The Genome of Xylona Heveae Provides a Window Into Fungal Endophytism

Total Page:16

File Type:pdf, Size:1020Kb

The Genome of Xylona Heveae Provides a Window Into Fungal Endophytism The genome of Xylona heveae provides a window into fungal endophytism Gazis, R., Kuo, A., Riley, R., LaButti, K., Lipzen, A., Lin, J., ... & Hibbett, D. S. (2016). The genome of Xylona heveae provides a window into fungal endophytism. Fungal Biology, 120(1), 26-42. doi:10.1016/j.funbio.2015.10.002 10.1016/j.funbio.2015.10.002 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse fungal biology 120 (2016) 26e42 journal homepage: www.elsevier.com/locate/funbio The genome of Xylona heveae provides a window into fungal endophytism Romina GAZISa,*, Alan KUOb, Robert RILEYb, Kurt LABUTTIb, Anna LIPZENb, Junyan LINb, Mojgan AMIREBRAHIMIb, Cedar N. HESSEc,d, Joseph W. SPATAFORAc, Bernard HENRISSATe,f,g, Matthieu HAINAUTe, Igor V. GRIGORIEVb, David S. HIBBETTa aClark University, Biology Department, 950 Main Street, Worcester, MA 01610, USA bUS Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA cOregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, USA dLos Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA eAix-Marseille Universite, CNRS, UMR 7257, Marseille, France fAix-Marseille Universite, Architecture et Fonction des Macromolecules Biologiques, 13288 Marseille cedex 9, France gKing Abdulaziz University, Department of Biological Sciences, Jeddah 21589, Saudi Arabia article info abstract Article history: Xylona heveae has only been isolated as an endophyte of rubber trees. In an effort to under- Received 12 August 2015 stand the genetic basis of endophytism, we compared the genome contents of X. heveae Received in revised form and 36 other Ascomycota with diverse lifestyles and nutritional modes. We focused on 18 September 2015 genes that are known to be important in the hostefungus interaction interface and that Accepted 5 October 2015 presumably have a role in determining the lifestyle of a fungus. We used phylogenomic Available online 22 October 2015 data to infer the higher-level phylogenetic position of the Xylonomycetes, and mined ITS Corresponding Editor: sequences to explore its taxonomic and ecological diversity. The X. heveae genome contains Teun Boekhout a low number of enzymes needed for plant cell wall degradation, suggesting that Xylona is a highly adapted specialist and likely dependent on its host for survival. The reduced rep- Keywords: ertoire of carbohydrate active enzymes could reflect an adaptation to intercellulary growth CAZymes and to the avoidance of the host’s immune system, suggesting that Xylona has a strictly en- Glycoside hydrolases dophytic lifestyle. Phylogenomic data resolved the position of Xylonomycetes as sister to Horizontally transmitted endophytes Lecanoromycetes and Eurotiomycetes and placed the beetle-endosymbiont Symbiotaphrina Sapwood endophytes as a member of this class. ITS data revealed that Trinosporium is also part of the Xylonomy- Symbiotaphrina cetes, extending the taxonomic and ecological diversity of this group. Trinosporium ª 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction Rodriguez et al. 2009). HTE have also been the target of several bioprospecting studies, which have reported their potential as Horizontally transmitted endophytes (HTE) are known for sources of novel antibiotics, enzymes with applications in the their ubiquitous presence, broad taxonomic host associations bio-fuel industry and drugs (e.g., Strobel & Daisy 2003; and high alpha and beta diversity (Arnold & Lutzoni 2007; Suryanarayanan et al. 2009; Aly et al. 2013). Despite the * Corresponding author. Tel.: þ1 (508) 793 7332; fax: þ1 (508) 793 7174. E-mail address: [email protected] (R. Gazis). http://dx.doi.org/10.1016/j.funbio.2015.10.002 1878-6146/ª 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. The genome of Xylona heveae 27 research interest towards this ecologically and taxonomically ITSeLSU dataset that addresses the taxonomic composition diverse group, much of their biology remains to be under- of the Xylonomycetes. stood. For instance, it is not known if all HTE are metabolically active while living intercellularly within their hosts or what is Materials and methods the extent of their colonization. The degree of specificity that HTE have with their host is also unclear, with some studies Fungal strains suggesting evidence of host specificity (Chaverri et al. 2011; Quilliam & Jones 2012; Unterseher et al. 2013) and others sup- Xylona heveae strain TC161 (type strain) was selected for porting a host generalist habit (Cannon & Simmons 2002; whole-genome sequencing. TC161 was isolated as a sapwood Higgins et al. 2011). endophyte from cultivated Hevea brasiliensis in San Martin, The mechanisms that gave rise to the evolution of endo- Peru. The strain is deposited in the Centraalbureau voor phytism and the genetic basis of the endophytic habit are Schimmelcultures (CBS), Utrecht, The Netherlands (CBS also poorly understood. It has been speculated that endo- 132557). phytic lineages have evolved several times from plant patho- genic ancestors, but it has also been suggested that plant pathogenic species have arisen from endophytic lineages Genomic DNA and RNA extraction (Delaye et al. 2013; Xu et al. 2014). While the mechanisms un- derlying evolutionary changes between endophytic and para- Xylona heveae was grown in 500 ml Potato Dextrose Broth me- sitic lifestyles are expected to be lineage-specific, the genetic dia (PDB, Difco) at 25 C for one month. Fungal mass was col- background of the fungal lineage should influence the transi- lected, dried and frozen in liquid nitrogen. DNA was extracted w tion potential. from 10 g of frozen mycelium using the Qiagen Blood and The main reason why the ecological role of HTE cannot be Cell Culture DNA Kit Maxi (Catalog # 13362) according to the generalized is that they are polyphyletic (Rodriguez et al. 2009). manufacturer’s instructions. A total concentration of À1 Most classes of Ascomycota have been reported as having en- 72 ng ul was used in the genome sequencing. Total RNA dophytic representatives (Arnold & Lutzoni 2007), suggesting was extracted from a 2 week-old PDB culture mycelial mat us- that different species of endophytes probably interact with ing the Qiagen RNeasy Midi Kit (Catalog # 75144), following their substrate or host in a distinct manner. The ‘endophytic manufacturer’s instructions. continuum’ (Schulz & Boyle 2005) model suggests that the out- come of the plantefungus interaction, which can range from Genome sequencing assembly and annotation mutualism to parasitism, depends on the fungal species, the host genetic background and the environment (Kogel et al. The genome of Xylona heveae was sequenced using two Illu- 2006). mina libraries, standard with 270 bp insert size and 4 Kbp Gazis et al. (2012) described the Ascomycota class Xylono- long insert paired end (LFPE) and supplemented with a single mycetes based on the species Xylona heveae. Isolates of X. transcriptomics Illumina library, procedures were similar as heveae were found mainly as sapwood endophytes of Hevea the ones described in Floudas et al. (2015). Reads were QC fil- brasiliensis, the main source of natural rubber (Chengalroyen tered for artifact/process contamination and subsequently as- & Dabbs 2013). DNA sequences from X. heveae isolates (ITS, In- sembled together with AllPathsLG version R46652 (Gnerre et al. ternal Transcribed Spacer and LSU, Large Subunit of the ribo- 2011) and de novo transcript contigs were assembled using somal RNA) were compared to an extensive database Rnnotator (Martin et al. 2010). General aspects of library con- comprising saprotrophs, plant pathogens, endophytes and se- struction and sequencing can be found at the JGI website quences obtained from environmental surveys. No close rela- http://www.jgi.doe.gov/. tives were found, suggesting that X. heveae might represent The genome of X. heveae was annotated using the JGI anno- a strict endophyte, in the sense that it cannot be associated tation pipeline, which combines multiple tools for gene pre- with any other lifestyle. The same study also reported that, diction, annotation and analysis (Grigoriev et al. 2014; Kuo in contrast to what has been reported for many leaf endo- et al. 2014). The assembled genomic scaffolds were masked us- phytes (Oses et al. 2006; Promputtha et al. 2010), X. heveae ing RepeatMasker ver. 3 (Smit et al. 2004). Multiple sets of gene was not able to degrade cellulose or lignin under laboratory models were predicted using different gene predictors and au- conditions. tomatically filtered based on similarity to proteins from other In this study, we analysed the genome of X. heveae in a com- organisms and gene expression support to produce a final parative framework to address the genetic basis of the endo- non-redundant catalog of genes representing the best gene phytic habit and shifts along the ‘endophytic continuum’. model found at each locus site. Multi-gene families were pre- We focused on genes that are thought to play a role in the dicted using the Markov clustering algorithm (MCL, Enright hostefungus interaction, with emphasis on carbohydrate ac- et al. 2002), a part of the JGI annotation pipeline, and annotated tive enzymes (CAZymes). Recent comparative studies have using PFAM domains detected in cluster member sequences. demonstrated a strong relationship between the suite of All other genomes included in the analysis were annotated CAZymes in fungal genomes and their
Recommended publications
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Bringing a Trait‐Based Approach to Plant‐Associated Fungi
    Biol. Rev. (2020), 95, pp. 409–433. 409 doi: 10.1111/brv.12570 Fungal functional ecology: bringing a trait-based approach to plant-associated fungi Amy E. Zanne1,∗ , Kessy Abarenkov2, Michelle E. Afkhami3, Carlos A. Aguilar-Trigueros4, Scott Bates5, Jennifer M. Bhatnagar6, Posy E. Busby7, Natalie Christian8,9, William K. Cornwell10, Thomas W. Crowther11, Habacuc Flores-Moreno12, Dimitrios Floudas13, Romina Gazis14, David Hibbett15, Peter Kennedy16, Daniel L. Lindner17, Daniel S. Maynard11, Amy M. Milo1, Rolf Henrik Nilsson18, Jeff Powell19, Mark Schildhauer20, Jonathan Schilling16 and Kathleen K. Treseder21 1Department of Biological Sciences, George Washington University, Washington, DC 20052, U.S.A. 2Natural History Museum, University of Tartu, Vanemuise 46, Tartu 51014, Estonia 3Department of Biology, University of Miami, Coral Gables, FL 33146, U.S.A. 4Freie Universit¨at-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany 5Department of Biological Sciences, Purdue University Northwest, Westville, IN 46391, U.S.A. 6Department of Biology, Boston University, Boston, MA 02215, U.S.A. 7Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A. 8Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, U.S.A. 9Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A. 10Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia 11Department of Environmental Systems Science, Institute of Integrative Biology, ETH Z¨urich, 8092, Z¨urich, Switzerland 12Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, U.S.A.
    [Show full text]
  • Generic Names in Magnaporthales Ning Zhang, Jing Luo, Amy Y
    Generic names in Magnaporthales Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, Pedro W. Crous, Ralph Dean, Ronald P. de Vries, Nicole Donofrio, Kevin D. Hyde, et al. To cite this version: Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, et al.. Generic names in Magnaporthales. IMA Fungus, 2016, 7 (1), pp.155-159. 10.5598/imafungus.2016.07.01.09. hal- 01608608 HAL Id: hal-01608608 https://hal.archives-ouvertes.fr/hal-01608608 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License IMA FUNGUS · 7(1): 155–159 (2016) doi:10.5598/imafungus.2016.07.01.09 ARTICLE Generic names in Magnaporthales Ning Zhang1, Jing Luo1, Amy Y. Rossman2, Takayuki Aoki3, Izumi Chuma4, Pedro W. Crous5, Ralph Dean6, Ronald P. de Vries5,7, Nicole Donofrio8, Kevin D. Hyde9, Marc-Henri Lebrun10, Nicholas J. Talbot11, Didier Tharreau12, Yukio Tosa4, Barbara Valent13, Zonghua Wang14, and Jin-Rong Xu15 1Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; corresponding author e-mail: zhang@aesop.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Habitat Quality and Disturbance Drive Lichen Species Richness in a Temperate Biodiversity Hotspot
    Oecologia (2019) 190:445–457 https://doi.org/10.1007/s00442-019-04413-0 COMMUNITY ECOLOGY – ORIGINAL RESEARCH Habitat quality and disturbance drive lichen species richness in a temperate biodiversity hotspot Erin A. Tripp1,2 · James C. Lendemer3 · Christy M. McCain1,2 Received: 23 April 2018 / Accepted: 30 April 2019 / Published online: 15 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The impacts of disturbance on biodiversity and distributions have been studied in many systems. Yet, comparatively less is known about how lichens–obligate symbiotic organisms–respond to disturbance. Successful establishment and development of lichens require a minimum of two compatible yet usually unrelated species to be present in an environment, suggesting disturbance might be particularly detrimental. To address this gap, we focused on lichens, which are obligate symbiotic organ- isms that function as hubs of trophic interactions. Our investigation was conducted in the southern Appalachian Mountains, USA. We conducted complete biodiversity inventories of lichens (all growth forms, reproductive modes, substrates) across 47, 1-ha plots to test classic models of responses to disturbance (e.g., linear, unimodal). Disturbance was quantifed in each plot using a standardized suite of habitat quality variables. We additionally quantifed woody plant diversity, forest density, rock density, as well as environmental factors (elevation, temperature, precipitation, net primary productivity, slope, aspect) and analyzed their impacts on lichen biodiversity. Our analyses recovered a strong, positive, linear relationship between lichen biodiversity and habitat quality: lower levels of disturbance correlate to higher species diversity. With few exceptions, additional variables failed to signifcantly explain variation in diversity among plots for the 509 total lichen species, but we caution that total variation in some of these variables was limited in our study area.
    [Show full text]
  • Taxonomic Utility of Old Names in Current Fungal Classification and Nomenclature: Conflicts, Confusion & Clarifications
    Mycosphere 7 (11): 1622–1648 (2016) www.mycosphere.org ISSN 2077 7019 Article – special issue Doi 10.5943/mycosphere/7/11/2 Copyright © Guizhou Academy of Agricultural Sciences Taxonomic utility of old names in current fungal classification and nomenclature: Conflicts, confusion & clarifications Dayarathne MC1,2, Boonmee S1,2, Braun U7, Crous PW8, Daranagama DA1, Dissanayake AJ1,6, Ekanayaka H1,2, Jayawardena R1,6, Jones EBG10, Maharachchikumbura SSN5, Perera RH1, Phillips AJL9, Stadler M11, Thambugala KM1,3, Wanasinghe DN1,2, Zhao Q1,2, Hyde KD1,2, Jeewon R12* 1Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 2Key Laboratory for Plant Biodiversity and Biogeography of East Asia (KLPB), Kunming Institute of Botany, Chinese Academy of Science, Kunming 650201, Yunnan China3Guizhou Key Laboratory of Agricultural Biotechnology, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China 4Engineering Research Center of Southwest Bio-Pharmaceutical Resources, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou Province, China5Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, P.O. Box 34, Al-Khod 123,Oman 6Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, No 9 of ShuGuangHuaYuanZhangLu, Haidian District Beijing 100097, China 7Martin Luther University, Institute of Biology, Department of Geobotany, Herbarium, Neuwerk 21, 06099 Halle, Germany 8Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT Utrecht, The Netherlands. 9University of Lisbon, Faculty of Sciences, Biosystems and Integrative Sciences Institute (BioISI), Campo Grande, 1749-016 Lisbon, Portugal. 10Department of Entomology and Plant Pathology, Faculty of Agriculture, Chiang Mai University, 50200, Thailand 11Helmholtz-Zentrum für Infektionsforschung GmbH, Dept.
    [Show full text]
  • The Genome of Xylona Heveae Provides a Window Into Fungal Endophytism
    fungal biology 120 (2016) 26e42 journal homepage: www.elsevier.com/locate/funbio The genome of Xylona heveae provides a window into fungal endophytism Romina GAZISa,*, Alan KUOb, Robert RILEYb, Kurt LABUTTIb, Anna LIPZENb, Junyan LINb, Mojgan AMIREBRAHIMIb, Cedar N. HESSEc,d, Joseph W. SPATAFORAc, Bernard HENRISSATe,f,g, Matthieu HAINAUTe, Igor V. GRIGORIEVb, David S. HIBBETTa aClark University, Biology Department, 950 Main Street, Worcester, MA 01610, USA bUS Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 94598, USA cOregon State University, Department of Botany and Plant Pathology, Corvallis, OR 97331, USA dLos Alamos National Laboratory, Bioscience Division, Los Alamos, NM, USA eAix-Marseille Universite, CNRS, UMR 7257, Marseille, France fAix-Marseille Universite, Architecture et Fonction des Macromolecules Biologiques, 13288 Marseille cedex 9, France gKing Abdulaziz University, Department of Biological Sciences, Jeddah 21589, Saudi Arabia article info abstract Article history: Xylona heveae has only been isolated as an endophyte of rubber trees. In an effort to under- Received 12 August 2015 stand the genetic basis of endophytism, we compared the genome contents of X. heveae Received in revised form and 36 other Ascomycota with diverse lifestyles and nutritional modes. We focused on 18 September 2015 genes that are known to be important in the hostefungus interaction interface and that Accepted 5 October 2015 presumably have a role in determining the lifestyle of a fungus. We used phylogenomic Available online 22 October 2015 data to infer the higher-level phylogenetic position of the Xylonomycetes, and mined ITS Corresponding Editor: sequences to explore its taxonomic and ecological diversity. The X.
    [Show full text]
  • A Higher-Level Phylogenetic Classification of the Fungi
    mycological research 111 (2007) 509–547 available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/mycres A higher-level phylogenetic classification of the Fungi David S. HIBBETTa,*, Manfred BINDERa, Joseph F. BISCHOFFb, Meredith BLACKWELLc, Paul F. CANNONd, Ove E. ERIKSSONe, Sabine HUHNDORFf, Timothy JAMESg, Paul M. KIRKd, Robert LU¨ CKINGf, H. THORSTEN LUMBSCHf, Franc¸ois LUTZONIg, P. Brandon MATHENYa, David J. MCLAUGHLINh, Martha J. POWELLi, Scott REDHEAD j, Conrad L. SCHOCHk, Joseph W. SPATAFORAk, Joost A. STALPERSl, Rytas VILGALYSg, M. Catherine AIMEm, Andre´ APTROOTn, Robert BAUERo, Dominik BEGEROWp, Gerald L. BENNYq, Lisa A. CASTLEBURYm, Pedro W. CROUSl, Yu-Cheng DAIr, Walter GAMSl, David M. GEISERs, Gareth W. GRIFFITHt,Ce´cile GUEIDANg, David L. HAWKSWORTHu, Geir HESTMARKv, Kentaro HOSAKAw, Richard A. HUMBERx, Kevin D. HYDEy, Joseph E. IRONSIDEt, Urmas KO˜ LJALGz, Cletus P. KURTZMANaa, Karl-Henrik LARSSONab, Robert LICHTWARDTac, Joyce LONGCOREad, Jolanta MIA˛ DLIKOWSKAg, Andrew MILLERae, Jean-Marc MONCALVOaf, Sharon MOZLEY-STANDRIDGEag, Franz OBERWINKLERo, Erast PARMASTOah, Vale´rie REEBg, Jack D. ROGERSai, Claude ROUXaj, Leif RYVARDENak, Jose´ Paulo SAMPAIOal, Arthur SCHU¨ ßLERam, Junta SUGIYAMAan, R. Greg THORNao, Leif TIBELLap, Wendy A. UNTEREINERaq, Christopher WALKERar, Zheng WANGa, Alex WEIRas, Michael WEISSo, Merlin M. WHITEat, Katarina WINKAe, Yi-Jian YAOau, Ning ZHANGav aBiology Department, Clark University, Worcester, MA 01610, USA bNational Library of Medicine, National Center for Biotechnology Information,
    [Show full text]
  • Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne Sarcoides
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Harvard University - DASH Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters. Citation Gianoulis, Tara A., Meghan A. Griffin, Daniel J. Spakowicz, Brian F. Dunican, Cambria J. Alpha, Andrea Sboner, A. Michael Sismour, et al. 2012. Genomic analysis of the hydrocarbon- producing, cellulolytic, endophytic fungus Ascocoryne sarcoides. PLoS Genetics 8(3): e1002558. Published Version doi:10.1371/journal.pgen.1002558 Accessed February 19, 2015 9:56:05 AM EST Citable Link http://nrs.harvard.edu/urn-3:HUL.InstRepos:9696331 Terms of Use This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA (Article begins on next page) Genomic Analysis of the Hydrocarbon-Producing, Cellulolytic, Endophytic Fungus Ascocoryne sarcoides Tara A. Gianoulis1,2,3.{, Meghan A. Griffin4., Daniel J. Spakowicz4., Brian F. Dunican4, Cambria J. Alpha4, Andrea Sboner3,4, A. Michael Sismour1,2, Chinnappa Kodira5, Michael Egholm6, George M. Church1,2, Mark B. Gerstein3,4*, Scott A. Strobel4* 1 Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Wyss Institute for Biologically Inspired
    [Show full text]
  • Riassunti Convegno Firenze 2006
    Riassunti del XVI Convegno Nazionale di Micologia - Firenze 4 - 6 Dicembre 2006 ---------------------------------------------------------------------------------------------------- Plan CUSSTA (Conservación y Uso Sostenible de las Setas y Trufas de Andalucía). Baldomero Moreno Arroyo Consejería de Medio Ambiente. Junta de Andalucía. Andalucía es una región rica en hongos, posiblemente una de las regiones del mundo más biodiversas en lo que a especies de trufas se refiere y paradójicamente, de escasa tradición micológica. En los últimos años ha tenido lugar un fenómeno social sin precedentes. La sociedad ha experimentado un creciente y exponencial interés por las setas y trufas, tanto en su faceta de esparcimiento o recreativa, como en otras relacionadas con su interés económico y gastronómico. Este inusitado interés ha calado profundamente en las gentes de Andalucía, donde hoy es el elemento natural que más interés despierta. La escasa tradición micológica, a la que aludíamos, es ahora precisamente una aliada para la gestión ordenada de este recurso. Partimos de cero, sin demasiados intereses previos que puedan enturbiar una gestión encaminada a la sostenibilidad del recurso y a la conservación de especies que en consecuencia, o por otros motivos, pudieran verse amenazadas. Todo cobra mayor importancia a raíz de los últimos avances técnicos y científicos que ponen de manifiesto varios aspectos: - el papel de los hongos como componentes esenciales de los ecosistemas, - el declive generalizado de las poblaciones de setas y trufas - halagüeñas valoraciones económicas sobre estos recursos micológicos. La consejería de Medio Ambiente de la Junta de Andalucía ponen en marcha desde este momento un programa de actuaciones encaminado a la conservación, disfrute y uso sostenible de las setas y trufas de Andalucía.
    [Show full text]
  • Notes on Ascomycetes 11: Discomycetes
    ACTA BOT. ISL. 10: 31-36, 1990. Notes on Ascomycetes 11: Discomycetes Helgi Hallgrfmsson and Henrik F. G~tzsche Lagarasi 2, 700 Egilsstaoir, Iceland and Institut for Sporeplanter, 0ster-Farirnagsgade 2D, 1353 Copenhagen K, Denmark ABSTRACT: Sixteen species of, Helotiales and Pezizales (Discomy­ cetes) are recorded, whereof 9 species are new to the Icelandic flora: Lachnellula suecica. Ciboria polygoni, Peziza cf. cerea, Peziza fimeti. Peziza granulosa. Geopora sp.. Melastiza eha teri, Otide8 cf. alutacea and T8rzetta spurcata. HELOTIALES Helotiaceae ASCOCORYNE SARCOIDES (Jacq.) Groves & Wils. The species was reported by ROSTRUP (1903, p.313) under the name Coryne sarcoides (Jacq.) Tul., from Halssk6gur in N-Ice­ land, based on a specimen collected by 6lafur Daviosson. It has been found many times in the Public Park in Akureyri (AMNH 199, 9958), growing on stumps of different trees, mainly Betula and Sorbus spp., also in Arnarh6ll near Akureyri, in a garden. In SW-Iceland it has been found by Eirikur Jensson in Fossvogur 1988, and in Vifilsstaoahlio near Hafnarfjorour 1978. In the East it has been collected in the forests of Egilsstaoir and Hallormsstaour in 1987-1988 (AMNH 11642, 11856). The growing season is from late August to October. Since the species is rarely found in the ascus-state, it can­ not be ascertained whether A. cylichnum might also be present in the material or not. Hyaloscyphaceae HYMENOSCYPHUS cf. CALYCULUS (Sow.) Phill. The species was reported by ROSTRUP (1903, p. 315) as Phialea virgultorum (Vahl.) Sacc., from Halssk6gur and Horgar- 32 ACTA BOTANICA ISLANDICA NO. 10 dalur, N. -Iceland, collected by 6lafur Daviosson on branches of Betula pubescens and Salix lanata.
    [Show full text]