhydroxyalkanoateproductioninunculturedcluster1 Defluviicoccusenrichedinactivatedsludgecommunities.FEMSMicrobiolLett298:7984.

Byers, H.K., Patel, B.J., and Stackebrandt, E. (1997) Design and application of four oligonucleotideprobesspecificforThermusspecies.SystApplMicrobiol20:248254.

267 Cabrol,L.,Malhautier,L.,Poly,F.,Lepeuple,A.S.,andFanlo,J.L.(2010)Assessingthebias linkedtoDNArecoveryfrombiofiltrationwoodchipsformicrobialcommunityinvestigation byfingerprinting.ApplMicrobiolBiotechnol85:779790.

Caldwell, D.E., Wolfaardt, G.M., Korber, D.R., and Lawrence, J.G. (1997) Do bacterial communitiestranscendDarwinism?InAdvancesinmicrobialecology.Jones,J.G.(ed).New York,pp.105175.

Carlon, E., and Heim, T. (2006) Thermodynamics of RNA/DNA hybridization in high densityoligonucleotidemicroarrays.PhysicaA362:433439.

Carr, E.L., Eales, K., Soddell, J., and Seviour, R.J. (2005) Improved permeabilization protocols for fluorescencein situ hybridization (FISH) of mycolicacidcontaining bacteria foundinfoams.JMicrobiolMethods61:4754.

Carucci,A.,Lindrea,K.C.,Majone,M.,andRamadori,R.(1999)Differentmechanismsfor theanaerobicstorageoforganicsubstratesandtheireffectonenhancedbiologicalphosphate removal(EBPR).WaterSciTechnol39(6):2128.

Carvalho,G.,Lemos,P.C.,Oehmen,A.,andReis,M.A.M.(2007)Denitrifyingphosphorus removal:linkingtheprocessperformancewiththemicrobialcommunitystructure.WaterRes 41:43834396.

Cech, J.S., and Hartman, P. (1990) Glucose induced breakdown of enhanced biological phosphateremoval.EnvironTechnol11:651656.

Cech,J.S.,andHartman,P.(1993)Competitionbetweenpolyphosphateandpolysaccharide accumulating bacteria in enhanced biological phosphate removal systems. Water Res 27: 12191225.

Chaffron,S.,Rehrauer, H.,Pernthaler,J.,andvonMering,C.(2010)Aglobalnetworkof coexistingmicrobesfromenvironmentalandwholegenomesequencedata.GenomeRes20: 947959.

268 Chandler, D.P., Fredrickson, J.K., and Brockman, F.J. (1997) Effect of PCR template concentration on the composition and distribution of total community 16S rDNA clone libraries.MolEcol6:475482.

Chen,Y.,Jiang,W.,Liang,D.,andTay,J.(2007)Structureandstabilityofaerobicgranules cultivated under different shear force in sequencing batch reactors. Appl Microbiol Biotechnol76:11991208.

Chen, Y., Liu, Y., Zhou, Q., and Gu, G. (2005) Enhanced phosphorus biological removal fromwastewatereffectofmicroorganismacclimatizationwithdifferentratiosofshortchain fattyacidsmixture.BiochemEngJ27:2432.

Chen, Y., Randall, A.A., and McCue, T. (2004) The efficiency of enhanced biological phosphorusremovalfromrealwastewateraffectedbydifferentratiosofacetictopropionic acid.WaterRes38:2736.

Christensson, M., Blackall, L.L., and Welander, T. (1998) Metabolic transformations and characterisation of the sludge community in an enhanced biological phosphorus removal system.ApplMicrobiolBiotechnol49:226234.

Chua,A.,Eales,K.,Mino,T.,andSeviour,R.(2004)ThelargePAOcellsinfullscaleEBPR biomasssamplesarenotyeastsporesbutpossiblynovelmembersoftheβProterobacteria. WaterSciTechnol50:123130.

Chua,A.,Onuki,M.,Satoh,H.,andMino,T.(2006)Examiningsubstrateuptakepatternsof Rhodocyclusrelated PAO in fullscale EBPR plants by using the MARFISH technique. WaterSciTechnol54(1):6370.

Cloete, T.E., and Steyn, P.L. (1988a) A combined membrane filterimmunofluorescent techniquefortheinsituidentificationandenumerationofAcinetobacterinactivatedsludge. WaterRes22:961969.

Cloete,T.E.,andSteyn,P.L.(1988b)TheroleofAcinetobacterasaphosphorusremoving agentinactivatedsludgeWaterRes22:971976.

Cohan,F.(2002)Whatarebacterialspecies?AnnuRevMicrobiol56:457487. 269 Cohan,F.M.,andKoeppel,A.F.(2008)Theoriginsofecologicaldiversityinprokaryotes. CurrBiol11:R1024R1034.

Cole,J.,Chai,B.,Marsh,T.,Farris,R.,Wang,Q.,Kulam,S.,Chandra,S.,McGarrell,D., Schmidt, T., Garrity, G., and Tiedje, J. (2003) The Ribosomal Database Project (RDPII): previewinganewautoalignerthatallowsregularupdatesandthenewprokaryotictaxonomy. NucleicAcidsRes31:442443.

Cole,J.R.,Konstantinidis,K.,Farris,R.J.,andTiedje,J.M.(2010)Microbialdiversityand phylogeny:extendingfromrRNAstogenomes.InEnvironmentalMolecularMicrobiology. Liu,W.T.,andJansson,J.K.(eds).Norfolk,UK:CaisterAcademicPress,pp.119.

Cole,J.R.,Wang,Q.,Cardenas,E.,Fish,J.,Chai,B.,Farris,R.J.,KulamSyedMohideen, A.S., McGarrell, D.M., Marsh, T., Garrity, G.M., and Tiedje, J.M. (2009) The Ribosomal DatabaseProject:improvedalignmentsandnewtoolsforrRNAanalysis.NucleicAcidsRes 37:D141145.

Coleman, M.L., Sullivan, M.B., Martiny, A.C., Steglich, C., Barry, K., Delong, E.F., and Chisholm,S.W.(2006)GenomicislandsandtheecologyandevolutionofProchlorococcus. Science311:17681770.

Comeau,Y.,Hall,K.J.,Hancock,R.E.W.,andOldham,W.K.(1986)Biochemicalmodelfor enhancedbiologicalphosphorusremoval.WaterRes20:15111521.

Conley, D.J. (2000) Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologica410:8796.

Corgié,S.C.,Beguiristain,T.,andLeyval,C.(2006)Profiling16SbacterialDNAandRNA: differencebetweencommunitystructureandtranscriptionalactivityinphenanthrenepolluted sandinthevicinityofplantroots.SoilBiolBiochem38:15451553.

Costa, R., Gomes, N.C.M., Milling, A., and Smalla, K. (2004) An optmized protocol for simultaneousextractionofDNAandRNAfromsoils.BrazilianJMicrobiol35:230234.

270 Crocetti, G.R., Banfield, J.F., Keller, J., Bond, P.L., and Blackall, L.L. (2002) Glycogen accumulating organisms in laboratoryscale and fullscale wastewater treatment processes. Microbiology148:33533364.

Crocetti,G.R.,Hugenholtz,P.,Bond,P.L.,Schuler,A.,Keller,J.,Jenkins,D.,andBlackall, L.L. (2000) Identification of polyphosphateaccumulating organisms and design of 16S rRNAdirectedprobesfortheirdetectionandquantitation.ApplEnvironMicrobiol66:1175 1182.

Dabert,P.,Sialve,B.,Delgenes,J.P.,Moletta,R.,andGodon,J.J.(2001)Characterisationof the microbial 16S rDNA diversity of an aerobic phosphorusremoval ecosystem and monitoringofitstransitiontonitraterespiration.ApplMicrobiolBiotechnol55:500509.

Dai,Y.,Yuan, Z.,Wang,X.,Oehmen,A., and Keller,J.(2007)Anaerobicmetabolismof Defluviicoccus vanus related glycogen accumulating organisms (GAOs) with acetate and propionateascarbonsources.WaterRes41:18851896.

Daims,H.,Brühl,A.,Amann,R.,Schleifer,K.,andWagner,M.(1999)Thedomainspecific probeEUB338isinsufficientforthedetectionofallBacteria:developmentandevaluationof amorecomprehensiveprobeset.SystApplMicrobiol22:434444.

Daims,H.,Lücker,S.,andWagner,M.(2006)daime,anovelimageanalysisprogramfor microbialecologyandbiofilmresearch.EnvironMicrobiol8:200213.

Daims, H., Nielsen, J., Nielsen, P., Schleifer, K., and Wagner, M. (2001a) In situ characterization of Nitrospiralike nitriteoxidizing bacteria active in wastewater treatment plants.ApplEnvironMicrobiol67:52735284.

Daims, H., Ramsing, N.B., Schleifer, K.H., and Wagner, M. (2001b) Cultivation independent, semiautomatic determination of absolute bacterial cell numbers in environmental samples by fluorescent in situ hybridization. Appl Environ Microbiol 67: 58105818.

271 Daims,H.,Stoecker,K.,andWagner,M.(2005)Fluorescenceinsituhybridizationforthe detection of prokaryotes. In Molecular Microbial Ecology. Osborn, A.M., and Smith, C.J. (eds).NewYork:Taylor&Francis,pp.213239.

Daims, H., and Wagner, M. (2010) The microbiology of nitrogen removal. In Microbial ecologyofactivatedsludge.Seviour,R.J.,andNielsen,P.H.(eds).London:IWAPublishing, pp.259280.

Davenport,R.,Curtis,T.,Goodfellow,M.,Stainsby,F.,andBingley,M.(2000)Quantitative use of fluorescent in situ hybridization to examine relationships between mycolic acid containingactinomycetesandfoaminginactivatedsludgeplants.ApplEnvironMicrobiol66: 11581166. deAraújo,J.C.,andSchneider,R.P.(2008)DGGEwithgenomicDNA:suitablefordetection of numerically important organisms but not for identification of the most abundant organisms.WaterRes42:50025010. deKreuk,M.,anddeBruijn,L.M.M.(2004)Aerobicgranulereactortechnology.London: IWAPublishing. de Kreuk, M., Heijnen, J.J., and van Loosdrecht, M.C.M. (2005a) Simultaneous COD, nitrogen,andphosphateremovalbyaerobicgranularsludge.BiotechnolBioeng90:761769. de Kreuk, M., Pronk, M., and van Loosdrecht, M.C.M. (2005b) Formation of aerobic granulesandconversionprocessesinanaerobicgranularsludgereactoratmoderateandlow temperatures.WaterRes39:44764484. deKreuk,M.,andvanLoosdrecht,M.C.M.(2004)Selectionofslowgrowingorganismsasa meansforimprovingaerobicgranularsludgestability.WaterSciTechnol49:917. deLipthay,J.R.,Enzinger,C.,Johnsen,K.,Aamand,J.,andSørensen,S.J.(2004)Impactof DNA extraction method on bacterial community composition measured by denaturing gradientgelelectrophoresis.SoilBiolBiochem36:16071614.

272 de los Reyes, F., Ritter, W., and Raskin, L. (1997) Groupspecific smallsubunit rRNA hybridizationprobestocharacterizefilamentousfoaminginactivatedsludgesystems.Appl EnvironMicrobiol63:11071117.

Deinema, M.H., Habets, L.H.A., Scholten, J., Turkstra, E., and Webers, H.A.A.M. (1980) TheaccumulationofpolyphosphateinAcinetobacterspp.FEMSMicrobiolLett9:275279.

DeLong,E.,Wickham,G.,andPace,N.(1989)Phylogeneticstains:ribosomalRNAbased probesfortheidentificationofsinglecells.Science243:13601363.

Desai, C., and Madamwar, D. (2006) Extraction of inhibitorfree metagenomic DNA from pollutedsediments,compatiblewithmoleculardiversityanalysisusingadsorptionandion exchangetreatments.BioresourTechnol98:761768.

DeSantis,T.Z.,Hugenholtz,P.,Larsen,N.,Rojas,M.,Brodie,E.L.,Keller,K.,Huber,T., Dalevi, D., Hu, P., and Andersen, G.L. (2006) Greengenes, a chimerachecked 16S rRNA genedatabaseandworkbenchcompatiblewithARB.ApplEnvironMicrobiol72:50695072.

Dong,D.,Yan,A.,Liu,H.,Zhang,X.,andXu,Y.(2006)Removalofhumicsubstancesfrom soilDNAusingaluminiumsulfate.JMicrobMethods66:217222.

Duarte, G.F., Rosado, A.S., Seldin, L., KeijzerWolters, A.C., and van Elsas, J.D. (1998) ExtractionofribosomalRNAandgenomicDNAfromsoilforstudyingthediversityofthe indigenousbacterialcommunity.JMicrobiolMethods32:2129.

Duncan,A.,Vasiliadis,G.,Bayly,R.C.,andMay,J.W.(1988)GenospeciesofAcinetobacter isolated from activated sludge showing enhanced removal of phosphate during pilotscale treatmentofsewage.BiotechLett10:831836.

Eikelboom,D.H.(1975)Filamentousorganismsobservedinactivatedsludge.WaterRes9: 365388.

Erdal, U.G., Erdal, Z.K., Daigger, G.T., and Randall, C.W. (2008) Is it PAOGAO competitionormetabolicshiftinEBPRsystem?Evidencefromanexperimentalstudy.Water SciTechnol58:13291334.

273 Erdal, U.G., Erdal, Z.K., and Randall, C.W. (2003) The competition between PAOs (phosphorus accumulating organisms) and GAOs (glycogen accumulating organisms) in EBPR(enhancedbiologicalphosphorusremoval)systemsatdifferenttemperaturesandthe effectsonsystemperformance.WaterSciTechnol47(11):18.

Erhart,R.,Bradford,D.,Seviour,R.J.,Amann,R.,andBlackall,L.L.(1997)Development and use of fluorescent in situ hybridization probes for the detection and identification of ''Microthrixparvicella''inactivatedsludge.SystApplMicrobiol20:310318.

Eschenhagen, M., Schuppler, M., and Roske, I. (2003) Molecular characterization of the microbialcommunitystructureintwoactivatedsludgesystemsfortheadvancedtreatmentof domesticeffluents.WaterRes37:32243232.

Falconer, I.R. (2002) Cyanobacteriatoxins in drinking water. In Encyclopedia of environmentalmicrobiology.Bitton,G.(ed).NewYork:JohnWiley&Sons,pp.982995.

Falkentoft,C.,Arnz,P.,Henze,M.,Mosbaek,H.,Müller,E.,Wilderer,P.,andHarremoës,P. (2001)Possiblecomplicationregardingphosphorusremovalwithacontinuousflowbiofilm system:diffusionlimitation.BiotechnolBioeng76:7785.

Falvo, A., Levantesi, C., Rossetti, S., Seviour, R., and Tandoi, V. (2001) Synthesis of intracellular storage polymers by Amaricoccus kaplicensis, a tetrad forming bacterium presentinactivatedsludge.JApplMicrobiol91:299305.

Feinstein,L.M.,Sul,W.J.,andBlackwood,C.B.(2009)Assessmentofbiasassociatedwith incompleteextractionofmicrobialDNAfromsoil.ApplEnvironMicrobiol75:54285433.

Filipe, C., Daigger, G., and Grady Jr, C. (2001a) Effects of pH on the rates of aerobic metabolism of phosphateaccumulating and glycogenaccumulating organisms. Water EnvironRes73:213222.

Filipe,C.,Daigger,G.,andGradyJr,C.(2001b)Ametabolicmodelforacetateuptakeunder anaerobicconditionsbyglycogenaccumulatingorganisms:Stoichiometry,kinetics,andthe effectofpH.BiotechnolBioeng76:1731.

274 Filipe, C., Daigger, G., and Grady Jr, C. (2001c) pH as a key factor in the competition betweenglycogenaccumulatingorganismsandphosphorusaccumulatingorganisms.Water EnvironRes73:223232.

Filipe,C.,Daigger,G.,andGradyJr,C.(2001d)Stoichiometryandkineticsofacetateuptake underanaerobicconditionsbyanenrichedcultureofphosphorusaccumulatingorganismsat differentpHs.BiotechnolBioeng76:3243.

Flowers,J.J.,He,S.,Yilmaz,S.,Noguera,D.R.,andMcMahon,K.D.(2009)Denitrification capabilities of two biological phosphorus removal sludges dominated by different "CandidatusAccumulibacter"clades.EnvironMicrobiolRep1:583588.

Forbes,C.M.,O’Leary,N.D.,Dobson,A.D.,andMarchesi,J.R.(2009)Thecontributionof ‘omic’based approaches to the study of enhanced biological phosphorus removal microbiology.FEMSMicroEcol69:115.

Fortin,N.,Beaumier,D.,Lee,K.,andGreer,C.(2004)Soilwashingimprovestherecovery of total community DNA from polluted and high organic content sediments. J Microb Methods56:181191.

Freitas,F.,Temudo,M.,andReis,M.A.M.(2005)Microbialpopulationresponsetochanges of the operating conditions in a dynamic nutrientremoval sequencing batch reactor. BioprocessBiosystEng28:199209.

Friedrich, U., Van Langenhove, H., Altendorf, K., and Lipski, A. (2003) Microbial communityandphysicochemicalanalysisofanindustrialwastegasbiofilteranddesignof 16SrRNAtargetingoligonucleotideprobes.EnvironMicrobiol5:183201.

Frostegård,A.,Courtois,S.,Ramisse,V.,Clerc,S.,Bernillon,D.,LeGall,F.,Jeannin,P., Nesme,X.,andSimonet,P.(1999)QuantificationofbiasrelatedtotheextractionofDNA directlyfromsoils.ApplEnvironMicrobiol65:54095420.

Fuchs, B.M., Glockner, F.O., Wulf, J., and Amann, R. (2000) Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotideprobes.ApplEnvironMicrobiol66:36033607.

275 Fuchs, B.M., Wallner, G., Beisker, W., Schwippl, I., Ludwig, W., and Amann, R. (1998) Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescentlylabeledoligonucleotideprobes.ApplEnvironMicrobiol64:49734982.

Fuhs, G.W., and Chen, M. (1975) Microbiological basis of phosphate removal in the activatedsludgeprocessforthetreatmentofwastewater.MicrobEcol2:119138.

Fukase,T.,Shibata,M.,andMiyaji,Y.(1984)Theroleofananaerobicstageonbiological phosphorusremoval.WaterSciTechnol17:6980.

Gabor,E.,deVries,E.,andJanssen,D.(2003)EfficientrecoveryofenvironmentalDNAfor expressioncloningbyindirectextractionmethods.FEMSMicrobiolEcol44:153163.

GarcíaMartín,H.,Ivanova,N.,Kunin,V.,Warnecke,F.,Barry,K.,McHardy,A.,Yeates, C., He, S., Salamov, A., Szeto, E., Dalin, E., Putnam, N., Shapiro, H., Pangilinan, J., Rigoutsos, I., Kyrpides, N., Blackall, L., McMahon, K., and Hugenholtz, P. (2006) Metagenomic analysis of two enhanced biological phosphorus removal (EBPR) sludge communities.NatBiotechnol24:12631269.

Ghosh, D., McMahon, K.D., and Noguera, D.R. (2005) Enrichment and isolation of StenotrophomonasEBPR1,anorganismthatcanperformenhancedbiologicalphosphorus removalinpureculture.InConferenceProceedings:4thIWAActivatedSludgePopulation DynamicsSpecialistConferenceMicrobialPopulationDynamicsinBiologicalWastewater Treatment (ASPD4). Hall, S., and Blackall, L. (eds). Queensland, Australia: AWMC UniversityofQueensland,pp.5561.

Gich,F.,GarciaGil,J.,andOvermann,J.(2001)Previouslyunknownandphylogenetically diversemembersofthe greennonsulfurbacteriaareindigenoustofreshwaterlakes. Arch Microbiol177:110.

Ginige,M.(2010)Stableisotopeprobing.InMicrobialecologyofactivatedsludge.Seviour, R.J.,andNielsen,P.H.(eds).London:IWAPublishing,pp.427438.

276 Ginige,M.P.,Keller,J.,andBlackall,L.L.(2005)Investigationofanacetatefeddenitrifying microbialcommunitybystableisotopeprobing,fullcyclerRNAanalysis,andfluorescentin situhybridizationmicroautoradiography.ApplEnvironMicrobiol71:86838691.

Goda,S.,andMinton,N.(1995)Asimpleprocedureforgelelectrophoresisandnorthern blottingofRNA.NucleicAcidsRes23:33573358.

Gray, N.F. (2005) Water technology: an introduction for environmental scientists and engineers.Oxford:ElsevierButterworthHeinemann.

Griffiths,P.C.,Stratton,H.M.,andSeviour,R.J.(2002)Environmentalfactorscontributing tothe"Gbacteria"populationinfullscaleEBPRplants. WaterSciTechnol 46(45): 185 192.

Griffiths, R., Whiteley, A., O'Donnell, A., and Bailey, M. (2000) Rapid method for coextractionofDNAandRNAfromnaturalenvironmentsforanalysisofribosomalDNA andrRNAbasedmicrobialcommunitycomposition.ApplEnvironMicrobiol66:54885491.

Guisasola,A.,Qurie,M.,delMarVargas,M.,Casas,C.,andBaeza,J.A.(2009)Failureofan enrichednitriteDPAOpopulationtousenitrateasanelectronacceptor.ProcessBiochem44: 689695.

Günther, S., Trutnau, M., Kleinsteuber, S., Hause, G., Bley, T., Röske, I., Harms, H., and Müller,S.(2009)Dynamicsofpolyphosphateaccumulatingbacteriainwastewatertreatment plant microbial communities detected via DAPI (4',6'diamidino2phenylindole) and tetracyclinelabeling.ApplEnvironMicrobiol75:21112121.

Guobin, S., Wenbiao, J., LAM, E.K.H., and Xinhui, X. (2008) Purification of total DNA extractedfromactivatedsludge.JEnvironSci20:8087.

Hamaguchi,K.,andGeiduschek,E.(1962)Theeffectofelectrolytesonthestabilityofthe deoxyribonucleatehelix.JAmerChemSoc84:13291338.

Hanada,S.,Liu,W.T.,Shintani,T.,Kamagata,Y.,andNakamura,K.(2002)Tetrasphaera elongatasp.nov.,apolyphosphateaccumulatingbacteriumisolatedfromactivatedsludge. IntJSystEvolMicrobiol52:883887. 277 Hayes, D.K., Izzard, L., and Seviour, R.J. (In press) Microbial ecology of autothermal thermophilic anaerobic digestor (ATAD) systems for treating waste activated sludge Syst ApplMicrobiol.

He, S., Bishop, F.I., and McMahon, K.D. (2010) Bacterial community and "Candidatus Accumulibacter" population dynamics in laboratoryscale enhanced biological phosphorus removalreactors.ApplEnvironMicrobiol76:54795487.

He, S., Gall, D.L., and McMahon, K.D. (2007) "Candidatus Accumulibacter" population structureinenhancedbiologicalphosphorusremovalsludgesasrevealedbypolyphosphate kinasegenes.ApplEnvironMicrobiol73:58655874.

He,S.,Gu,A.,andMcMahon,K.(2008)Progresstowardunderstandingthedistributionof Accumulibacteramongfullscaleenhancedbiologicalphosphorusremovalsystems.Microb Ecol55:229236.

He, S., Gu, A.Z., and McMahon, K.D. (2006) Finescale differences between Accumulibacterlike bacteria in enhanced biological phosphorus removal activated sludge. WaterSciTechnol54:111117.

He,S.,Kunin,V.,Haynes,M.,Martin,H.G.,Ivanova,N.,Rohwer,F.,Hugenholtz,P.,and McMahon,K.D.(Inpress)Metatranscriptomicarrayanalysisof'CandidatusAccumulibacter phosphatis'enrichedenhancedbiologicalphosphorusremovalsludge.EnvironMicrobiol12.

He, S., and McMahon, K.D. (In press) 'Candidatus Accumulibacter' gene expression in responsetodynamicEBPRconditions.ISMEJ.

Head, I.M., Saunders, J.R., and Pickup, R.W. (1998) Microbial evolution, diversity, and ecology:adecadeofribosomalRNAanalysisofuncultivatedmicroorganisms.MicroEcol 35:121.

Herthnek,D.,Nielsen,S.,Lindberg,A.,andBölske,G.(2008)Arobustmethodforbacterial lysisandDNApurificationtobeusedwithrealtimePCRfordetectionofMycobacterium aviumsubsp.paratuberculosisinmilk.JMicrobiolMethods75:335340.

278 Hesselmann,R.,Werlen,C.,Hahn,D.,vanderMeer,J.,andZehnder,A.(1999)Enrichment, phylogenetic analysis and detection of a bacterium that performs enhanced biological phosphateremovalinactivatedsludge.SystApplMicrobiol22:454465.

Hesselmann,R.P.X.,vonRummell,R.,Resnick,S.M.,Hany,R.,andZehnder,A.J.B.(2000) Anaerobicmetabolismofbacteriaperformingenhancedbiologicalphosphateremoval.Water Res34:34873494.

Hesselsoe,M.,Füreder,S.,Schloter,M.,Bodrossy,L.,Iversen,N.,Roslev,P.,Nielsen,P., Wagner,M.,andLoy,A.(2009)IsotopearrayanalysisofRhodocyclalesuncoversfunctional redundancyandversatilityinanactivatedsludge.ISME3:13491364.

Hiraishi, A., Masamune, K., and Kitamura, H. (1989) Characterization of the bacterial population structure in an anaerobicaerobic activated sludge system on the basis of respiratoryquinoneprofiles.ApplEnvironMicrobiol55:897901.

Hiraishi,A.,Ueda,Y.,andIshihara,J.(1998)Quinoneprofilingofbacterialcommunitiesin naturalandsyntheticsewageactivatedsludgeforenhancedphosphateremoval.ApplEnviron Microbiol64:992998.

Hoefel, D., Monis, P.T., Grooby, W.L., Andrews, S., and Saint, C.P. (2005) Profiling bacterial survival through a water treatmentprocess and subsequent distribution system. J ApplMicrobiol99:175186.

Hood,C.R.,andRandall,A.A.(2001)Abiochemicalhypothesisexplainingtheresponseof enhancedbiologicalphosphorusremovalbiomasstoorganicsubstrates.WaterRes35:2758 2766.

Huang, W.E., Stoecker, K., Griffiths, R., Newbold, L., Daims, H., Whiteley, A.S., and Wagner, M. (2007) RamanFISH: combining stableisotope Raman spectroscopy and fluorescenceinsituhybridizationforthesinglecellanalysisofidentityandfunction.Environ Microbiol9:18781889.

Hugenholtz,P.,Goebel,B.,andPace,N.(1998)Impactofcultureindependentstudiesonthe emergingphylogeneticviewofbacterialdiversity.JBacteriol180:47654774.

279 Hugenholtz, P., and Goebel, B.M. (2001) The polymerase chain reaction as a tool to investigate microbial diversity in environmental samples. In Environmental Molecular Microbiology: Protocols and Applications. Rochelle, P.A. (ed). Norfolk, UK: Horizon ScientificPress,pp.3141.

Hung, C.H., Peccia, J., Zilles, J.L., and Noguera, D.R. (2002) Physical enrichment of polyphosphateaccumulatingorganismsinactivatedsludge.WaterEnvironRes74:354361.

Hunt, D.E., David, L.A., Gevers, D., Preheim, S.P., Alm, E.J., and Polz, M.F. (2008) Resourcepartitioningandsympatricdifferentiationamongcloselyrelatedbacterioplankton. Science320:10811085.

Hurt,R.,Qiu,X.,Wu,L.,Roh,Y.,Palumbo,A.,Tiedje,J.,andZhou,J.(2001)Simultaneous recoveryofRNAandDNAfromsoilsandsediments. Appl Environ Microbiol 67: 4495 4503.

Đnceoğlu,O.,Hoogwout,E.F.,Hill,P.,andvanElsas,J.D.(2010)EffectofDNAextraction methodontheapparentmicrobialdiversityofsoil.ApplEnvironMicrobiol76:33783382.

Invitrogen(2006)Additionof3'Aoverhangspostamplification.InTOPOTACloningKit forSequencing.

Ishii,K.,andFukui,M.(2001)Optimizationofannealingtemperaturetoreducebiascaused byaprimermismatchinmultitemplatePCR.ApplEnvironMicrobiol67:37533755.

Ivanov,V.,Wang,X.H.,Tay,S.T.L.,andTay,J.H.(2006)Bioaugmentationandenhanced formation of microbial granules used in aerobic wastewater treatment. Appl Microbiol Biotechnol70:374381.

IvarsMartinez,E.,MartinCuadrado,A.B.,D'Auria,G.,Mira,A.,Ferriera,S.,Johnson,J., Friedman,R.,andRodriguezValera,F.(2008)Comparativegenomicsoftwoecotypesofthe marine planktonic copiotroph Alteromonas macleodii suggests alternative lifestyles associatedwithdifferentkindsofparticulateorganicmatter.ISMEJ2:11941212.

280 Jenkins,D.,Richard,M.G.,andDaigger,G.T.(2004)Manualonthecausesandcontrolof activatedsludgebulking,foamingandothersolidsseparationproblems.London,England: CRCPressLLC.

Jenkins, D., and Tandoi, V. (1991) The applied microbiology of enhanced biological phosphateremovalaccomplishmentsandneeds.WaterRes25:14711478.

Jeon,C.,Lee,D.,Lee,M.,andPark,J.(2001)Enhancedbiologicalphosphorusremovalinan anaerobicaerobicsequencingbatchreactor:effectofpH.WaterEnvironRes73:301306.

Jeon,C.O.,andPark,J.M.(2000)Enhancedbiologicalphosphorusremovalinasequencing batchreactorsuppliedwithglucoseasasolecarbonsource.WaterRes34:21602170.

Jimenez,B.,andAsano,T.(2008)Waterreuse:aninternationalsurveyofcurrentpractice, issuesandneeds.London:IWAPublishing.

Juretschko, S., Loy, A., Lehner, A., and Wagner, M. (2002) The microbial community compositionofanitrifyingdenitrifyingactivatedsludgefromanindustrialsewagetreatment plantanalyzedbythefullcyclerRNAapproach.SystemApplMicrobiol25:8499.

Kaberdin,V.R.,andBläsi,U.(2006)TranslationalinitiationandfateofbacterialmRNAs. FEMSMicrobiolRev30:967979.

Kämpfer,P.(1997)Detectionandcultivationoffilamentousbacteriafromactivatedsludge. FEMSMicrobiolEcol23:169181.

Kämpfer, P., Erhart, R., Beimfohr, C., Bohringer, J., Wagner, M., and Amann, R. (1996) Characterization of bacterial communities from activated sludge: culturedependent numericalidentificationversusinsituidentificationusinggroupandgenusspecificrRNA targetedoligonucleotideprobes.MicrobEcol32:101121.

Kanagawa, T., Kamagata, Y., Aruga, S., Kohno, T., Horn, M., and Wagner, M. (2000) PhylogeneticanalysisofandoligonucleotideprobedevelopmentforEikelboomtype021N filamentous bacteria isolated from bulking activated sludge. Appl Environ Microbiol 66: 50435052.

281 Kartal,B.,Rattray,J.,vanNiftrik,L.A.,vandeVossenberg,J.,Schmid,M.C.,Webb,R.I., Schouten,S.,Fuerst,J.A.,Damsté,J.S.,Jetten,M.S.M.,andStrous,M.(2007)Candidatus "Anammoxoglobuspropionicus"anewpropionateoxidizingspeciesofanaerobicammonium oxidizingbacteriaSystApplMicrobiol30:3949.

Kartal, B., van Niftrik, L., Rattray, J., van de Vossenberg, J.L., Schmid, M.C., Sinninghe Damsté, J., Jetten, M.S., and Strous, M. (2008) Candidatus 'Brocadia fulgida': an autofluorescentanaerobicammoniumoxidizingbacterium.FEMSMicrobiolEcol63:4655.

Kataoka,N.,Tokiwa,Y.,Tanaka,Y.,Takeda,K.,andSuzuki,T.(1996)Enrichmentculture andisolationofslowgrowingbacteria.ApplMicrobiolBiotechnol45:771777.

Kauffmann, I., Schmitt, J., and Schmid, R. (2004) DNA isolation from soil samples for cloningindifferenthosts.ApplMicrobiolBiotechnol64:665670.

Kawaharasaki,M.,Kanagawa,T.,Tanaka,H.,andNakamura,K.(1998)Developmentand applicationof16SrRNAtargetedoligonucleotideprobeforthedetectionofthephosphate accumulating bacterium Microlunatus phosphovorus inanenhancedbiologicalphosphorus removalprocess.WaterSciTechnol37(45):481484.

Kawaharasaki,M.,Manome,A.,Kanagawa,T.,andNakamura,K.(2002)Flowcytometric sorting and RFLP analysis of phosphate accumulating bacteria in an enhanced biological phosphorusremovalsystem.WaterSciTechnol46:139144.

Kawaharasaki, M., and Nakamura, K. (1995) Some factors which affect the phosphorus uptakeof aphosphorusaccumulatingbacterium,strainNM1. J Ferment Bioeng 79: 190 192.

Kawaharasaki,M.,Tanaka,H.,Kanagawa,T.,andNakamura,K.(1999)Insituidentification of polyphosphateaccumulating bacteria in activated sludge by dual staining with rRNA targeted oligonucleotide probes and 4′,6diamidino2phenylindol (DAPI) at a polyphosphateprobingconcentration.WaterRes33:257265.

Ke, S.H., and Wartell, R.M. (1995) Influence of neighboring base pairs on thestability of singlebasebulgesandbasepairsinaDNAfragment.Biochem34:45934600.

282 Kim,J.M.,Lee,H.J.,Kim,S.Y.,Song,J.J.,Park,W.,andJeon,C.O.(2010)Analysisofthe finescale population structure of "Candidatus accumulibacter phosphatis" in enhanced biological phosphorus removal sludge, using fluorescence in situ hybridization and flow cytometricsorting.ApplEnvironMicrobiol76:38253835.

Kim,M.H.,Hao,O.J.,andWang,N.S.(1997)Acinetobacterisolatesfromdifferentactivated sludgeprocesses:characteristicsandneuralnetworkidentification.FEMSMicrobiolEcol23: 217227.

Kishida, N., Kim, J., Tsuneda, S., and Sudo, R. (2006) Anaerobic/oxic/anoxic granular sludgeprocessasaneffectivenutrientremovalprocessutilizingdenitrifyingpolyphosphate accumulatingorganisms.WaterRes40:23032310.

Klerks,M.,vanBruggen,A.,Zijlstra,C.,andDonnikov,M.(2006)Comparisonofmethods ofextractingSalmonellaentericaserovarEnteritidisDNAfromenvironmentalsubstratesand quantification of organisms by using a general internal procedural control. Appl Environ Microbiol72:38793886.

Knight,G.C.,Seviour,R.J.,Soddell,J.A.,McDonnell,S.,andBayly,R.C.(1995)Metabolic variationamongstrainsofAcinetobacterisolatedfromactivatedsludge.WaterRes29:2081 2084.

Kondo,T.,Ebie,Y.,Tsuneda,S.,andInamori,Y.(2007)DetectionofDefluviicoccusrelated glycogenaccumulating organisms in enhanced biological phosphorus removal processes. MicrobEnviron22:190195.

Kong,Y.,Beer,M.,Seviour,R.,Lindrea,K.,andRees,G.(2001)Structureandfunctional analysisofthemicrobialcommunityinanaerobic:anaerobicsequencingbatchreactor(SBR) withnophosphorusremoval.SystApplMicrobiol24:597609.

Kong,Y.,Nielsen,J.,andNielsen,P.(2004)MicroautoradiographicstudyofRhodocyclus related polyphosphateaccumulating bacteria in fullscale enhanced biological phosphorus removalplants.ApplEnvironMicrobiol70:53835390.

283 Kong, Y., Nielsen, J., and Nielsen, P. (2005) Identity and ecophysiology of uncultured actinobacterial polyphosphateaccumulating organisms in fullscale enhanced biological phosphorusremovalplants.ApplEnvironMicrobiol71:40764085.

Kong,Y.,Ong,S.L.,Ng,W.J.,andLiu,W.T.(2002a)Diversityanddistributionofadeeply branchednovelproteobacterialgroupfoundinanaerobicaerobicactivatedsludgeprocesses. EnvironMicrobiol4:753757.

Kong,Y.,Xia,Y.,Nielsen,J.,andNielsen,P.(2007)Structureandfunctionofthemicrobial communityinafullscaleenhancedbiologicalphosphorusremovalplant.Microbiology153: 40614073.

Kong, Y., Xia, Y., Nielsen, J.L., and Nielsen, P.H. (2006) Ecophysiology of a group of uncultured Gammaproteobacterial glycogenaccumulating organisms in fullscale enhanced biologicalphosphorusremovalwastewatertreatmentplants.EnvironMicrobiol8:479489.

Kong, Y., Xia, Y., and Nielsen, P.H. (2008) Activity and identity of fermenting microorganisms in fullscale biological nutrient removing wastewater treatment plants. EnvironMicrobiol10:20082019.

Kong,Y.H.,Beer,M.,Rees,G.N.,andSeviour,R.J.(2002b)Functionalanalysisofmicrobial communities in aerobicanaerobic sequencing batch reactors fed with different phosphorus/carbon(P/C)ratios.Microbiology148:22992307.

Kortstee,G.J.,Appeldoorn,K.J.,Bonting,C.F.,vanNiel,E.W.,andvanVeen,H.W.(1994) Biologyofpolyphosphateaccumulatingbacteriainvolvedinenhancedbiologicalphosphorus removal.FEMSMicrobiolRev15:137153.

Kowalchuk,G.A.,deBruijn,F.J.,Head,I.M.,Akkermans,A.D.L.,andvanElsas,J.D.(2004) MolecularMicrobialEcologyManual.Dordrecht:KluwerAcademic.

Kragelund, C., Kong, Y., van der Waarde, J., Thelen, K., Eikelboom, D., Tandoi, V., Thomsen, T., and Nielsen, P. (2006) Ecophysiology of different filamentous Alphaproteobacteriainindustrialwastewatertreatmentplants.Microbiology152:30033012.

284 Kragelund,C.,Levantesi,C.,Borger,A.,Thelen,K.,Eikelboom,D.,Tandoi,V.,Kong,Y., Krooneman, J., Larsen, P., Thomsen, T., and Nielsen, P. (2008) Identity, abundance and ecophysiology of filamentous bacteria belonging to the Bacteroidetes present in activated sludgeplants.Microbiology154:886894.

Kragelund,C.,Levantesi,C.,Borger,A.,Thelen,K.,Eikelboom,D.,Tandoi,V.,Kong,Y., van der Waarde, J., Krooneman, J., Rossetti, S., Thomsen, T., and Nielsen, P. (2007a) Identity, abundance and ecophysiology of filamentous Chloroflexi species present in activatedsludgetreatmentplants.FEMSMicrobiolEcol59:671682.

Kragelund, C., Müller, E., Schade, M., Nguyen, H.T.T., Lemmer, H., Seviour, R.J., and Nielsen,P.H.(2009)IdentificationoffilamentousbacteriabyFISH.InFISHhandbookfor biologicalwastewatertreatment.Nielsen,P.H.,Daims,H.,andLemmer,H.(eds).London: IWAPublishing,pp.3368.

Kragelund, C., Nielsen, J., Thomsen, T., and Nielsen, P. (2005) Ecophysiology of the filamentous Alphaproteobacterium Meganema perideroedes in activated sludge. FEMS MicrobiolEcol54:111122.

Kragelund,C.,Remesova,Z.,Nielsen,J.,Thomsen,T.,Eales,K.,Seviour,R.,Wanner,J., and Nielsen, P. (2007b) Ecophysiology of mycolic acidcontaining Actinobacteria (Mycolata)inactivatedsludgefoams.FEMSMicrobiolEcol61:174184.

Krsek,M.,andWellington,E.(1999)Comparisonofdifferentmethodsfortheisolationand purificationoftotalcommunityDNAfromsoil.JMicrobiolMethods39:116.

Kuba,T.,Vanloosdrecht,M.C.M.,andHeijnen,J.J.(1996)Phosphorusandnitrogenremoval with minimal COD requirement by integration of denitrifying dephosphatation and nitrificationinatwosludgesystem.WaterRes30:17021710.

Kunin,V.,He,S.,Warnecke,F.,Peterson,S.B.,GarciaMartin,H.,Haynes,M.,Ivanova,N., Blackall, L.L., Breitbart, M., Rohwer, F., McMahon, K.D., and Hugenholtz, P. (2008) A bacterialmetapopulationadaptslocallytophagepredationdespiteglobaldispersal.Genome Res18:293297.

285 Kurata, S., Kanagawa, T., Magariyama, Y., Takatsu, K., Yamada, K., Yokomaku, T., and Kamagata,Y.(2004)ReevaluationandreductionofaPCRbiascausedbyreannealingof templates.ApplEnvironMicrobiol70:75457549.

Kurland,C.G.,Canback,B.,andBerg,O.G.(2003)Horizontalgenetransfer:acriticalview. PNAS100:96589662.

Kuske,C.,Banton,K.,Adorada,D.,Stark,P.,Hill,K.,andJackson,P.(1998)Smallscale DNA sample preparation method for field PCR detection of microbial cells and spores in soil.ApplEnvironMicrobiol64:24632472.

Laemmli, U. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophageT4.Nature227:680685.

Lajoie, C.A., Layton, A.C., Gregory, I.R., Sayler, G.S., Taylor, D.E., and Meyers, A.J. (2000) Zoogleal clusters and sludge dewatering potential in an industrial activatedsludge wastewatertreatmentplant.WaterEnvironRes72:5664.

Lakay, F., Botha, A., and Prior, B. (2007) Comparative analysis of environmental DNA extractionandpurificationmethodsfromdifferenthumicacidrichsoils.J Appl Microbiol 102:265273.

Lane, D. (1991) 16S/23S rRNA sequencing. In Modern microbial methods: Nucleic acid techniquesinbacterialsystematics..Stackebrandt,E.,andGoodfellow,M.(eds).England: JohnWiley&Sons,pp.115175.

Lang, B.E., and Schwarz, F.P. (2007) Thermodynamic dependence of DNA/DNA and DNA/RNA hybridization reactions on temperature andionic strength. Biophys Chem 131: 96104.

LaPara,T.M.,Nakatsu,C.H.,Pantea,L.,andAlleman,J.E.(2000)Phylogeneticanalysisof bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater.ApplEnvironMicrobiol66:39513959.

286 Larsen,P.,Eriksen,P.,Lou,M.,Thomsen,T.,Kong,Y.,Nielsen,J.,andNielsen,P.(2006) Flocformingpropertiesofpolyphosphateaccumulatingorganismsinactivatedsludge.Water SciTechnol54:257265.

Lathe,R.(1985)Syntheticoligonucleotideprobesdeducedfromaminoacidsequencedata: theoreticalandpracticalconsiderationsJMolBiol183:112.

Lawson, E.N., and Tonhazy, N.E. (1980) Changes in morphology and phosphateuptake patternsofAcinetobactercalcoaceticusstrains.WaterSA6:105112.

Lee, H., Lee, S., Lee, J., Kim, H., Park, J., Choi, E., and Park, Y. (2003a) The microbial communityanalysisofa5stageBNRprocesswithstepfeedsystem.WaterSciTechnol48: 135141.

Lee, N., Cellamare, C.M., Bastianutti, C., RosselloMora, R., Kampfer, P., Ludwig, W., Schleifer, K.H., and Stante, L. (2004) Emended description of the species Lampropedia hyalina.IntJSystEvolMicrobiol54:17091715.

Lee, N., Jansen, J.C., Aspegren, H., Henze, M., Nielsen, P.H., and Wagner, M. (2002) Population dynamics in wastewater treatment plants with enhanced biological phosphorus removaloperatedwithandwithoutnitrogenremoval.WaterSciTechnol46(12):163170.

Lee,N.,Nielsen,P.,Andreasen,K.,Juretschko,S.,Nielsen,J.,Schleifer,K.,andWagner,M. (1999) Combination of fluorescent in situ hybridization and microautoradiographya new toolforstructurefunctionanalysesinmicrobialecology.ApplEnvironMicrobiol65:1289 1297.

Lee, N., Nielsen, P.H., Aspegren, H., Henze, M., Schleifer, K.H., and la Cour Jansen, J. (2003b)Longtermpopulationdynamicsandinsituphysiologyinactivatedsludgesystems withenhancedbiologicalphosphorusremovaloperatedwithandwithoutnitrogenremoval. SystApplMicrobiol26:211227.

Lemaire,R.,Meyer,R.,Taske,A.,Crocetti,G.R.,Keller,J.,andYuan,Z.(2006)Identifying causesofN20accumulationinalabscalesequencingbatchreactorperformingsimultaneous nitrification,denitrificationandphosphorusremoval.JBiotech122:6272.

287 Lemaire, R., Webb, R., and Yuan, Z. (2008a) Microscale observations of the structure of aerobic microbial granules used for the treatment of nutrientrich industrial wastewater. ISMEJ2:528541.

Lemaire,R.,Yuan,Z.,Blackall,L.L.,andCrocetti,G.R.(2008b)Microbialdistributionof Accumulibacterspp.andCompetibacterspp.inaerobicgranulesfromalabscalebiological nutrientremovalsystem.EnvironMicrobiol10:354363.

Lemarchand, K., Berthiaume, F., Maynard, C., Harel, J., Payment, P., Bayardelle, P., Masson, L., and Brousseau, R. (2005) Optimization of microbial DNA extraction and purification from raw wastewater samples for downstream pathogen detection by microarrays.JMicrobMethods63:115126.

Lemos, P., Dai, Y., Yuan, Z., Keller, J., Santos, H., and Reis, M. (2007) Elucidation of metabolicpathwaysinglycogenaccumulatingorganismswithinvivo13Cnuclearmagnetic resonance.EnvironMicrobiol9:26942706.

Levantesi,C.,Beimfohr,C.,Geurkink,B.,Rossetti,S.,Thelen,K.,Krooneman,J.,Snaidr,J., vanderWaarde,J.,andTandoi,V.(2004)FilamentousAlphaproteobacteriaassociatedwith bulkinginindustrialwastewatertreatmentplants.SystApplMicrobiol27:716727.

Levantesi, C., Rossetti, S., Thelen, K., Kragelund, C., Krooneman, J., Eikelboom, D., Nielsen,P.H.,andTandoi,V.(2006)Phylogeny,physiologyanddistributionof'Candidatus Microthrix calida', a new Microthrix species isolated from industrial activated sludge wastewatertreatmentplants.EnvironMicrobiol8:15521563.

Levantesi,C.,Serafim,L.S.,Crocetti,G.R.,Lemos,P.C.,Rossetti,S.,Blackall,L.L.,Reis, M.A.M.,andTandoi,V.(2002)Analysisofthemicrobialcommunitystructureandfunction ofalaboratoryscaleenhancedbiologicalphosphorusremovalreactor.EnvironMicrobiol4: 559569.

Li, J., Chen, Y., Li, J.,Zhang, D., Wang, S., Wang, L., Jiang, D., Sun,F., and Zhang, Q. (2006)Morphologicalandstructuralcharacteristicsofaerobicgranulation.JChemTechnol Biotechnol81:823830.

288 Li,T.,Wu,T.D.,Mazeas,L.,Toffin,L.,GuerquinKern,J.L.,Leblon,G.,andBouchez,T. (2008)SimultaneousanalysisofmicrobialidentityandfunctionusingNanoSIMS.Environ Microbiol10:580588.

Liesack,W.,Weyland,H.,andStackebrandt,E.(1991)Potentialrisksofgeneamplification byPCRasdeterminedby16SrDNAanalysisofamixedcultureofstrictbarophilicbacteria. MicrobEcol21:191198.

Lindrea,K.C.,andSeviour,R.J.(2002)Activatedsludgetheprocess.InEncyclopediaof environmentalmicrobiology.Bitton,G.(ed).NewYork:JohnWiley&Sons,pp.7480.

Liu, H.L. (1998) Relation between sludge carbohydrate content and biological phosphate removal.WaterRes32:16351641.

Liu, J.R., and Seviour, R.J. (2001) Design and application of oligonucleotide probes for fluorescentinsituidentificationofthefilamentousbacterialmorphotypeNostocoidalimicola inactivatedsludge.EnvironMicrobiol3:551560.

Liu,W.T.,Hanada,S.,Marsh,T.L.,Kamagata,Y.,andNakamura,K.(2002)Kineosphaera limosa gen. nov., sp. nov., a novel Grampositive polyhydroxyalkanoateaccumulating coccusisolatedfromactivatedsludge.IntJSystEvolMicrobiol52:18451849.

Liu,W.T.,Marsh,T.L.,Cheng,H.,andForney,L.J.(1997a)Characterizationofmicrobial diversity by determining terminal restriction fragment length polymorphisms of genes encoding16SrRNA.ApplEnvironMicrobiol63:45164522.

Liu,W.T.,Mino,T.,Matsuo,T.,andNakamura,K.(1996a)Biologicalphosphorusremoval processeseffectofpHonanaerobicsubstratemetabolism.WaterSciTechnol34(12):25 32.

Liu,W.T.,Mino,T.,Matsuo,T.,andNakamura,K.(2000a)Isolation,characterizationand identificationofpolyhydroxyalkanoateaccumulatingbacteriafromactivatedsludge.JBiosci Bioeng90:494500.

289 Liu, W.T., Mino, T., Nakamura, K., and Matsuo, T. (1994) Role of glycogen in acetate uptake and polyhydroxyalkanoate synthesis in anaerobicaerobic activated sludge with a minimizedpolyphosphatecontent.JFermentBioeng77:535540.

Liu, W.T., Nakamura, K., Matsuo, T., and Mino, T. (1997b) Internal energybased competition between polyphosphate and glycogenaccumulating bacteria in biological phosphorusremovalreactorseffectofP/Cfeedingratio.WaterRes31:14301438.

Liu,W.T.,Nielsen,A.T.,Wu,J.H.,Tsai,C.S.,Matsuo,Y.,andMolin,S.(2001)Insitu identificationofpolyphosphateandpolyhydroxyalkanoateaccumulatingtraitsformicrobial populationsinabiologicalphosphorusremovalprocess.EnvironMicrobiol3:110122.

Liu,W.,Linning,K.,Nakamura,K.,Mino,T.,Matsuo,T.,andForney,L.(2000b)Microbial communitychangesinbiologicalphosphateremovalsystemsonalteringsludgephosphorus content.Microbiology146:10991107.

Liu, W.T., Mino, T., Nakamura, K., and Matsuo, T. (1996b) Glycogen accumulating populationanditsanaerobicsubstrateuptakeinanaerobicaerobicactivatedsludgewithout biologicalphosphorusremoval.WaterRes30:7582.

Liu,Y.Q.,Wu,W.W.,Tay,J.H.,andWang,J.L.(2007a)Starvationisnotaprerequisite fortheformationofaerobicgranules.ApplMicrobiolBiotechnol76:211216.

Liu,Y.,Chen,Y.,andZhou,Q.(2007b)EffectofinitialpHcontrolonenhancedbiological phosphorus removal from wastewater containing acetic andpropionic acids. Chemosphere 66:123129.

Liu,Y.,andTay,J.H.(2004)Stateoftheartofbiogranulationtechnologyforwastewater treatment.BiotechnolAdv22:533563.

Liu, Y., and Tay, J. (2006) Variable aeration in sequencing batch reactor with aerobic granularsludge.JBiotechnol124:338346.

Liu,Y.,Wang,Z.W.,Qin,L.,Liu,Y.Q.,andTay,J.H.(2005)Selectionpressuredriven aerobicgranulationinasequencingbatchreactor.ApplMicrobiolBiotechnol67:2632.

290 Logemann, J., Schell, J., and Willmitzer, L. (1987) Improved method for the isolation of RNAfromplanttissues.AnalBiochem163:1620.

LopezVazquez,C.M.,Hooijmans,C.M.,Brdjanovic,D.,Gijzen,H.J.,andvanLoosdrecht, M.C.(2008a) Factorsaffectingthemicrobialpopulationsatfullscaleenhancedbiological phosphorusremoval(EBPR)wastewatertreatmentplantsinTheNetherlands.WaterRes42: 23492360.

LopezVazquez,C.M.,Hooijmans,C.M.,Brdjanovic,D.,Gijzen,H.J.,andvanLoosdrecht, M.C. (2009a) Temperature effects on glycogen accumulating organisms. Water Res 43: 28522864.

LopezVazquez,C.M.,Oehmen,A.,Hooijmans,C.M.,Brdjanovic,D., Gijzen,H.J.,Yuan, Z., and van Loosdrecht, M.C. (2009b) Modeling the PAOGAO competition: effects of carbonsource,pHandtemperature.WaterRes43:450462.

LopezVazquez,C.M.,Song,Y.I.,Hooijmans,C.M.,Brdjanovic,D.,Moussa,M.S.,Gijzen, H.J.,andvanLoosdrecht,M.C.M.(2008b)Temperatureeffectsontheaerobicmetabolismof glycogenaccumulatingorganisms.BiotechnolBioeng101:295306.

LopezVazquez,C.M.,Song,Y.I.,Hooijmans,C.M.,Brdjanovic,D.,Moussa,M.S.,Gijzen, H.J., and van Loosdrecht, M.M. (2007) Shortterm temperature effects on the anaerobic metabolismofglycogenaccumulatingorganisms.BiotechnolBioeng97:483495.

Lötter, L.H., and Murphy, M. (1985) The identification of heterotrophic bacteria in an activatedsludgeplantwithparticularreferencetopolyphosphateaccumulation.WaterSA11: 179184.

Louie,T.M.,Mah,T.J.,Oldham,W.K.,andRamey,W.D.(2000)Useofmetabolicinhibitors andgaschromatography/massspectrometrytostudypolyβhydroxyalkanoatesmetabolism involvingcrypticnutrientsinenhancedbiologicalphosphorusremovalsystems.WaterRes 34:15071514.

291 Loy,A.,Arnold,R.,Tischler,P.,Rattei,T.,Wagner,M.,andHorn,M.(2008)probeCheck a central resource for evaluating oligonucleotide probe coverage and specificity. Environ Microbiol10:28942896.

Loy,A.,Maixner,F.,Wagner,M.,andHorn,M.(2007)probeBase:anonlineresourcefor rRNAtargetedoligonucleotideprobes:newfeatures2007 NucleicAcidRes35:D800804.

Loy,A.,Schulz,C.,Lücker,S.,SchöpferWendels,A.,Stoecker,K.,Baranyi,C.,Lehner,A., andWagner,M.(2005)16SrRNAgenebasedoligonucleotidemicroarrayforenvironmental monitoring of the betaproteobacterial order "Rhodocyclales". Appl Environ Microbiol 71: 13731386.

Lu,H.,Oehmen,A.,Virdis,B.,Keller,J.,andYuan, Z.(2006)Obtaininghighly enriched culturesofCandidatusAccumulibacterphosphatisthroughalternatingcarbonsources.Water Res40:38383848.

Ludwig,W.,Strunk,O.,Westram,R.,Richter,L.,Meier,H.,Yadhukumar,Buchner,A.,Lai, T., Steppi, S., Jobb, G., Förster, W., Brettske, I., Gerber, S., Ginhart, A.W., Gross, O., Grumann,S.,Hermann,S.,Jost,R.,König,A.,Liss,T.,Lüßmann,R.,May,M.,Nonhoff,B., Reichel,B.,Strehlow,R.,Stamatakis,A.,Stuckmann,N.,Vilbig,A.,Lenke,M.,Ludwig,T., Bode, A., and Schleifer, K.H. (2004) ARB: a software environment for sequence data. NucleicAcidsRes32:13631371.

Luna,G.,Dell'Anno,A.,andDanovaro,R.(2006)DNAextractionprocedure:acriticalissue forbacterialdiversityassessmentinmarinesediments.EnvironMicrobiol8:308320.

Maixner,F.,Noguera,D.R.,Anneser,B.,Stoecker,K.,Wegl,G.,Wagner,M.,andDaims,H. (2006) Nitrite concentration influences the population structure of Nitrospiralike bacteria. EnvironMicrobiol8:14871495.

Manz,W.,Amann,R.,Ludwig,W.,Vancanneyt,M.,andSchleifer,K.(1996)Applicationof asuiteof16SrRNAspecificoligonucleotideprobesdesignedtoinvestigatebacteriaofthe phylum cytophagaflavobacterbacteroides in the natural environment. Microbiology 142: 10971106. 292 Manz,W.,Amann,R.,Ludwig,W.,Wagner,M.,andScheifer,K.H.(1992)Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions.SystApplMicrobiol15:593600.

Manz,W.,Wagner,M.,Amann,R.,andSchleifer,K.H.(1994)Insitucharacterizationofthe microbialconsortiaactiveintwowastewatertreatmentplants.WaterRes28:17151723.

Marais, G.v.R., Loewenthal, R.E., and Siebritz, I.P. (1983) Observations supporting phosphateremovalbybiologicalexcessuptakeareview.WaterSciTechnol15:1541.

Mary,I.,Oliver,A.,Skipp,P.,Holland,R.,Topping,J.,Tarran,G.,Scanlan,D.J.,O'Connor, C.D., Whiteley, A.S., Burkill, P.H., and Zubkov, M.V. (2010) Metaproteomic and metagenomic analyses of defined oceanic microbial populations using microwave cell fixationandflowcytometricsorting.FEMSMicrobiolEcol74:1018.

Maszenan,A.M.,Seviour,R.J.,Patel,B.K.,andWanner,J.(2000a)Afluorescentlylabelled rRNA targeted oligonucleotide probe for the in situ detection of Gbacteria of the genus Amaricoccusinactivatedsludge.JApplMicrobiol88:826835.

Maszenan,A.,Seviour,R.,Patel,B.,Janssen,P.,andWanner,J.(2005)Defluvicoccusvanus gen.nov.,sp.nov.,anovelGramnegativecoccus/coccobacillusintheAlphaproteobacteria fromactivatedsludge.IntJSystEvolMicrobiol55:21052111.

Maszenan,A.,Seviour,R.,Patel,B.,Rees,G.,andMcDougall,B.(1997)Amaricoccusgen. nov., a Gramnegative coccus occurring in regular packages or tetrads, isolated from activatedsludgebiomass,anddescriptionsofAmaricoccusveronensissp.nov.,Amaricoccus tamworthensissp.nov.,Amaricoccusmacauensissp.nov.,andAmaricoccuskaplicensissp. nov.IntJSystBacteriol47:727734.

Maszenan, A.M., Seviour, R.J., Patel, B.K., Schumann, P., Burghardt, J., Tokiwa, Y., and Stratton,H.M.(2000b) Threeisolatesofnovel polyphosphateaccumulatingGrampositive cocci,obtainedfromactivatedsludge,belongtoanewgenus,Tetrasphaeragen.nov.,and description of two new species, Tetrasphaera japonica sp. nov. and Tetrasphaera australiensissp.nov.IntJSystEvolMicrobiol50Pt2:593603.

293 Maszenan, A.M., Seviour, R.J., Patel, B.K., Schumann, P., Burghardt, J., Webb, R.I., Soddell,J.A.,andRees,G.N.(1999a)Friedmanniellaspumicolasp.nov.andFriedmanniella capsulatasp.nov.fromactivatedsludgefoam:Grampositivecoccithatgrowinaggregates ofrepeatinggroupsofcocci.IntJSystBacteriol49Pt4:16671680.

Maszenan, A.M., Seviour, R.J., Patel, B.K., Schumann, P., and Rees, G.N. (1999b) Tessaracoccusbendigoensisgen.nov.,sp.nov.,aGrampositivecoccusoccurringinregular packagesortetrads,isolatedfromactivatedsludgebiomass.IntJSystBacteriol49Pt2:459 468.

Maszenan, A.M., Seviour, R.J., Patel, B.K.C., and Schumann, P. (2002) Quadricoccus australiensis gen. nov.,sp. nov., a βproteobacterium from activated sludge biomass.Int J SystEvolMicrobiol52:223228.

McKenzie,C.,Seviour,E.,Schumann,P.,Maszenan,A.,Liu,J.,Webb,R.,Monis,P.,Saint, C.,Steiner,U.,andSeviour,R.(2006)Isolatesof'CandidatusNostocoidalimicola'Blackall et al. 2000 should be described as three novel species of the genus Tetrasphaera, as Tetrasphaera jenkinsii sp. nov., Tetrasphaera vanveenii sp. nov. and Tetrasphaera veronensissp.nov.IntJSystEvolMicrobiol56:22792290.

McMahon, K.D., Dojka, M.A., Pace, N.R., Jenkins, D., and Keasling, J.D. (2002) Polyphosphate kinase from activated sludge performing enhanced biological phosphorus removal.ApplEnvironMicrobiol68:49714978.

McMahon, K.D., GarciaMartin, H., and Hugenholtz, P. (2007a) Integrating ecology into biotechnology.CurrOpinBiotechnol18:287292.

McMahon, K.D., Gu, A.Z., Nerenberg, R., and Strum, B.M. (2009) Molecular methods in biologicalsystems.WaterEnvironRes81:9861002.

McMahon,K.D.,He,S.,andOehmen,A.(2010)Themicrobiologyofphosphorusremoval. In Microbial ecology of activated sludge. Seviour, R.J., and Nielsen, P.H. (eds). London: IWAPublishing,pp.281319.

294 McMahon, K.D., Yilmaz, S., He, S., Gall, D.L., Jenkins, D., and Keasling, J.D. (2007b) Polyphosphate kinase genes from fullscale activated sludge plants. Appl Microbiol Biotechnol77:167173.

McSwain,B.,Irvine,R.,Hausner,M.,andWilderer,P.(2005)Compositionanddistribution of extracellular polymeric substances in aerobic flocs and granular sludge. Appl Environ Microbiol71:10511057.

McVeigh, H., Munro, J., and Embley, T. (1996) Molecular evidence for the presence of novelactinomycetelineagesinatemperateforestsoil.JIndMicrobiolBiotechnol17:197 204.

Meier,H.,Amann,R.,Ludwig,W.,andSchleifer,K.(1999)Specificoligonucleotideprobes for in situ detection of a major group of Grampositive bacteria with low DNA G + C content.SystApplMicrobiol22:186196.

Melasniemi,H.,andHernesmaa,A.(2000)Yeastsporesseemtobeinvolvedinbiological phosphateremoval:amicroscopicinsitucasestudy.Microbiology146:701707.

Messing,J.(1983)NewM13vectorsforcloning.MethodsEnzymol101:2078.

Meyer, R.L., Saunders, A.M., and Blackall, L.L. (2006) Putative glycogenaccumulating organisms belonging to the Alphaproteobacteria identified through rRNAbased stable isotopeprobing.Microbiology152:419429.

Meyer, R.L., Saunders, A.M., Zeng, R.J., Keller, J., and Blackall, L.L. (2003) Microscale structure and function of anaerobicaerobic granules containing glycogen accumulating organisms.FEMSMicroEcol45:253261.

Mino,T.,Arun,V.,Tsuzuki,Y.,andMatsuo,T.(1987)Effectofphosphorusaccumulation on acetate metabolism in the biological phosphorus removal process. In Biological phorphorusremovalfromwastewaters.Ramadori,R.(ed).Oxford:PergamonPress,pp.27 38.

295 Mino, T., Liu, W.T., Kurisu, F., and Matsuo, T. (1995) Modelling glycogen storage and denitrification capability of microorganisms in enhanced biological phosphate removal processes.WaterSciTechnol31:2534.

Mino,T.,VanLoosdrecht,M.C.M.,andHeijnen,J.J.(1998)Microbiologyandbiochemistry oftheenhancedbiologicalphosphateremovalprocess.WaterRes32:31933207.

Mitchell, K.R., and TakacsVesbach, C.D. (2008) A comparison of methods for total community DNA preservation and extraction from various thermal environments. J Ind MicrobiolBiotechnol35:11391147.

Miyauchi,R.,Oki,K.,Aoi,Y.,andTsuneda,S.(2007)Diversityofnitratereductasegenesin "Candidatus Accumulibacter phosphatis" dominated cultures enriched by flowcytometric sorting.ApplEnvironMicrobiol73:53315337.

Mobarry, B., Wagner, M., Urbain, V., Rittmann, B., and Stahl, D. (1996) Phylogenetic probesforanalyzingabundanceandspatialorganizationofnitrifyingbacteria.ApplEnviron Microbiol62:21562162.

Moore,E.,Arnscheidt,A.,Krüger,A.,Strömpl,C.,andMau,M.(2004)Simplifiedprotocols forthepreparationofgenomicDNAfrombacterialcultures.InMolecularMicrobialEcology Manual.Kowalchuk,G.,DeBruijn,F.J.,Head,I.,Akkermans,A.D.L.,andvanElsas,J.D. (eds).London:KluwerAcademicPublishers,pp.1.01:0318.

Moraru,C.,Lam,P.,Fuchs,B.M.,Kuypers,M.M.,andAmann,R.(Inpress)GeneFISHan in situ technique for linking gene presence and cell identity in environmental microorganisms.EnvironMicrobiol:doi:10.111/j.146229202010.02281.x.

Moré,M.,Herrick,J.,Silva,M.,Ghiorse,W.,andMadsen,E.(1994)Quantitativecelllysis ofindigenousmicroorganismsandrapidextractionofmicrobialDNAfromsediment.Appl EnvironMicrobiol60:15721580.

MorganSagastume, F., Nielsen, J.L., and Nielsen, P.H. (2008) Substratedependent denitrification of abundant probedefined denitrifying bacteria in activated sludge. FEMS MicrobiolEcol66:447461.

296 MosqueraCorral,A.,Kreuk,M.K.,Heijnen,J.J.,andvanLoosdrecht,M.C.M.(2005)Effects ofoxygenconcentrationonNremovalinanaerobicgranularsludgereactor.WaterRes39: 26762686.

Müller,S.,andNebevonCaron,G.(2010)Functionalsinglecellanalyses:flowcytometry andcellsortingofmicrobialpopulationsandcommunities.FEMSMicroRev34:554587.

Muyzer, G., de Waal, E.C., and Uitterlinden, A.G. (1993) Profiling of complex microbial populationsbydenaturinggradientgelelectrophoresisanalysisofpolymerasechainreaction amplifiedgenescodingfor16SrRNA.ApplEnvironMicrobiol59:695700.

Muyzer, G., and Smalla, K. (1998) Application of denaturing gradient gel electrophoresis (DGGE)andtemperaturegradientgelelectrophoresis(TGGE)inmicrobialecology.Antonie VanLeeuwenhoek73:127141.

Naiser,T.,Ehler,O.,Kayser,J.,Mai,T.,Michel,W.,andOtt,A.(2008) Impactofpoint mutations on the hybridization affinity of surfacebound DNA/DNA and RNA/DNA oligonucleotideduplexes: Comparison of single base mismatches and base bulges. BMC Biotech8:123.

Nakamura,K.,Hiraishi,A.,Yoshimi,Y.,Kawaharasaki,M.,Masuda,K.,andKamagata,Y. (1995a)Microlunatusphosphovorusgen.nov.,sp.nov.,anewGrampositivepolyphosphate accumulatingbacteriumisolatedfromactivatedsludge.IntJSystBacteriol45:1722.

Nakamura, K., Ishikawa, S., and Kawaharasaki, M. (1995b) Phosphate uptake and release activityinimmobilizedpolyphosphateaccumulatingbacteriumMicrolunatusphosphovorus strainNM1.JFermentBioeng80:377382.

Nakamura,K.,Masuda,K.,andMikami,E.(1991)IsolationofAnewtypeofpolyphosphate accumulating bacterium and its phosphate removal characteristics. J Ferment Bioeng 71: 258263.

Neef, A., Amann, R., Schlesner, H., and Schleifer, K.H. (1998) Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNAtargeted probes. Microbiology144:32573266.

297 Neef,A.,Witzenberger,R.,andKämpfer,P.(1999)Detectionofsphingomonadsandinsitu identification in activated sludge using 16S rRNAtargeted oligonucleotide probes. J Ind MicrobiolBiotechnol23:261267.

Nelson,K.E.,Bryan,P.A.,andWhite,B.A.(2010)Genomicsandmetagenomics:historyand progress. In Environmental Molecular Microbiology. Liu, W.T., and Jansson, J.K. (eds). Norfolk,UK:CaisterAcademicPress,pp.3762.

Neufeld, J.D., Wagner, M., and Murrell, J.C. (2007) Who eats what, where and when? Isotopelabellingexperimentsarecomingofage.ISMEJ1:103110.

Nguyen,H.T.T.,Hansen,A.,Nielsen,J.L.,andNielsen,P.H.(2009)Diversityandfunction of the genus Tetrasphaera in the Actinobacteria in activated sludge systems. In ASPD5 SpecialistConference:MicrobialPopulationDynamicsinBiologicalWastewaterTreatment. Aalborg,Denmark,pp.106107.

Nielsen, A.T., Liu, W.T., Filipe, C., Leslie Grady, J., Molin, S., and Stahl, D.A. (1999) Identification of a novel group of bacteria in sludge from a deteriorated biological phosphorusremovalreactor.ApplEnvironMicrobiol65:12511258.

Nielsen, J.L., Kragelund, C., and Nielsen, P.H. (2010a) Ecophysiological analysis of microorganisms in complex microbial systems by combination of fluorescence in situ hybridization with extracellular staining techniques. In Bioremediation methods and protocols.Cummings,S.P.(ed).NewYork:HumanaPress,pp.117128.

Nielsen, J.L., and Nielsen, P.H. (2005) Advances in microscopy: microautoradiography of singlecellsMethodsEnzymol397:237256.

Nielsen,J.L.,andNielsen,P.H.(2009)Identificationofothermicroorganismsinactivated sludge and biofilms by FISH. In FISH Handbook for biological wastewater treatment. Nielsen,P.H.,Daims,H.,andLemmer,H.(eds).London:IWAPublishing,pp.6972.

Nielsen,J.L.,Schramm,A.,Bernhard,A.E.,vandenEngh,G.J.,andStahl,D.A.(2004)Flow cytometryassisted cloning of specific sequence motifs from complex 16S rRNA gene libraries.ApplEnvironMicrobiol70:75507554.

298 Nielsen, P.H. (2002) Activated sludge the floc In Encyclopedia of environmental microbiology.Bitton,G.(ed).NewYork:JohnWiley&Sons,Inc.,pp.5461.

Nielsen, P.H., Kragelund, C., Seviour, R.J., and Nielsen, J.L. (2009a) Identity and ecophysiologyoffilamentousbacteriainactivatedsludge.FEMSMicrobiolRev33:969998.

Nielsen, P.H., Mielczarek, A.T., Kragelund, C., Nielsen, J.L., Saunders, A.M., Kong, Y., Hansen, A.A., and Vollertsen, J. (2010b) A conceptual ecosystem model of microbial communitiesinenhancedbiologicalphosphorusremovalplants.WaterRes44:50705088.

Nielsen, P.H., Nguyen, H.T.T., McIlroy, S.J., Mielczarek, A.T., and Seviour, R.J. (2009b) Identification of polyphosphateaccumulating and glycogenaccumulating organisms by FISH.InFISHhandbookforbiologicalwastewatertreatment.Nielsen,P.H.,Daims,H.,and Lemmer,H.(eds).London:IWAPublishing,pp.2531.

Niemi, M., Heiskanen, I., Wallenius, K., and Lindström, K. (2001) Extraction and purification of DNA in rhizosphere soil samples for PCRDGGE analysis of bacterial consortia.JMicrobMethods45:155165.

Nittami,T.,McIlroy,S.,Seviour,E.M.,Schroeder,S.,andSeviour,R.J.(2009)Candidatus Monilibacterspp.,commonbulkingfilamentsinactivatedsludge,aremembersofClusterIII Defluviicoccus.SystApplMicrobiol32:480489.

Nocker,A.,Burr,M.,andCamper,A.K.(2007)Genotypicmicrobialcommunityprofiling:a criticaltechnicalreview.MicrobEcol54:276289.

Oehmen,A.,Carvalho,G.,Freitas,F.,andReis,M.A.(2010a)Assessingtheabundanceand activity of denitrifying polyphosphate accumulating organisms through molecular and chemicaltechniques.WaterSciTechnol61:20612068.

Oehmen, A., Carvalho, G., LopezVazquez, C.M., van Loosdrecht, M.C., and Reis, M.A. (2010b) Incorporating microbial ecology into the metabolic modelling of polyphosphate accumulatingorganismsandglycogenaccumulatingorganisms.WaterRes44:49925004.

299 Oehmen, A., Lemos, P.C., Carvalho, G., Yuan, Z., Keller, J., Blackall, L.L., and Reis, M.A.M.(2007)Advancesinenhancedbiologicalphosphorusremoval:frommicrotomacro scale.WaterRes41:22712300.

Oehmen, A., LopezVazquez, C.M., Carvalho, G., Reis, M.A., and van Loosdrecht, M.C. (2010c)Modellingthepopulationdynamicsandmetabolicdiversityoforganismsrelevantin anaerobic/anoxic/aerobicenhancedbiologicalphosphorusremovalprocesses.WaterRes44: 44734486.

Oehmen, A., Saunders, A.M., Vives, M.T., Yuan, Z., and Keller, J. (2006a) Competition between polyphosphate and glycogen accumulating organisms in enhanced biological phosphorus removal systems with acetate and propionate as carbon sources. J Biotechnol 123:2232.

Oehmen,A.,TeresaVives,M.,Lu,H.,Yuan,Z.,andKeller,J.(2005a)TheeffectofpHon thecompetitionbetweenpolyphosphateaccumulatingorganismsandglycogenaccumulating organisms.WaterRes39:37273737.

Oehmen, A., Yuan, Z., Blackall, L.L., and Keller, J. (2004) Shortterm effects of carbon source on the competition of polyphosphate accumulating organisms and glycogen accumulatingorganisms.WaterSciTechnol50:139144.

Oehmen, A., Yuan, Z., Blackall, L.L., and Keller, J. (2005b) Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms.BiotechnolBioeng91:162168.

Oehmen,A.,Zeng,R.,Saunders,A.,Blackall,L.,Keller,J.,andYuan,Z.(2006b)Anaerobic andaerobicmetabolismofglycogenaccumulatingorganismsselectedwithpropionateasthe solecarbonsource.Microbiology152:27672778.

Ogram,A.,Sayler,G.S.,andBarkay,T.(1987)Theextractionandpurificationofmicrobial DNAfromsediments.JMicrobMethods7:5766.

300 Okabe,S.,Santegoeds,C.M.,andDeBeer,D.(2003)Effectofnitriteandnitrateoninsitu sulfideproductioninanactivatedsludgeimmobilizedagargelfilmasdeterminedbyuseof microelectrodes.BiotechnolBioeng81:570577.

Onda, S., and Takii, S. (2002) Isolation and characterization of a Grampositive polyphosphateaccumulatingbacterium.JGenApplMicrobiol48:125133.

Orsini, M., and RomanoSpica, V. (2001) A microwavebased method for nucleic acid isolationfromenvironmentalsamples.LettApplMicrobiol33:1720.

Osborn,A.M.,andSmith,C.J.(2005)MolecularMicrobialEcology.NewYork:Taylor& Francis.

Ostle, A., and Holt, J. (1982) Nile blue A as a fluorescent stain for polybeta hydroxybutyrate.ApplEnvironMicrobiol44:238241.

Pace,N.R.(2009)Mappingthetreeoflife:progressandprospects.MicrobiolMolBiolRev 73:565576.

Paerl,H.(2008)Nutrientandotherenvironmentalcontrolsofharmfulcyanobacterialblooms alongthefreshwatermarinecontinuum.InCyanobacterialharmfulalgalblooms:stateofthe scienceandresearchneeds.Hudnell,H.K.(ed).NewYork:Springer,pp.217237.

Panswad, T., Doungchai, A., and Anotai, J. (2003) Temperature effect on microbial communityofenhancedbiologicalphosphorusremovalsystem.WaterRes37:409415.

Pei,A.Y.,Oberdorf,W.E.,Nossa,C.W.,Agarwal,A.,Chokshi,P.,Gerz,E.A.,Jin,Z.,Lee, P.,Yang,L.,Poles,M.,Brown,S.M.,Sotero,S.,Desantis,T.,Brodie,E.,Nelson,K.,and Pei,Z.(2010)Diversityof16SrRNAgeneswithinindividualprokaryoticgenomes.Appl EnvironMicrobiol76:38863897.

Peña,A.,Teeling,H.,HuertaCepas,J.,Santos,F.,Yarza,P.,BritoEcheverría,J.,Lucio,M., SchmittKopplin, P., Meseguer, I., Schenowitz, C., Dossat, C., Barbe, V., Dopazo, J., RossellóMora, R., Schüler, M., Glöckner, F.O., Amann, R., Gabaldón, T., and Antón, J. (2010) Finescale evolution: genomic, phenotypic and ecological differentiation in two coexistingSalinibacterruberstrains.ISMEJ4:882895. 301 Pereira,H.,Lemos,P.C.,Reis,M.A.M.,Crespo,J.P.S.G.,Carrondo,M.J.T.,andSantos,H. (1996)Modelforcarbonmetabolisminbiologicalphosphorusremovalprocessesbasedonin vivo13CNMRlabellingexperiments.WaterRes30:21282138.

PerezFeito,R.,Peccia,J.,andNoguera,D.R.(2006)Comparisonbetweendirectmicroscopy andflowcytometryforrRNAbasedquantificationofCandidatusAccumulibacterphosphatis inactivatedsludge.WaterEnvironRes78:181188.

Pernthaler, A., and Amann, R. (2004) Simultaneous fluorescence in situ hybridization of mRNAandrRNAinenvironmentalbacteria.ApplEnvironMicrobiol70:54265433.

Pernthaler,A.,Pernthaler,J.,andAmann,R.(2002)Fluorescenceinsituhybridizationand catalyzed reporter deposition for the identification of marine bacteria. Appl Environ Microbiol68:30943101.

Peterson, S., Warnecke, F., Madejska, J., McMahon, K., and Hugenholtz, P. (2008) EnvironmentaldistributionandpopulationbiologyofCandidatusAccumulibacter,aprimary agentofbiologicalphosphorusremoval.EnvironMicro10:26922703.

Phlips, E.J. (2002) Eutrophication and algae. In Encyclopedia of environmental microbiology.Bitton,G.(ed).NewYork:JohnWiley&Sons,pp.11891194.

Picard, C., Ponsonnet, C., Paget, E., Nesme, X., and Simonet, P. (1992) Detection and enumerationofbacteriainsoilbydirectDNAextractionandpolymerasechainreaction.Appl EnvironMicrobiol58:27172722.

Pijuan,M.,Baeza,J.A.,Casas,C.,andLafuente,J.(2004a)ResponseofanEBPRpopulation developedinanSBRwithpropionatetodifferentcarbonsources.WaterSciTechnol50(10): 131138.

Pijuan, M., Oehmen, A., Baeza, J.A., Casas, C., and Yuan, Z. (2008) Characterizing the biochemical activity of fullscale enhanced biological phosphorus removal systems: A comparisonwithmetabolicmodels.BiotechnolBioeng99:170179.

302 Pijuan,M.,Saunders,A.M.,Guisasola,A.,Baeza,J.A.,Casas,C.,andBlackall,L.L.(2004b) Enhancedbiologicalphosphorusremovalinasequencingbatchreactorusingpropionateas thesolecarbonsource.BiotechnolBioeng85:5667.

Pisco,A.R.,Bengtsson,S.,Werker,A.,Reis,M.A.M.,andLemos,P.C.(2009)Enrichment of glycogenaccumulating organisms producing polyhydroxyalkanoates (PHA) from fermentedmolasses:evolutionincommunitystructureandPHAproduction.Appl Environ Microbiol75:46764686.

Podar,M.,Abulencia,C.B.,Walcher,M.,Hutchison,D.,Zengler,K.,Garcia,J.A.,Holland, T., Cotton, D., Hauser, L., and Keller, M. (2007) Targeted access to the genomes of low abundanceorganismsincomplexmicrobialcommunities.ApplEnvironMicrobiol73:3205 3214.

Porteous,L.,Armstrong,J.,Seidler,R.,andWatrud,L.(1994)Aneffectivemethodtoextract DNA from environmental samples for polymerase chain reaction amplification and DNA fingerprintanalysis.CurrMicrobiol29:301307.

Porter, J., Deere, D., Pickup, R., and Edwards, C. (1996) Fluorescent probes and flow cytometry:newinsightsintoenvironmentalbacteriology.Cytometry23:9196.

Porter, J., Edwards, C., Morgan, J.A.W., and Pickup, R.W. (1993) Rapid, automated separation of specific bacteria from lake water and sewage by flow cytometry and cell sorting.ApplEnvironMicrobiol59:33273333.

Pozhitkov, A., Noble, P.A., DomazetLoso, T., Nolte, A.W., Sonnenberg, R., Staehler, P., Beier,M.,andTautz,D.(2006)TestsofrRNAhybridizationtomicroarrayssuggestthat hybridizationcharacteristicsofoligonucleotideprobesforspeciesdiscriminationcannotbe predicted.NucleicAcidsRes34:e66.

Pozhitkov, A.E., and Tautz, D. (2002) An algorithm and program for finding sequence specificoligonucleotideprobesforspeciesidentification.BMCBioinformatics3:9.

303 Prosser, J., Jansson, J.K., and Liu, W.T. (2010) Nucleicacidbased characterisation of community structure and function In Environmental Molecular Microbiology. Liu, W.T., andJansson,J.K.(eds).Norfolk,UK:AcademicPress,pp.6386.

Pruesse, E., Quast, C., Knittel, K., Fuchs, B., Ludwig, W., Peplies, J., and Glöckner, F. (2007)SILVA:acomprehensiveonlineresourceforqualitycheckedandalignedribosomal RNAsequencedatacompatiblewithARB.NucleicAcidsRes35:188196.

Purohit,H.,Kapley,A.,Moharikar,A.,andNarde,G.(2003)Anovelapproachforextraction ofPCRcompatibleDNAfromactivatedsludgesamplescollectedfromdifferentbiological effluenttreatmentplants.JMicrobMethods52:315323.

Reysenbach, A.L., Giver, L.J., Wickham, G.S., and Pace, N.R. (1992) Differential amplification of rRNA genes by polymerase chain reaction. Appl Environ Microbiol 58: 34173418.

Rochelle, P.A. (2001)Environmentalmolecularmicrobiology:Protocolsandapplications. Norfolk,UK:HorizonScientificPress.

Roh, C., Villatte, F., Kim, B., and Schmid, R. (2006) Comparative study of methods for extraction and purification of environmental DNA from soil and sludge samples. Appl BiochemBiotechnol134:97112.

Röling,W.F.M.,andHead,I.M.(2005)Prokaryotesystematics:PCRandsequenceanalysis ofamplified16SrRNAgenes.InMolecularMicrobialEcology.Osborn,A.M.,andSmith, C.J.(eds).NewYork:Taylor&Francis,pp.2557.

Roller,C.,Wagner,M.,Amann,R.,Ludwig,W.,andSchleifer,K.H.(1994)Insituprobing of Grampositive bacteria with high DNA G + C content using 23S rRNAtargeted oligonucleotides.Microbiology140:28492858.

Romanski,J.,Heider,M.,andWiestmann,U.(1997)Kineticsofanaerobicorthophosphate release and substrate uptake in enhanced biological phosphorus removal from synthetic wastewater.WaterRes31:31373145.

304 RooseAmsaleg,C.L.,GarnierSillam,E.,andHarry,M.(2001)Extractionandpurification ofmicrobialDNAfromsoilandsedimentsamples.ApplSoilEcol18:4760.

RosselloMora, R.A., and Wagner, M. (1995) The abundance of Zoogloea ramigera in sewagetreatmentplants.ApplEnvironMicrobiol61:702707.

Santos, M.M., Lemos, P.C., Reis, M.A., and Santos, H. (1999) Glucose metabolism and kineticsofphosphorusremovalbythefermentativebacteriumMicrolunatusphosphovorus. ApplEnvironMicrobiol65:39203928.

Satoh,H.,Mino,T.,andMatsuo,T.(1992)Uptakeoforganicsubstratesandaccumulationof polyhydroxyalkanoateslinkedwithglycolysisofintracellularcarbohydratesunderanaerobic conditionsinthebiologicalexcessphosphateremovalprocesses.WaterSciTechnol26(56): 933942.

Satoh,H.,Mino,T.,andMatsuo,T.(1994)Deteriorationofenhancedbiologicalphosphorus removalbythedominationofmicroorganismswithoutpolyphosphateaccumulation.Water SciTechnol30(6):203211.

Satoh,H.,Mino,T.,andMatsuo,T.(1998)Anaerobicuptakeofglutamateandaspartateby enhancedbiologicalphosphorusremovalactivatedsludge.WaterSciTechnol37(45):579 582.

Saunders,A.(2005)Thephysiologyofmicroorganismsinenhancedbiologicalphosphorus removal. In Australian Wastewater Management Centre. Brisbane: The University of Queensland.

Saunders, A., Mabbett, A., McEwan, A., and Blackall, L. (2007) Proton motive force generationfromstoredpolymersfortheuptakeofacetateunderanaerobicconditions.FEMS MicrobiolLett274:245251.

Saunders,A.M.,Oehmen,A.,Blackall, L.L.,Yuan,Z., andKeller,J.(2003)Theeffectof GAOs (glycogen accumulating organisms) on anaerobic carbon requirements in fullscale Australian EBPR (enhanced biological phosphorus removal) plants. Water Sci Technol 47(11):3743.

305 Schleifer, K.H. (2004) Microbial diversity: facts, problems and prospects Syst Appl Microbiol27:39.

Schmid,M.,SchmitzEsser,S.,Jetten,M.,andWagner,M.(2001)16S23SrDNAintergenic spacer and 23S rDNA of anaerobic ammoniumoxidizing bacteria: implications for phylogenyandinsitudetection.EnvironMicrobiol3:450459.

Schneegurt, M., Dore, S., and Kulpa, C.J. (2003) Direct extraction of DNA from soils for studiesinmicrobialecology.CurrIssuesMolBiol5:18.

Schroeder, S., Ahn, J., and Seviour, R.J. (2008) Ecophysiology of polyphosphate accumulating organisms and glycogenaccumulating organisms in a continuously aerated enhancedbiologicalphosphorusremovalprocess.JApplMicrobiol105:14121420.

Schroeder,S.,Petrovski,S.,Campbell,B.,McIlroy,S.,andSeviour,R.J.(2009)Phylogeny and in situ identification of a novel gammaproteobacterium in activated sludge. FEMS MicrobLett297:157163.

Schroeder, S.A. (2009) The microbial ecology of a novel aerated phosphorus removal process.InPharmacyandAppliedScience.Bendigo:LaTrobeUniversity,p.318.

Schuler, A.J., and Jenkins, D. (2002) Effects of pH on enhanced biological phosphorus removalmetabolisms.WaterSciTechnol46:171178.

Schuler, A.J., and Jenkins, D. (2003a) Enhanced biological phosphorus removal from wastewaterbybiomasswithdifferentphosphoruscontents,PartI:Experimentalresultsand comparisonwithmetabolicmodels.WaterEnvironRes75:485498.

Schuler, A.J., and Jenkins, D. (2003b) Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part II: Anaerobic adenosine triphosphateutilizationandacetateuptakerates.WaterEnvironRes75:499511.

Schuler, A.J., and Jenkins, D. (2003c) Enhanced biological phosphorus removal from wastewater by biomass with different phosphorus contents, Part III: Anaerobic sources of reducingequivalents.WaterEnvironRes75:512522.

306 Schuler,A.J.,Onuki,M.,Satoh,H.,andMino,T.(2002)Densityseperationandmolecular methodstocharacterizeenhancedbiologicalphosphorusremovalsystempopulations.Water SciTechnol46(12):195198.

Schuppler, M., Wagner, M., Schön, G., and Göbel, U.B. (1998) In situ identification of nocardioform actinomycetes in activated sludge using fluorescent rRNAtargeted oligonucleotideprobes.Microbiology144:249259.

Serafim,L.S.,Lemos,P.C.,Levantesi,C.,Tandoi,V.,Santos,H.,andReis,M.A.M.(2002a) Methodsfordetectionandvisualizationofintracellularpolymersstoredbypolyphosphate accumulatingmicroorganisms.JMicrobiolMeth51:118.

Serafim, L.S., Lemos, P.C., and Reis, M.A.M. (2002b) Effect of pH control on EBPR stabilityandefficiency.WaterSciTechnol46(45):179184.

Seviour,R.(2010)Anoverviewofthemicrobesinactivatedsludge.InMicrobialEcologyof ActivatedSludge.Seviour,R.,andNielsen,P.H.(eds).London:IWAPublishing,pp.156.

Seviour, R.J., Lindrea, K., and Oehmen, A. (2010) The activated sludge process. In Microbialecologyofactivatedsludge.Seviour,R.J.,andNielsen,P.H.(eds).London:IWA Publishing,pp.5794.

Seviour, R.J., Maszenan, A.M., Soddell, J.A., Tandoi, V., Patel, B.K.C., Kong, Y., and Schumann,P.(2000)Microbiologyofthe'Gbacteria'inactivatedsludge.EnvironMicrobiol 2:581593.

Seviour,R.J.,Mino,T.,andOnuki,M.(2003) Themicrobiologyofbiologicalphosphorus removalinactivatedsludgesystems.FEMSMicrobiolRev27:99127.

Seviour,R.J.,andNielsen,P.H.(2010a)Methodsfortheexaminationandcharacterizationof theactivatedsludgecommunity.InMicrobialEcologyofActivatedSludge.Seviour,R.J.,and Nielsen,P.H.(eds).London:IWAPublishing,pp.321453.

Seviour,R.J.,andNielsen,P.H.(2010b)Microbialcommunitiesinactivatedsludgeplants.In MicrobialecologyofactivatedsludgeSeviour,R.J.,andNielsen,P.H.(eds).London:IWA Publishing,pp.95125. 307 Sharp,R.,Cossar,D.,andWilliams,R.(1995)PhysiologyandmetabolismofThermus.In ThermusSpecies.Sharp,R.,andWilliams,R.(eds).NewYork:PlenumPress,pp.6791.

Sheu, C., Wu, C.Y., Chen, S.C., and Lo, C.C. (2008) Extraction of DNA from soil for analysis of bacterial diversity in transgenic and nontransgenic papaya sites. J Agric Food Chem56:1196911975.

Shintani,T.,Liu,W.T.,Hanada,S.,Kamagata,Y.,Miyaoka,S.,Suzuki,T.,andNakamura, K. (2000) Micropruina glycogenica gen. nov., sp. nov., a new Grampositive glycogen accumulating bacterium isolated from activated sludge.IntJSystEvolMicrobiol 50 Pt 1: 201207.

Sipos, R., Szekely, A.J., Palatinszky, M., Revesz, S., Marialigeti, K., and Nikolausz, M. (2007) Effect of primer mismatch, annealing temperature and PCR cycle number on 16S rRNAgenetargettingbacterialcommunityanalysis.FEMSMicrobiolEcol60:341350.

Siyambalapitiya,N.,andBlackall,L.(2005)DiscrepanciesinthewidelyappliedGAM42a fluorescenceinsituhybridisationprobeforGammaproteobacteria.FEMSMicrobiolLett242: 367373.

Skerman,V.B.(1968)Anewtypeofmicromanipulatorandmicroforge.JGenMicrobiol54: 287297.

Slater,F.R.,Johnson,C.R.,Blackall,L.L.,Beiko,R.G.,andBond,P.L.(Inpress)Monitoring associations between cladelevel variation, overall community structure and ecosystem function in enhanced biological phosphorus removal (EBPR) systems using terminal restrictionfragmentlengthpolymorphism(TRFLP).WaterRes.

Smalla,K.,OrosSichler,M.,Milling,A.,Heuer,H.,Baumgarte,S.,Becker,R.,Neuber,G., Kropf,S.,Ulrich,A.,andTebbe,C.C.(2007)BacterialdiversityofsoilsassessedbyDGGE, TRFLPandSSCPfingerprintsofPCRamplified16SrRNAgenefragments:dothedifferent methodsprovidesimilarresults?JMicrobiolMethods69:470479.

Smith,V.H.,andSchindler,D.W.(2009)Eutrophicationscience:wheredowegofromhere? TrendsEcolEvol24:201207.

308 Smolders,G.J.,vanderMeij,J.,vanLoosdrecht,M.C.,andHeijnen,J.J.(1994a)Modelof theanaerobicmetabolismofthebiologicalphosphorusremovalprocess:Stoichiometryand pHinfluence.BiotechnolBioeng43:461470.

Smolders,G.J.,vanderMeij,J.,vanLoosdrecht,M.C.,andHeijnen,J.J.(1995)Astructured metabolic model for anaerobic and aerobic stoichiometry and kinetics of the biological phosphorusremovalprocess.BiotechnolBioeng47:277287.

Smolders, G.J.F., van der Meij, J., van Loosdrecht, M.C.M., and Heijnen, J.J. (1994b) Stoichiometric model of the aerobic metabolism of the biological phosphorus removal process.BiotechnolBioeng44:837848.

Snaidr, I., Beimfohr, C., Levantesi, C., Rossetti, S., van der Waarde, J., Geurkink, B., Eikelboom, D., Lemaitre, M., and Tandoi, V. (2002) Phylogenetic analysis and in situ identification of "Nostocoida limicola"like filamentous bacteria in activated sludge from industrialwastewatertreatmentplants.WaterSciTechnol46(12):99104.

Snaidr, J., Amann, R., Huber, I., Ludwig, W., and Schleifer, K.H. (1997) Phylogenetic analysisandinsituidentificationofbacteriainactivatedsludge.ApplEnvironMicrobiol63: 28842896.

Snaidr, J., Fuchs, B., Wallner, G., Wagner, M., Schleifer, K., and Amann, R. (1999) Phylogenyandinsituidentificationofamorphologicallyconspicuousbacterium,Candidatus Magnospirabakii,presentatverylowfrequencyinactivatedsludge.EnvironMicrobiol1: 125135.

Soddell, J.A., Seviour, R.J., Blackall, L.L., and Hugenholtz, P. (1998) New foamforming nocardioformsfoundinactivatedsludge.WaterSciTechnol37(45):495502.

Speirs, L., Nittami, T., McIlroy, S., Schroeder, S., and Seviour, R.J. (2009) Filamentous bacteriumEikelboomtype0092inactivatedsludgeplantsinAustraliaisamemberofthe phylumChloroflexi.ApplEnvironMicrobiol75:24462452.

Spring,S.,Wagner,M.,Schumann,P.,andKämpfer,P.(2005)Malikiagranosagen.nov., sp.nov.,anovelpolyhydroxyalkanoateandpolyphosphateaccumulatingbacteriumisolated

309 from activated sludge, and reclassification of Pseudomonas spinosa as Malikia spinosa comb.nov.IntJSystEvolMicrobiol55:621629.

Stach,J.,Bathe,S.,Clapp,J.,andBurns,R.(2001)PCRSSCPcomparisonof16SrDNA sequencediversityinsoilDNAobtainedusingdifferentisolationandpurificationmethods. FEMSMicrobiolEcol36:139151.

Stackebrandt, E., and Ebers, J. (2006) Taxonomic parameters revisited: tarnished gold standards.MicrobiolToday33:152155.

Stackebrandt, E., and Goebel, B.M. (1994) Taxonomic note: a place for DNADNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology.IntJSystBacteriol44:846849.

Stante, L., Cellamare, C.M., Malaspina, F., Bortone, G., and Tilche, A. (1997) Biological phosphorusremovalbypurecultureofLampropediaspp.WaterRes31:13171324.

Stratton, H.M., Brooks, P.R., Griffiths, P.C., and Seviour, R.J. (2002) Cell surface hydrophobicityandmycolicacidcompositionofRhodococcusstrainsisolatedfromactivated sludgefoam.JIndMicroBiotech28:264267.

Streichan, M., Golecki, J.R., and Schön, G. (1990) Polyphosphateaccumulating bacteria from sewage plants with different processes for biological phosphorus removal. FEMS MicrobiolEcol73:113124.

Su,X.,andGibor,A.(1988)AmethodforRNAisolationfrommarinemacroalgae.Anal Biochem174:650657.

Sudiana, I.M., Mino, T., Satoh, H., Nakamura, K., and Matsuo, T. (1999) Metabolism of enhancedbiologicalphosphorusremovalandnonenhancedbiologicalphosphorusremoval sludgewithacetateandglucoseasthecarbonsource.WaterSciTechnol39(6):2935.

Sugimoto, N., Nakano, S., Katoh, M., Matsumura, A., Nakamuta, H., Ohmichi, T., Yoneyama, M., and Sasaki, M. (1995) Thermodynamic parameters to predict stability of RNA/DNAhybridduplexes.Biochem34:1121111216.

310 Summerton, J., Atkins, T., and Bestwick, R. (1983) A rapid method for preparation of bacterialplasmids.AnalBiochem133:7984.

Suresh, N., Warburg, R., Timmerman, M., Wells, J., Coccia, M., Roberts, M.F., and Halvorson,H.O.(1985)Newstrategiesfortheisolationofmicroorganismsresponsiblefor phosphateaccumulation.WaterSciTechnol17(1112):99111.

Suzuki, M.,Rappe, M.S., and Giovannoni, S.J. (1998) Kinetic bias in estimates of coastal picoplanktoncommunitystructureobtainedby measurementsofsmallsubunitrRNAgene PCRampliconlengthheterogeneity.ApplEnvironMicrobiol64:45224529.

Suzuki,M.,Taylor,L.,andDeLong,E.(2000)QuantitativeanalysisofsmallsubunitrRNA genes in mixed microbial populations via 5'nuclease assays. Appl Environ Microbiol 66: 46054614.

Tandoi, V., Majone, M., May, J.W., and Ramadori, R. (1998) The behaviour of polyphosphateaccumulatingAcinetobacterisolatesinananerobicaerobicchemostat.Water Res32:29032912.

Tang,X.,Gao,G.,Zhu,L.,Chao,J.,andQin,B.(2009)DNAextractionprocedureaffects organicaggregateattachedbacterialcommunityprofilesfromashalloweutrophiclake.Can JMicrobiol55:776782.

Tchobanoglous, G., Burton, F.L., and Stensel, H.D. (2003) Wastewater engineering: treatmentandreuse.NewYork:McGrawHill.

Thakuria, D., Schmidt, O., Liliensiek, A.K., Egan, D., and Doohan, F.M. (2009) Field preservation and DNA extraction methods for intestinal microbial diversity analysis in earthworms.JMicrobiolMethods76:226233.

Theron,J.,andCloete,T.E.(2000)Moleculartechniquesfordeterminingmicrobialdiversity andcommunitystructureinnaturalenvironments.CritRevMicrobiol26:3757.

Theron, J., and Cloete, T.E. (2002) Emerging waterborne infections: contributing factors, agents,anddetectiontools.CritRevMicrobiol28:126.

311 Thingstad,T.F.,andLignell,R.(1997)Theoreticalmodelsforthecontrolofbacterialgrowth rate,abundance,diversityandcarbondemand.AquaMicroEcol13:1927.

Thomas, M., Wright, P., Blackall, L., Urbain, V., and Keller, J. (2003) Optimisation of NoosaBNRplanttoimproveperformanceandreduceoperatingcosts. WaterSciTechnol 47(12):141148.

Thomas,M.P.(2008)Thesecrettoachievingreliablebiologicalphosphorusremoval.Water SciTechnol58(6):12311236.

Thomsen,T.R.,Kong,Y.,andNielsen,P.H.(2007)Ecophysiologyofabundantdenitrifying bacteriainactivatedsludge.FEMSMicrobiolEcol60:370382.

Thomsen,T.R.,Nielsen,J.L.,Ramsing,N.B.,andNielsen,P.H.(2004)Micromanipulation and further identification of FISHlabelled microcolonies of a dominant denitrifying bacteriuminactivatedsludge.EnvironMicro6:470479.

Tillett,D.,andNeilan,B.A.(2000)Xanthogenatenucleicacidisolationfromculturedand environmentalCyanobacteria.JPhycology36:251258.

Toerien, D.F., Gerber, A., Lotter, L.H., and Cloete, T.E. (1990) Enhanced biological phosphorusremovalinactivatedsludge.Advancesinmicrobialecology11:173230.

Tsai,C.S.,andLiu,W.T.(2002)Phylogeneticandphysiologicaldiversityoftetradforming organismsindeterioratedbiologicalphosphorusremovalsystems.WaterSciTechnol46(1 2):179184.

Tsai,Y.,andOlson,B.(1991)RapidmethodfordirectextractionofDNAfromsoiland sediments.ApplEnvironMicrobiol57:10701074.

Ubakata, Y. (1994) Some physiological characteristics of phosphate removing bacterium isolatedfromanaerobic/aerobicactivatedsludge.WaterSciTechnol30(6):229235.

Ubakata,Y.,andTakii,S.(1994)Inductionmethodofexcessphosphateremovingbacteria isolatedfromanaerobic/aerobicactivatedsludge.WaterSciTechnol30(6):221227.

312 Ubakata,Y.,andTakii,S.(1998)Somephysiologicalcharacteristicsofphosphateremoving bacterium,Microlunatusphosphovorus,andasimplifiedisolationandidentificationmethod forphosphateremovingbacteria.WaterSciTechnol38(1):149157. vanLoosdrecht,M.C.M.,Smolders,G.J.F.,Kuba,T.,andHeijnen,J.J.(1997)Metabolismof microorganismsresponsibleforenhancedbiologicalphosphorusremovalfromwastewater. AntonievanLeeuwenhoek71:109116.

Vanysacker, L., Declerck, S.A., Hellemans, B., De Meester, L., Vankelecom, I., and Declerck,P.(2010)Bacterialcommunityanalysisofactivatedsludge:anevaluationoffour commonlyusedDNAextractionmethods.ApplMicrobiolBiotechnol88:299307. vonWintzingerode,F.,Göbel,U.B.,andStackebrandt,E.(1997)Determinationofmicrobial diversityinenvironmentalsamples:pitfallsofPCRbasedrRNAanalysis.FEMSMicrobiol Rev21:213229.

Wagner,M.,Amann,R.,Kämpfer,P.,Assmus,B.,Hartmann,A.,Hutzler,P.,Springer,N., andSchleifer,K.H.(1994a)Identificationandinsitudetectionofgramnegativefilamentous bacteriainactivatedsludge.SystApplMicrobiol17:405417.

Wagner,M.,Amann,R.,Lemmer,H.,andSchleifer,K.(1993)Probingactivatedsludgewith oligonucleotides specific for proteobacteria: inadequacy of culturedependent methods for describingmicrobialcommunitystructure.ApplEnvironMicrobiol59:15201525.

Wagner,M.,Erhart,R.,Manz,W.,Amann,R.,Lemmer,H.,Wedi,D.,andSchleifer,K.H. (1994b) Development of an rRNAtargeted oligonucleotide probe specific for the genus Acinetobacteranditsapplicationfortheinsitumonitoringinactivatedsludge.ApplEnviron Microbiol60:792800.

Wagner, M., Horn, M., and Daims, H. (2003) Fluorescence in situ hybridisation for the identificationandcharacterisationofprokaryotes.CurrOpinMicobiol6:302309.

Wagner,M.,andLoy,A.(2002)Bacterialcommunitycompositionandfunctioninsewage treatmentsystemsCurrOpinBiotech13:218227.

313 Wagner,M.,Loy,A.,Nogueira,R.,Purkhold,U.,Lee,N.,andDaims,H.(2002)Microbial community composition and function in wastewater treatment plants. Antonie Van Leeuwenhoek81:665680.

Wagner, M., Rath, G., Amann, R., Koops, H.P., and Schleifer, K.H. (1995) In situ identificationofammoniaoxidizingbacteria.SystApplMicrobiol18:251264.

Wagner, M., Rath, G., Koops, H.P., Flood, J., and Amann, R. (1996) In situ analysis of nitrifyingbacteriainsewagetreatmentplants.WaterSciTechnol34(12):237244.

Wallner,G.,Amann,R.,andBeisker,W.(1993)Optimizingfluorescentinsituhybridization with rRNAtargeted oligonucleotide probes for flow cytometric identification of microorganisms.Cytometry14:136143.

Wallner,G.,Erhart,R.,andAmann,R.(1995)Flowcytometricanalysisofactivatedsludge withrRNAtargetedprobes.ApplEnvironMicrobiol61:18591866.

Wallner, G., Fuchs, B., Spring, S., Beisker, W., and Amann, R. (1997) Flow sorting of microorganismsformolecularanalysis.ApplEnvironMicrobiol63:42234231.

Wang, G.C.Y., and Wang, Y. (1997) Frequency of formation of chimeric molecules as a consequence of PCR coamplification of 16S rRNA genes from mixed bacterial genomes. ApplEnvironMicrobiol63:46454650.

Wang, N., Peng, J., and Hill, G. (2002) Biochemical model of glucose induced enhanced biologicalphosphorusremovalunderanaerobiccondition.WaterRes36:4958.

Wang,Q.,Shao,Y.,Huong,V.T.,Park,W.J.,Park,J.M.,andJeon,C.O.(2008a)Finescale population structure of Accumulibacter phosphatis in enhanced biological phosphorus removalsludge.JMicrobiolBiotechnol18:12901297.

Wang,X.,Zeng,R.J.,Dai,Y.,Peng,Y.,andYuan,Z.(2008b)Thedenitrificationcapability of cluster 1 Defluviicoccus vanusrelated glycogenaccumulating organisms. Biotechnol Bioeng99:13291336.

314 Wanner,J.,Kragelund,C.,andNielsen,P.H.(2010)Microbiologyofbulking.InMicrobial ecologyofactivatedsludge.Seviour,R.J.,andNielsen,P.H.(eds).London:IWAPublishing, pp.191214.

Watanabe, K., Yamamoto, S., Hino, S., and Harayama, S. (1998) Population dynamics of phenoldegradingbacteriainactivatedsludgedeterminedbygyrBtargetedquantitativePCR. ApplEnvironMicrobiol64:12031209.

Weber,S.D.,Ludwig,W.,Schleifer,K.H.,andFried,J.(2007)Microbialcompositionand structureofaerobicgranularsewagebiofilms.ApplEnvironMicrobiol73:62336240.

Weichart, D., McDougald, D., Jacobs, D., and Kjelleberg, S. (1997) In situ analysis of nucleic acids in coldinduced nonculturable Vibrio vulnificus. Appl Environ Microbiol 63: 27542758.

Weller,R.,Glöckner,F.,andAmann,R.(2000)16SrRNAtargetedoligonucleotideprobes fortheinsitudetectionofmembersofthephylumCytophagaFlavobacteriumBacteroides. SystApplMicrobiol23:107114.

Wentzel,M.C.,Dold,P.L.,Ekama,G.A.,andMarais,G.v.R.(1985)Kineticsofbiological phosphorusrelease.WaterSciTechnol17:5771.

Wentzel, M.C., Lötter, L.H., Ekama, G.A., Loewenthal, R.E., and Marais, G.v.R. (1991) Evaluation of biochemical models for biological excess phosphorus removal. Water Sci Technol23:567576.

Wentzel, M.C., Lotter, L.H., Loewenthal, R.E., and Marais, G.v.R. (1986) Metabolic behaviourofAcinetobacterspp.inenhancedbiologicalphosphorusremovalabiochemical model.WaterSA12:209224.

Wexler,M.,Richardson,D.J.,andBond,P.L.(2009)Radiolabelledproteomicstodetermine differential functioning of Accumulibacter during the anaerobic and aerobic phases of a bioreactor operating for enhanced biological phosphorus removal. Environ Microbiol 11: 30293044.

315 Whang,L.M.,Filipe,C.D.M.,andPark,J.K.(2007)Modelbasedevaluationofcompetition betweenpolyphosphateandglycogenaccumulatingorganisms.WaterRes41:13121324.

Whang, L.M., and Park, J.K. (2002) Competition between polyphosphate and glycogen accumulating organisms in biological phosphorus removal systemseffect of temperature. WaterSciTechnol46(12):191194.

Whang, L.M., and Park, J.K. (2006) Competition between polyphosphate and glycogen accumulating organisms in enhancedbiologicalphosphorusremoval systems: effect of temperatureandsludgeage.WaterEnvironRes78:411.

Whiteley, A.S., Thomson, B., Lueders, T., and Manefield, M. (2007) RNA stableisotope probing.NatProtoc2:838844.

Wilkins, T.A., and Lawrence, S.B. (1996) Isolation of RNA from plant tissue. In A laboratory guide to RNA: isolation, analysis, and synthesis. Krieg, P.A. (ed). New York: WileyLiss,pp.2142.

Wilmes,P.,Andersson,A.F.,Lefsrud,M.G.,Wexler,M.,Shah,M.,Zhang,B.,Hettich,R.L., Bond, P.L., VerBerkmoes, N.C., and Banfield, J.F. (2008a) Community proteogenomics highlights microbial strainvariant protein expression within activated sludge performing enhancedbiologicalphosphorusremoval.ISMEJ2:853864.

Wilmes, P., Simmons, S.L., Denef, V.J., and Banfield, J.F. (2009) The dynamic genetic repertoireofmicrobialcommunities.FEMSMicrobiolRev33:109132.

Wilmes,P.,Wexler,M.,andBond,P.L.(2008b)Metaproteomicsprovidesfunctionalinsight intoactivatedsludgewastewatertreatment.PLoSOne3:e1778.

Woese,C.R.,Kandler,O.,andWheelis,M.L.(1990)Towardsanaturalsystemoforganisms: proposalforthedomainsArchaea,Bacteria,andEucarya.PNAS87:45764579.

Wong, M.T., and Liu, W.T. (2006) Microbial succession of glycogen accumulating organismsinananaerobicaerobicmembranebioreactorwithnophosphorusremoval.Water SciTechnol54:2937.

316 Wong,M.T.,andLiu,W.T.(2007)EcophysiologyofDefluviicoccusrelatedtetradforming organisms in an anaerobicaerobic activated sludge process. Environ Microbiol 9: 1485 1496.

Wong,M.T.,Tan,F.M.,Ng,W.J.,andLiu,W.T.(2004)Identificationandoccurrenceof tetradforming Alphaproteobacteria in anaerobicaerobic activated sludge processes. Microbiology150:37413748.

Wong,M.,Mino,T.,Seviour,R.,Onuki,M.,andLiu,W.T.(2005)Insituidentificationand characterization of the microbial community structure of fullscale enhanced biological phosphorousremovalplantsinJapan.WaterRes39:29012914.

Wu, L., Li, F.,Deng,C.,Xu,D.,Jiang,S.,and Xiong, Y.(2009)Amethodforobtaining DNAfromcompost.ApplMicrobiolBiotechnol84:389395.

Xia, Y., Kong, Y., and Nielsen, P.H. (2008) In situ detection of starchhydrolyzing microorganismsinactivatedsludge.FEMSMicrobiolEcol66:462471.

Yang,Z.H.,Xiao,Y.,Zeng,G.M.,Xu,Z.Y.,andLiu,Y.S.(2007)Comparisonofmethods for the total community DNA extraction and purification from compost. Appl Microbiol Biotechnol74:918925.

Ye, Q., Ohtake, H., and Toda, K. (1988) Phosphorus removal by pure cultures of microorganisms.JFermentTechnol66:207212.

Yeates, C., Gillings, M., Davison, A., Altavilla, N., and Veal, D. (1998) Methods for microbialDNAextractionfromsoilforPCRamplification.BiolProcedOnline1:4047.

Yilmaz,L.,Bergsven,L.,andNoguera,D.(2008)Systematicevaluationofsinglemismatch stabilitypredictorsforfluorescenceinsituhybridization.EnvironMicrobiol10:28722885.

Yilmaz,L.,andNoguera,D.R.(2007)Developmentofthermodynamicmodelsforsimulating probedissociationprofilesinfluorescenceinsituhybridization.BiotechnolBioeng96:349 363.

317 Yilmaz, L., Okten, H., and Noguera, D. (2006) Making all parts of the 16S rRNA of EscherichiacoliaccessibleinsitutosingleDNAoligonucleotides.ApplEnvironMicrobiol 72:733744.

Yilmaz,S.,Haroon,M.F.,Rabkin,B.A.,Tyson,G.W.,andHugenholtz,P.(2010)Fixation free fluorescence in situ hybridization for targeted enrichment of microbial populations. ISMEJ4:13521356.

Yoshimi, Y., Hiraishi, A., and Nakamura, K. (1996) Isolation and characterization of Microsphaeramultipartitagen.nov.,sp.nov.,apolysaccharideaccumulatingGrampositive bacteriumfromactivatedsludge.IntJSysBacteriol46:519525.

Yu,Z.,andMohn,W.W.(1999)Killingtwobirdswithonestone:simultaneousextractionof DNAandRNAfromactivatedsludgebiomass.CanJMicrobiol45:269272.

Zeng, R., Saunders, A., Yuan, Z., Blackall, L., and Keller, J. (2003a) Identification and comparisonofaerobicanddenitrifyingpolyphosphateaccumulatingorganisms.Biotechnol Bioeng83:140148.

Zeng, R.J., van Loosdrecht, M.C., Yuan, Z., and Keller, J. (2003b) Metabolic model for glycogenaccumulatingorganismsinanaerobic/aerobicactivatedsludgesystems.Biotechnol Bioeng81:92105.

Zeng, R.J., Yuan, Z., and Keller, J. (2003c) Enrichment of denitrifying glycogen accumulatingorganismsinanaerobic/anoxicactivatedsludgesystem.BiotechnolBioeng81: 397404.

Zengler,K.(2009)Centralroleofthecellinmicrobialecology.MicrobiolMolBiolRev73: 712729.

Zhang, H., Sekiguchi, Y., Hanada, S., Hugenholtz, P., Kim, H., Kamagata, Y., and Nakamura, K. (2003) Gemmatimonas aurantiaca gen. nov., sp. nov., a Gramnegative, aerobic,polyphosphateaccumulatingmicroorganism,thefirstculturedrepresentativeofthe new bacterial phylum Gemmatimonadetes phyl. nov. Int J Syst Evol Microbiol 53: 1155 1163.

318 Zhang,T., Liu, Y.,and Fang, H.H.P.(2005)EffectofpHchangeontheperformanceand microbialcommunityofenhancedbiologicalphosphateremovalprocess.BiotechnolBioeng 92:173182.

Zhou,J.,Bruns,M.,andTiedje,J.(1996)DNArecoveryfromsoilsofdiversecomposition. ApplEnvironMicrobiol62:316322.

Zhou,Y.,Pijuan,M.,Oehmen,A.,andYuan,Z.(2010)Thesourceofreducingpowerinthe anaerobic metabolism of polyphosphate accumulating organisms (PAOs) a minireview. WaterSciTechnol61(7):16531662.

Zhou, Y., Pijuan, M., Zeng, R., Lu, H., and Yuan, Z. (2008) Could polyphosphate accumulatingorganisms(PAOs)be glycogenaccumulatingorganisms(GAOs)?WaterRes 42:23612368.

Zhou,Y.,Pijuan,M.,Zeng,R.J.,andYuan,Z.(2009)InvolvementoftheTCAcycleinthe anaerobic metabolism of polyphosphate accumulating organisms (PAOs). Water Res 43: 13301340.

Zhu,J.,andWartell,R.M.(1999)TheeffectofbasesequenceonthestabilityofRNAand DNAsinglebasebulges.Biochem38:15986159993.

Zilles, J., Peccia, J., Kim, M., Hung, C., and Noguera, D. (2002a) Involvement of Rhodocyclusrelated organisms in phosphorus removal in fullscale wastewater treatment plants.ApplEnvironMicrobiol68:27632769.

Zilles, J., Peccia, J., and Noguera, D. (2002b) Microbiology of enhanced biological phosphorusremovalinaeratedanoxicorbalprocessesWaterEnvironRes74:428436.

Znosko, B.M., Silvestri, S.B., Volkman, H., Boswell, B., and Serra, M.J. (2002) Thermodynamic parameters for an expanded nearestneighbor model for the formation of RNAduplexeswithsinglenucleotidebulges.Biochem41:1040610417.

319