Peltigera Hydrophila (Lecanoromycetes, Ascomycota), a New Semi-Aquatic Cyanolichen Species from Chile

Total Page:16

File Type:pdf, Size:1020Kb

Peltigera Hydrophila (Lecanoromycetes, Ascomycota), a New Semi-Aquatic Cyanolichen Species from Chile Plant and Fungal Systematics 65(1): 210–218, 2020 ISSN 2544-7459 (print) DOI: https://doi.org/10.35535/pfsyst-2020-0016 ISSN 2657-5000 (online) Peltigera hydrophila (Lecanoromycetes, Ascomycota), a new semi-aquatic cyanolichen species from Chile Jolanta Miadlikowska1*, Nicolas Magain1,2, William R. Buck3, Reinaldo Vargas Castillo4, G. Thomas Barlow1, Carlos J. Pardo-De la Hoz1, Scott LaGreca1 & François Lutzoni1 Abstract. Peltigera hydrophila, a new species from Chile tentatively distinguished based Article info on phylogenetic evidence but not yet named, is formally described here. Morphological Received: 29 Jan. 2020 differences (e.g., non-tomentose thallus) and habitat preferences (semi-aquatic) corroborate Revision received: 23 Mar. 2020 molecular and phylogenetic distinctiveness of this early diverging lineage in section Pelti- Accepted: 24 Mar. 2020 gera. Due to overlapping ecological ranges, P. hydrophila shares some morphological traits Published: 2 Jun. 2020 with aquatic species from the phylogenetically unrelated section Hydrothyriae. Associate Editor Key words: cyanolichen, cyanobiont, Nostoc, mycobiont, symbiosis, taxonomy Damien Ertz Introduction The most recent multi-locus phylogenetic revision of sec- (clades 2a and 2b, respectively) within section Pelti- tions Peltigera and Retifoveatae of the genus Peltigera gera (Fig. 1B). Both species seem to be morphologically (Fig. 1) suggested the presence of 88 species, of which 50 distinct and geographically restricted, however multiple were new to science (Magain et al. 2018). Forty-nine of collections from different localities are available only the newly delimited species are part of section Peltigera, for P. sp. 14. Together with its sister species P. auber- which includes species with tomentose thalli (with some tii, known from the Holantarctic Kingdom (Martínez exceptions, e.g., P. frigida and P. degenii) and lacking et al. 2003), P. sp. 14, which is restricted to Chile, rep- secondary metabolites detectable by thin layer chroma- resents the first divergence event within sectionPeltigera tography (Miadlikowska & Lutzoni 2000; Magain et al. ( Fig. 1B). This species was recognized as potentially new 2018). Most of these newly delimited putative species are to science by Miadlikowska et al. (2014; corresponding restricted to a single biogeographic region, and hence few to ‘Peltigera sp. nov.’) in the phylogenetic context of the are widespread. In section Peltigera, specificity ofPeltigera Lecanoromycetes. Peltigera sp. 14 is one of the rare cases species (mycobionts) in their association with Nostoc in the genus Peltigera where both symbionts are spe- phylogroups (cyanobionts) ranges from strict specialists cialists and associate almost exclusively with each other (associating with only one Nostoc phylogroup) to broad (Magain et al. 2017a, b, 2018; Miadlikowska et al. 2018; generalists (up to eight Nostoc phylogroups), with wide- Pardo-De la Hoz et al. 2018; Chagnon et al. 2019). The spread Peltigera species recruiting a broader selection of mycobiont forms thalli with Nostoc phylogroup XXIII, Nostoc phylogroups than species with limited distributions which was also found in a single specimen of its closest (Magain et al. 2018). One potentially new species, P. sp. 13, relative, P. aubertii, a species also found in Chile that was found to belong to section Retifoveatae (Fig. 1B). otherwise associates with phylogroup XXII (Magain et al. Two species – Peltigera sp. 14 and P. sp. 16 – were 2018). Peltigera sp. 14 is the second water-associated found to be part of the two earliest diverged lineages lineage in the genus Peltigera. However, this species has a broader ecological amplitude than the distantly related North American species of section Hydrothyriae 1 Department of Biology, Duke University, Box 90338, Durham, NC (Fig. 1A), as it can also grow in moist terrestrial habitats 27708, USA (e.g., on mosses subjected to waterfall splashes) com- 2 Evolution and Conservation Biology, InBios Research Center, Institut de Botanique B22, Université de Liège, Chemin de la vallée 4, 4000 pared to the strictly aquatic P. aquatica, P. hydrothyria, Liège, Belgium and P. gowardii of section Hydrothyriae. Here, we for- 3 Institute of Systematic Botany, New York Botanical Garden, 2900 mally describe P. hydrophila to accommodate Peltigera Southern Boulevard, Bronx, NY 10458-5126, USA sp. 14, the non-tomentose, semi-aquatic new species in 4 Departamento de Biología, Universidad Metropolitana de Ciencias de la Educación, Avda. José Pedro Alessandri 774, Ñuñoa, Santiago, Chile section Peltigera. * Corresponding author e-mail: [email protected] © 2020 W. Szafer Institute of Botany, Polish Academy of Sciences. This is an Open Access article distributed under the terms of the Creative Commons Attribution License CC BY 4.0 (http://creativecommons.org/licenses/by/4.0/) J. Miadlikowska et al.: Peltigera hydrophila, a new semi-aquatic species from Chile 211 100 B PELTIDEA A OUTGROUP 100 POLYDACTYLON 100 Hydrothyriae* PeltigeraÊsp.Ê13 CladeÊ1 100 Phlebia RETIFOVEATAE 100 PeltigeraÊretifoveata 66 95 100 Chloropeltigera P2039 58 100 PeltigeraÊhydrophila 100 P2062 sp.Ênov.Ê 65 Peltidea CladeÊ2a 100 (PeltigeraÊsp.Ê14) P1534 99 Polydactylon 100 PeltigeraÊaubertii 100 Horizontales 100 PeltigeraÊsp.Ê16 PELTIGERA CladeÊ2b 100 100 100 100 Retifoveatae PeltigeraÊfrigida/patagonica 82 100 CladeÊ2c 99 PeltigeraÊkristinssonii Peltigera* 100 CladeÊ3 0.08 100 PeltigeraÊcontinentalis/isidiophora 94 CladeÊ8 PeltigeraÊdegeniiÊgroup 100 100 100 CladeÊ9 PeltigeraÊcaninaÊgroup 100 95 CladeÊ7 PeltigeraÊcinnamomeaÊgroup 100 76 CladeÊ4 100 PeltigeraÊdidactylaÊgroup 100 CladeÊ6 PeltigeraÊrufescensÊgroup 100 88 CladeÊ5 100 PeltigeraÊmonticola/ponojensisÊgroup 0.02 Figure 1. Phylogenetic placement of section Peltigera and the aquatic to semi-aquatic lineages (indicated by asterisks for section Hydrothyriae and P. hydrophila sp. nov. within section Peltigera) in the context of the genus Peltigera (A) and phylogenetic relationship of P. hydrophila sp. nov. within section Peltigera (B). Maximum Likelihood (ML) tree for the genus Peltigera (based on seven loci: ITS, nrLSU, β‐tubulin, RPB1, COR1b, COR3, COR16; panel A) is adapted from Figure 2 of Chagnon et al. (2019). Intrageneric classification (i.e., recognized sections) follows Miadlikowska & Lutzoni (2000). Numbers associated with internodes represent ML bootstrap support values (based on 1000 pseudoreplicates). The ML tree for sections Retifoveatae and Peltigera (based on five loci: ITS, β‐tubulin, COR1b, COR3, COR16; panel B) is adapted from Figure 1 of Magain et al. (2018). Clades were collapsed using FigTree v1.4.3 (Rambaut 2012). Clades containing more than two species are indicated as groups. The scales represent nucleotide substitutions per site. Materials and methods & Dudik 2008; Fick & Hijmans 2017). We chose to use MaxEnt because it has been shown to work well for modeling species Specimens were examined under a Leica MZ6 dissecting mi- with very few known records (Elith et al. 2006; Pearson et al. croscope. A total of 20 ascospores from three apothecia were 2006; de Siqueira et al. 2009). Locality data were thinned with measured using a Leica DMLB compound microscope. For the a 5 km radius rule to minimize spatial autocorrelation using the R descriptions and use of terminology we followed Vitikainen package spThin (Aiello-Lammens et al. 2015), and background (1994: 5–17). Thin layer chromatography (TLC) was performed extent was limited by a point buffer of 15 degrees. Model tuning on four specimens, using solvents A, B’ and C (Culberson & Am- included a variety of models reconstructed with different feature mann 1979; Culberson & Johnson 1982; solvent C is the same classes [i.e., linear (L), linear – quadratic (LQ), linear – quad- as solvent ‘TA’ of Holtan-Hartwig 1993). GenBank accession ratic – hinge (LQH), and hinge (H)] and different regularization numbers for sequences from specimens P2039, P2062 and P1534 multipliers (1, 2, 3, and 4) implemented in dismo (Hijmans are provided in Magain et al. (2018), whereas the accession et al. 2017) and ENMeval packages (Muscarella et al. 2014). numbers for the remaining specimens are part of the voucher Preparation runs were performed using the package Wallace information provided below. version 1.0.6.2 to optimize the run settings (Kass et al. 2018). To determine the potential distribution of P. hydrophila, The area under the ROC curve (AUC) for each model created we used ecological niche modelling (ENM) techniques for the was calculated to estimate the credibility of the analysis. AUC estimation of the habitat suitability for this species. The ENM values were calculated automatically and the higher AUC was was conducted using the maximum entropy method implemented selected as a reliable indicator of performance (Phillips et al. in MaxEnt version 3.4.1 (Phillips et al. 2017, 2020) based on all 2009; Peterson et al. 2011). Raster files were prepared in R known localities for P. hydrophila and all nineteen bioclimatic (R Core Team 2020) and all maps were edited in QGIS version variables available in Worldclim 2.1 at 30 arc seconds (Phillips 3.12.0 (QGIS Development Team 2020). 212 Plant and Fungal Systematics 65(1): 210–218, 2020 Taxonomy Peltigera hydrophila W. R. Buck, Miadl. & Magain, sp. nov. (Figs 2–4) MycoBank MB 834180 Diagnosis: Unique in its glabrous thallus upper surface, which becomes deep bluish-violet when wet; possessing somewhat phyllidiate and indented thallus margins; apothecia round, flat to convex,
Recommended publications
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Fungal Planet Description Sheets: 716–784 By: P.W
    Fungal Planet description sheets: 716–784 By: P.W. Crous, M.J. Wingfield, T.I. Burgess, G.E.St.J. Hardy, J. Gené, J. Guarro, I.G. Baseia, D. García, L.F.P. Gusmão, C.M. Souza-Motta, R. Thangavel, S. Adamčík, A. Barili, C.W. Barnes, J.D.P. Bezerra, J.J. Bordallo, J.F. Cano-Lira, R.J.V. de Oliveira, E. Ercole, V. Hubka, I. Iturrieta-González, A. Kubátová, M.P. Martín, P.-A. Moreau, A. Morte, M.E. Ordoñez, A. Rodríguez, A.M. Stchigel, A. Vizzini, J. Abdollahzadeh, V.P. Abreu, K. Adamčíková, G.M.R. Albuquerque, A.V. Alexandrova, E. Álvarez Duarte, C. Armstrong-Cho, S. Banniza, R.N. Barbosa, J.-M. Bellanger, J.L. Bezerra, T.S. Cabral, M. Caboň, E. Caicedo, T. Cantillo, A.J. Carnegie, L.T. Carmo, R.F. Castañeda-Ruiz, C.R. Clement, A. Čmoková, L.B. Conceição, R.H.S.F. Cruz, U. Damm, B.D.B. da Silva, G.A. da Silva, R.M.F. da Silva, A.L.C.M. de A. Santiago, L.F. de Oliveira, C.A.F. de Souza, F. Déniel, B. Dima, G. Dong, J. Edwards, C.R. Félix, J. Fournier, T.B. Gibertoni, K. Hosaka, T. Iturriaga, M. Jadan, J.-L. Jany, Ž. Jurjević, M. Kolařík, I. Kušan, M.F. Landell, T.R. Leite Cordeiro, D.X. Lima, M. Loizides, S. Luo, A.R. Machado, H. Madrid, O.M.C. Magalhães, P. Marinho, N. Matočec, A. Mešić, A.N. Miller, O.V. Morozova, R.P. Neves, K. Nonaka, A. Nováková, N.H.
    [Show full text]
  • Bringing a Trait‐Based Approach to Plant‐Associated Fungi
    Biol. Rev. (2020), 95, pp. 409–433. 409 doi: 10.1111/brv.12570 Fungal functional ecology: bringing a trait-based approach to plant-associated fungi Amy E. Zanne1,∗ , Kessy Abarenkov2, Michelle E. Afkhami3, Carlos A. Aguilar-Trigueros4, Scott Bates5, Jennifer M. Bhatnagar6, Posy E. Busby7, Natalie Christian8,9, William K. Cornwell10, Thomas W. Crowther11, Habacuc Flores-Moreno12, Dimitrios Floudas13, Romina Gazis14, David Hibbett15, Peter Kennedy16, Daniel L. Lindner17, Daniel S. Maynard11, Amy M. Milo1, Rolf Henrik Nilsson18, Jeff Powell19, Mark Schildhauer20, Jonathan Schilling16 and Kathleen K. Treseder21 1Department of Biological Sciences, George Washington University, Washington, DC 20052, U.S.A. 2Natural History Museum, University of Tartu, Vanemuise 46, Tartu 51014, Estonia 3Department of Biology, University of Miami, Coral Gables, FL 33146, U.S.A. 4Freie Universit¨at-Berlin, Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195 Berlin, Germany 5Department of Biological Sciences, Purdue University Northwest, Westville, IN 46391, U.S.A. 6Department of Biology, Boston University, Boston, MA 02215, U.S.A. 7Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97330, U.S.A. 8Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL 61801, U.S.A. 9Department of Biology, University of Louisville, Louisville, KY 40208, U.S.A. 10Evolution & Ecology Research Centre, School of Biological Earth and Environmental Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia 11Department of Environmental Systems Science, Institute of Integrative Biology, ETH Z¨urich, 8092, Z¨urich, Switzerland 12Department of Ecology, Evolution, and Behavior, and Department of Forest Resources, University of Minnesota, St. Paul, MN 55108, U.S.A.
    [Show full text]
  • Pannariaceae Generic Taxonomy LL Ver. 27.9.2013.Docx
    http://www.diva-portal.org Preprint This is the submitted version of a paper published in The Lichenologist. Citation for the original published paper (version of record): Ekman, S. (2014) Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota). The Lichenologist, 46: 627-656 http://dx.doi.org/10.1017/S002428291400019X Access to the published version may require subscription. N.B. When citing this work, cite the original published paper. Permanent link to this version: http://urn.kb.se/resolve?urn=urn:nbn:se:nrm:diva-943 Extended phylogeny and a revised generic classification of the Pannariaceae (Peltigerales, Ascomycota) Stefan EKMAN, Mats WEDIN, Louise LINDBLOM & Per M. JØRGENSEN S. Ekman (corresponding author): Museum of Evolution, Uppsala University, Norbyvägen 16, SE –75236 Uppsala, Sweden. Email: [email protected] M. Wedin: Dept. of Botany, Swedish Museum of Natural History, Box 50007, SE –10405 Stockholm, Sweden. L. Lindblom and P. M. Jørgensen: Dept. of Natural History, University Museum of Bergen, Box 7800, NO –5020 Bergen, Norway. Abstract: We estimated phylogeny in the lichen-forming ascomycete family Pannariaceae. We specifically modelled spatial (across-site) heterogeneity in nucleotide frequencies, as models not incorporating this heterogeneity were found to be inadequate for our data. Model adequacy was measured here as the ability of the model to reconstruct nucleotide diversity per site in the original sequence data. A potential non-orthologue in the internal transcribed spacer region (ITS) of Degelia plumbea was observed. We propose a revised generic classification for the Pannariaceae, accepting 30 genera, based on our phylogeny, previously published phylogenies, as well as morphological and chemical data available.
    [Show full text]
  • Plant Life Magill’S Encyclopedia of Science
    MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE MAGILLS ENCYCLOPEDIA OF SCIENCE PLANT LIFE Volume 4 Sustainable Forestry–Zygomycetes Indexes Editor Bryan D. Ness, Ph.D. Pacific Union College, Department of Biology Project Editor Christina J. Moose Salem Press, Inc. Pasadena, California Hackensack, New Jersey Editor in Chief: Dawn P. Dawson Managing Editor: Christina J. Moose Photograph Editor: Philip Bader Manuscript Editor: Elizabeth Ferry Slocum Production Editor: Joyce I. Buchea Assistant Editor: Andrea E. Miller Page Design and Graphics: James Hutson Research Supervisor: Jeffry Jensen Layout: William Zimmerman Acquisitions Editor: Mark Rehn Illustrator: Kimberly L. Dawson Kurnizki Copyright © 2003, by Salem Press, Inc. All rights in this book are reserved. No part of this work may be used or reproduced in any manner what- soever or transmitted in any form or by any means, electronic or mechanical, including photocopy,recording, or any information storage and retrieval system, without written permission from the copyright owner except in the case of brief quotations embodied in critical articles and reviews. For information address the publisher, Salem Press, Inc., P.O. Box 50062, Pasadena, California 91115. Some of the updated and revised essays in this work originally appeared in Magill’s Survey of Science: Life Science (1991), Magill’s Survey of Science: Life Science, Supplement (1998), Natural Resources (1998), Encyclopedia of Genetics (1999), Encyclopedia of Environmental Issues (2000), World Geography (2001), and Earth Science (2001). ∞ The paper used in these volumes conforms to the American National Standard for Permanence of Paper for Printed Library Materials, Z39.48-1992 (R1997). Library of Congress Cataloging-in-Publication Data Magill’s encyclopedia of science : plant life / edited by Bryan D.
    [Show full text]
  • Revisions of British and Irish Lichens
    Revisions of British and Irish Lichens Volume 9 February 2021 Peltigerales: Pannariaceae Cover image: Pectenia atlantica, on bark of Fraxinus excelsior, Strath Croe, Kintail, Wester Ross. Revisions of British and Irish Lichens is a free-to-access serial publication under the auspices of the British Lichen Society, that charts changes in our understanding of the lichens and lichenicolous fungi of Great Britain and Ireland. Each volume will be devoted to a particular family (or group of families), and will include descriptions, keys, habitat and distribution data for all the species included. The maps are based on information from the BLS Lichen Database, that also includes data from the historical Mapping Scheme and the Lichen Ireland database. The choice of subject for each volume will depend on the extent of changes in classification for the families concerned, and the number of newly recognized species since previous treatments. To date, accounts of lichens from our region have been published in book form. However, the time taken to compile new printed editions of the entire lichen biota of Britain and Ireland is extensive, and many parts are out-of-date even as they are published. Issuing updates as a serial electronic publication means that important changes in understanding of our lichens can be made available with a shorter delay. The accounts may also be compiled at intervals into complete printed accounts, as new editions of the Lichens of Great Britain and Ireland. Editorial Board Dr P.F. Cannon (Department of Taxonomy & Biodiversity, Royal Botanic Gardens, Kew, Surrey TW9 3AB, UK). Dr A. Aptroot (Laboratório de Botânica/Liquenologia, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Avenida Costa e Silva s/n, Bairro Universitário, CEP 79070-900, Campo Grande, MS, Brazil) Dr B.J.
    [Show full text]
  • H. Thorsten Lumbsch VP, Science & Education the Field Museum 1400
    H. Thorsten Lumbsch VP, Science & Education The Field Museum 1400 S. Lake Shore Drive Chicago, Illinois 60605 USA Tel: 1-312-665-7881 E-mail: [email protected] Research interests Evolution and Systematics of Fungi Biogeography and Diversification Rates of Fungi Species delimitation Diversity of lichen-forming fungi Professional Experience Since 2017 Vice President, Science & Education, The Field Museum, Chicago. USA 2014-2017 Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. Since 2014 Curator, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2013-2014 Associate Director, Integrative Research Center, Science & Education, The Field Museum, Chicago, USA. 2009-2013 Chair, Dept. of Botany, The Field Museum, Chicago, USA. Since 2011 MacArthur Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2006-2014 Associate Curator, Dept. of Botany, The Field Museum, Chicago, USA. 2005-2009 Head of Cryptogams, Dept. of Botany, The Field Museum, Chicago, USA. Since 2004 Member, Committee on Evolutionary Biology, University of Chicago. Courses: BIOS 430 Evolution (UIC), BIOS 23410 Complex Interactions: Coevolution, Parasites, Mutualists, and Cheaters (U of C) Reading group: Phylogenetic methods. 2003-2006 Assistant Curator, Dept. of Botany, The Field Museum, Chicago, USA. 1998-2003 Privatdozent (Assistant Professor), Botanical Institute, University – GHS - Essen. Lectures: General Botany, Evolution of lower plants, Photosynthesis, Courses: Cryptogams, Biology
    [Show full text]
  • Habitat Quality and Disturbance Drive Lichen Species Richness in a Temperate Biodiversity Hotspot
    Oecologia (2019) 190:445–457 https://doi.org/10.1007/s00442-019-04413-0 COMMUNITY ECOLOGY – ORIGINAL RESEARCH Habitat quality and disturbance drive lichen species richness in a temperate biodiversity hotspot Erin A. Tripp1,2 · James C. Lendemer3 · Christy M. McCain1,2 Received: 23 April 2018 / Accepted: 30 April 2019 / Published online: 15 May 2019 © Springer-Verlag GmbH Germany, part of Springer Nature 2019 Abstract The impacts of disturbance on biodiversity and distributions have been studied in many systems. Yet, comparatively less is known about how lichens–obligate symbiotic organisms–respond to disturbance. Successful establishment and development of lichens require a minimum of two compatible yet usually unrelated species to be present in an environment, suggesting disturbance might be particularly detrimental. To address this gap, we focused on lichens, which are obligate symbiotic organ- isms that function as hubs of trophic interactions. Our investigation was conducted in the southern Appalachian Mountains, USA. We conducted complete biodiversity inventories of lichens (all growth forms, reproductive modes, substrates) across 47, 1-ha plots to test classic models of responses to disturbance (e.g., linear, unimodal). Disturbance was quantifed in each plot using a standardized suite of habitat quality variables. We additionally quantifed woody plant diversity, forest density, rock density, as well as environmental factors (elevation, temperature, precipitation, net primary productivity, slope, aspect) and analyzed their impacts on lichen biodiversity. Our analyses recovered a strong, positive, linear relationship between lichen biodiversity and habitat quality: lower levels of disturbance correlate to higher species diversity. With few exceptions, additional variables failed to signifcantly explain variation in diversity among plots for the 509 total lichen species, but we caution that total variation in some of these variables was limited in our study area.
    [Show full text]
  • Moorhead Ph 1 Final Report
    Technical Report Documentation Page 1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No. 4. Title and Subtitle 5. Report Date Ecological Assessment of a Wetlands Mitigation Bank August 2001 (Phase I: Baseline Ecological Conditions and Initial Restoration Efforts) 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Kevin K. Moorhead, Irene M. Rossell, C. Reed Rossell, Jr., and James W. Petranka 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Departments of Environmental Studies and Biology University of North Carolina at Asheville Asheville, NC 28804 11. Contract or Grant No. 12. Sponsoring Agency Name and Address 13. Type of Report and Period Covered U.S. Department of Transportation Final Report Research and Special Programs Administration May 1, 1994 – September 30, 2001 400 7th Street, SW Washington, DC 20590-0001 14. Sponsoring Agency Code 15. Supplementary Notes Supported by a grant from the U.S. Department of Transportation and the North Carolina Department of Transportation, through the Center for Transportation and the Environment, NC State University. 16. Abstract The Tulula Wetlands Mitigation Bank, the first wetlands mitigation bank in the Blue Ridge Province of North Carolina, was created to compensate for losses resulting from highway projects in western North Carolina. The overall objective for the Tulula Wetlands Mitigation Bank has been to restore the functional and structural characteristics of the wetlands. Specific ecological restoration objectives of this Phase I study included: 1) reestablishing site hydrology by realigning the stream channel and filling drainage ditches; 2) recontouring the floodplain by removing spoil that resulted from creation of the golf ponds and dredging of the creek; 3) improving breeding habitat for amphibians by constructing vernal ponds; and 4) reestablishing floodplain and fen plant communities.
    [Show full text]
  • Lichens and Associated Fungi from Glacier Bay National Park, Alaska
    The Lichenologist (2020), 52,61–181 doi:10.1017/S0024282920000079 Standard Paper Lichens and associated fungi from Glacier Bay National Park, Alaska Toby Spribille1,2,3 , Alan M. Fryday4 , Sergio Pérez-Ortega5 , Måns Svensson6, Tor Tønsberg7, Stefan Ekman6 , Håkon Holien8,9, Philipp Resl10 , Kevin Schneider11, Edith Stabentheiner2, Holger Thüs12,13 , Jan Vondrák14,15 and Lewis Sharman16 1Department of Biological Sciences, CW405, University of Alberta, Edmonton, Alberta T6G 2R3, Canada; 2Department of Plant Sciences, Institute of Biology, University of Graz, NAWI Graz, Holteigasse 6, 8010 Graz, Austria; 3Division of Biological Sciences, University of Montana, 32 Campus Drive, Missoula, Montana 59812, USA; 4Herbarium, Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824, USA; 5Real Jardín Botánico (CSIC), Departamento de Micología, Calle Claudio Moyano 1, E-28014 Madrid, Spain; 6Museum of Evolution, Uppsala University, Norbyvägen 16, SE-75236 Uppsala, Sweden; 7Department of Natural History, University Museum of Bergen Allégt. 41, P.O. Box 7800, N-5020 Bergen, Norway; 8Faculty of Bioscience and Aquaculture, Nord University, Box 2501, NO-7729 Steinkjer, Norway; 9NTNU University Museum, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; 10Faculty of Biology, Department I, Systematic Botany and Mycology, University of Munich (LMU), Menzinger Straße 67, 80638 München, Germany; 11Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK; 12Botany Department, State Museum of Natural History Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany; 13Natural History Museum, Cromwell Road, London SW7 5BD, UK; 14Institute of Botany of the Czech Academy of Sciences, Zámek 1, 252 43 Průhonice, Czech Republic; 15Department of Botany, Faculty of Science, University of South Bohemia, Branišovská 1760, CZ-370 05 České Budějovice, Czech Republic and 16Glacier Bay National Park & Preserve, P.O.
    [Show full text]
  • <I> Lecanoromycetes</I> of Lichenicolous Fungi Associated With
    Persoonia 39, 2017: 91–117 ISSN (Online) 1878-9080 www.ingentaconnect.com/content/nhn/pimj RESEARCH ARTICLE https://doi.org/10.3767/persoonia.2017.39.05 Phylogenetic placement within Lecanoromycetes of lichenicolous fungi associated with Cladonia and some other genera R. Pino-Bodas1,2, M.P. Zhurbenko3, S. Stenroos1 Key words Abstract Though most of the lichenicolous fungi belong to the Ascomycetes, their phylogenetic placement based on molecular data is lacking for numerous species. In this study the phylogenetic placement of 19 species of cladoniicolous species lichenicolous fungi was determined using four loci (LSU rDNA, SSU rDNA, ITS rDNA and mtSSU). The phylogenetic Pilocarpaceae analyses revealed that the studied lichenicolous fungi are widespread across the phylogeny of Lecanoromycetes. Protothelenellaceae One species is placed in Acarosporales, Sarcogyne sphaerospora; five species in Dactylosporaceae, Dactylo­ Scutula cladoniicola spora ahtii, D. deminuta, D. glaucoides, D. parasitica and Dactylospora sp.; four species belong to Lecanorales, Stictidaceae Lichenosticta alcicorniaria, Epicladonia simplex, E. stenospora and Scutula epiblastematica. The genus Epicladonia Stictis cladoniae is polyphyletic and the type E. sandstedei belongs to Leotiomycetes. Phaeopyxis punctum and Bachmanniomyces uncialicola form a well supported clade in the Ostropomycetidae. Epigloea soleiformis is related to Arthrorhaphis and Anzina. Four species are placed in Ostropales, Corticifraga peltigerae, Cryptodiscus epicladonia, C. galaninae and C. cladoniicola
    [Show full text]
  • A Multigene Phylogenetic Synthesis for the Class Lecanoromycetes (Ascomycota): 1307 Fungi Representing 1139 Infrageneric Taxa, 317 Genera and 66 Families
    A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families Miadlikowska, J., Kauff, F., Högnabba, F., Oliver, J. C., Molnár, K., Fraker, E., ... & Stenroos, S. (2014). A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. Molecular Phylogenetics and Evolution, 79, 132-168. doi:10.1016/j.ympev.2014.04.003 10.1016/j.ympev.2014.04.003 Elsevier Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Molecular Phylogenetics and Evolution 79 (2014) 132–168 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families ⇑ Jolanta Miadlikowska a, , Frank Kauff b,1, Filip Högnabba c, Jeffrey C. Oliver d,2, Katalin Molnár a,3, Emily Fraker a,4, Ester Gaya a,5, Josef Hafellner e, Valérie Hofstetter a,6, Cécile Gueidan a,7, Mónica A.G. Otálora a,8, Brendan Hodkinson a,9, Martin Kukwa f, Robert Lücking g, Curtis Björk h, Harrie J.M. Sipman i, Ana Rosa Burgaz j, Arne Thell k, Alfredo Passo l, Leena Myllys c, Trevor Goward h, Samantha Fernández-Brime m, Geir Hestmark n, James Lendemer o, H. Thorsten Lumbsch g, Michaela Schmull p, Conrad L. Schoch q, Emmanuël Sérusiaux r, David R. Maddison s, A. Elizabeth Arnold t, François Lutzoni a,10,
    [Show full text]