Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-Cov-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone

Total Page:16

File Type:pdf, Size:1020Kb

Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-Cov-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone pharmaceutics Article Lipophilicity, Pharmacokinetic Properties, and Molecular Docking Study on SARS-CoV-2 Target for Betulin Triazole Derivatives with Attached 1,4-Quinone Monika Kadela-Tomanek 1,* , Maria Jastrz˛ebska 2, Krzysztof Marciniec 1 , Elwira Chrobak 1 , Ewa B˛ebenek 1 and Stanisław Boryczka 1 1 Department of Organic Chemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Katowice, 4 Jagiello´nskaStr., 41-200 Sosnowiec, Poland; [email protected] (K.M.); [email protected] (E.C.); [email protected] (E.B.); [email protected] (S.B.) 2 Silesian Center for Education and Interdisciplinary Research, Institute of Physics, University of Silesia, 75 Pułku Piechoty 1a, 41-500 Chorzów, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-32-3641666 Abstract: A key parameter in the design of new active compounds is lipophilicity, which influences the solubility and permeability through membranes. Lipophilicity affects the pharmacodynamic and toxicological profiles of compounds. These parameters can be determined experimentally or by using different calculation methods. The aim of the research was to determine the lipophilicity of betulin triazole derivatives with attached 1,4-quinone using thin layer chromatography in a Citation: Kadela-Tomanek, M.; reverse phase system and a computer program to calculate its theoretical model. The physiochemical Jastrz˛ebska,M.; Marciniec, K.; and pharmacokinetic properties were also determined by computer programs. For all obtained Chrobak, E.; B˛ebenek,E.; Boryczka, S. parameters, the similarity analysis and multilinear regression were determined. The analyses showed Lipophilicity, Pharmacokinetic that there is a relationship between structure and properties under study. The molecular docking Properties, and Molecular Docking study showed that betulin triazole derivatives with attached 1,4-quinone could inhibit selected Study on SARS-CoV-2 Target for SARS-CoV-2 proteins. The MLR regression showed that there is a correlation between affinity scoring Betulin Triazole Derivatives with values (DG) and the physicochemical properties of the tested compounds. Attached 1,4-Quinone. Pharmaceutics 2021, 13, 781. https://doi.org/ Keywords: 1,4-quinone; betulin; lipophilicity; molecular docking; SARS-CoV-2 proteins 10.3390/pharmaceutics13060781 Academic Editor: Sourav Bhattacharjee 1. Introduction Received: 6 May 2021 Nowadays, the search for new drugs requires the application of computational chem- Accepted: 20 May 2021 istry, including experimental and in silico analysis of physicochemical properties, phar- Published: 23 May 2021 macokinetic features, ADMET analysis, and quantitative structure–activity relationship (QSAR) research [1,2]. The therapeutic potential of a drug depends on its distribution in Publisher’s Note: MDPI stays neutral the body. Often, substances with high biological activity show low bioavailability and with regard to jurisdictional claims in high toxicity to healthy tissues. Nanocarriers, including liposomes, micelles, and polymer published maps and institutional affil- nanoparticles, enable the improvement of the biodistribution of substances. Incorporation iations. of the hydrophobic core into hydrophilic nanotransporters can effectively influence the solubility of the drug, which contributes to the improvement of permeability through cell membranes [3,4]. A key parameter in the design of new active compounds is lipophilicity, which in- Copyright: © 2021 by the authors. fluences the solubility and permeability through membranes. Lipophilicity affects the Licensee MDPI, Basel, Switzerland. pharmacodynamic and toxicological profiles of compounds. These parameters can be deter- This article is an open access article mined experimentally or by using different calculation methods. Experimental lipophilicity distributed under the terms and is usually determined by chromatographic methods, such as reversed phase thin layer chro- conditions of the Creative Commons matography (RP-TLC), normal phase thin layer chromatography (NP-TLC), or reversed Attribution (CC BY) license (https:// phase high performance liquid chromatography (RP-HPLC). Theoretical methods are the creativecommons.org/licenses/by/ second way to determine lipophilicity. However, the calculated value of lipophilicity 4.0/). Pharmaceutics 2021, 13, 781. https://doi.org/10.3390/pharmaceutics13060781 https://www.mdpi.com/journal/pharmaceutics Pharmaceutics 2021, 13, x 2 of 22 Pharmaceutics 2021, 13, 781 2 of 21 ods are the second way to determine lipophilicity. However, the calculated value of lipo- philicitydepends depends on the on algorithmthe algorithm employed employed for calculation,for calculation, and and for manyfor many compounds compounds it differs it differsfrom from the the experimental experimental ones ones [5– [5–7].7]. NaturalNatural substances, substances, especially especially secondary secondary metabolites, metabolites, are are often often an an inspiration inspiration to to ob- obtain tain semisyntheticsemisyntheticcompounds, compounds, which which exhibit exhibi hight high biological biological activity. activity. Microorganisms Microorganisms produce producemany many secondary secondary metabolites metabolites that affectthat affect antibacterial, antibacterial, antiviral, antiviral, and anticancer and anticancer activities. activities.The Streptomyces The Streptomycesspecies species produce produce compounds compounds containing containing the 5,8-quinolinedionethe 5,8-quinolinedione moiety, moiety,such such as streptonigrin as streptonigrin, lavendamycin, lavendamycin, and, andstreptonigron streptonigron, which, which exhibit exhibit a wide a wide spectrum spec- of trumbiological of biological activity activity (Figure (Figure1)[ 1)8, 9[8,9].]. Previous Previous studies studies dealt dealt with with thethe modificationmodification of 5,8- 5,8-quinolinedionequinolinedione moiety moiety at at the the C-2, C-2, C-6, C-6, and and C-7 C-7 positions positions and and they they showed showed that thatsuch such modificationmodification can lead can leadto changes to changes in biological in biological activity activity [10–19]. [10– 19]. O H3CO 6 2 N COOH 7 H2N N O H2N CH3 OH H3CO OCH3 Streptonigrin FigureFigure 1. Chemical 1. Chemical structure structure of 7-amino-5,8-quinolinedione of 7-amino-5,8-quinolinedione antibiotics. antibiotics. StudiesStudies on the on lipophilicity the lipophilicity of 5,8-quinolinedione of 5,8-quinolinedione derivatives derivatives were were carried carried out apply- out apply- ing theing RP-TLC the RP-TLC and andRP-HPLC RP-HPLC methods. methods. It was It wasfound found that thatthere there is a relationship is a relationship between between lipophilicitylipophilicity and andin silico in silico pharmacokinetic pharmacokinetic properties properties of ofsynthetic synthetic 5,8-quinolinedione 5,8-quinolinedione de- deriva- rivativestives [20–23]. [20–23]. As aa continuationcontinuation of of our our previous previous research, research, we we determined determined the the lipophilicity lipo- philicityexperimentally experimentally as well as aswell by as using by using computational computational methods methods for the for betulin the betulin triazole tria- deriva- zole tivesderivatives with attached with attached 1,4-quinone. 1,4-quinone. The physicochemical The physicochemical and pharmacokinetic and pharmacokinetic properties in- propertiesfluence influence the bioavailability the bioavailability and biological and bi activityological of activity compounds of compounds when they arewhen determined they are determinedby computer by programs.computer programs. The correlation The correlation between lipophilicitybetween lipophilicity and in silico and determinedin silico determinedstructural structural parameters parameters have been have analyzed been analyzed in this study. in this study. The Thetested tested compounds compounds contain contain two active two activemoieties, moieties, i.e., 1,4-quinone i.e., 1,4-quinone and betulin. and The betulin. mainThe mechanism main mechanism of activity of for activity 1,4-quinone for 1,4-quinone derivatives derivatives is the interaction is the interaction with NQO1 with pro- NQO1 tein,protein, for which for the which overexpression the overexpression is observed is observed in many in manytypes typesof cancer of cancer cell lines cell lines[8,10,24]. [8,10 ,24]. The betulin derivatives show a wide spectrum of activities including anticancer, antiviral, The betulin derivatives show a wide spectrum of activities including anticancer, antiviral, antibacterial, and anti-inflammatory effects. The use of betulin and its derivatives in antibacterial, and anti-inflammatory effects. The use of betulin and its derivatives in treat- treatment is limited due to low bioavailability and low water solubility. For these reasons, ment is limited due to low bioavailability and low water solubility. For these reasons, the the use of new drug nanoencapsulation procedures and/or nanoparticle-based delivery use of new drug nanoencapsulation procedures and/or nanoparticle-based delivery meth- methods are a key issue. These are issues of nanomedicine interest [25,26]. ods are a key issue. These are issues of nanomedicine interest [25,26]. Over the past decade, many betulin derivatives exhibiting high antiviral activity Over the past decade, many betulin derivatives exhibiting high antiviral activity against human immunodeficiency virus (HIV-1), herpes simplex (HSV-1), enteric cy-
Recommended publications
  • Development and Validation of Liquid Chromatography-Based Methods to Assess the Lipophilicity of Cytotoxic Platinum(IV) Complexes
    Article Development and Validation of Liquid Chromatography-Based Methods to Assess the Lipophilicity of Cytotoxic Platinum(IV) Complexes Matthias H. M. Klose 1,2, Sarah Theiner 3, Hristo P. Varbanov 1,4, Doris Hoefer 1, Verena Pichler 1,5, Markus Galanski 1, Samuel M. Meier-Menches 2,3,* and Bernhard K. Keppler 1,2,* 1 Institute of Inorganic Chemistry, University of Vienna, 1090 Vienna, Austria; [email protected] (M.H.M.K.); [email protected] (D.H.); [email protected] (M.G.) 2 Research Cluster ‘Translational Cancer Therapy Research’, University of Vienna, 1090 Vienna, Austria 3 Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria; [email protected] 4 Institute of Chemistry—Inorganic Chemistry, University of Graz, 8010 Graz, Austria; [email protected] (H.P.V.) 5 Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria; [email protected] (V.P.) * Correspondence: [email protected] (S.M.M.-M.); [email protected] (B.K.K.); Tel.: +43-1-4277-52373 (S.M.M.-M.); +43-1-4277-52602 (B.K.K.) Received: 2 October 2018; Accepted: 29 November 2018; Published: 4 December 2018 Abstract: Lipophilicity is a crucial parameter for drug discovery, usually determined by the logarithmic partition coefficient (Log P) between octanol and water. However, the available detection methods have restricted the widespread use of the partition coefficient in inorganic medicinal chemistry, and recent investigations have shifted towards chromatographic lipophilicity parameters, frequently without a conversion to derive Log P.
    [Show full text]
  • Molecular Design. Concepts and Applications Gisbert Schneider & Karl-Heinz Baringhaus DOI: 10.3395/Reciis.V3i2.259En
    [www.reciis.cict.fiocruz.br] ISSN 1981-6286 Book Reviews Molecular design. Concepts and applications Gisbert Schneider & Karl-Heinz Baringhaus DOI: 10.3395/reciis.v3i2.259en Carlos Alberto Manssour Fraga Faculty of Pharmacy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil [email protected] This book focuses on how different concepts and molecular modeling strategies could be exploited to design the molecular architecture of ligands for specific targets, as new drug candidates. The authors have large experience in drug discovery, occupying head positions in European pharmaceutical industries, which was crucial to their particular form to address the main design-related medicinal chemistry topics along the five chapters of the book. The foreword written by Hugo Kubinyi describes the importance of integrated and multidisciplinary work for the successful of rational drug design process. So, Schneider and Baringhaus used an easy and clear lan- guage to show the main advantages and disadvantages of several different approaches and technologies applied in molecular design of new chemical entities, highlighting the pitfalls and risks of the complex task of discovery a new drug. The first chapter presents the principal structural elements related to the molecules and what features should be persecuted to avoid or minimize the probability of unsuccessful during the clinical trials due to inadequate ADMET properties. In addition to the description of druglikeness properties, an important discussion about the importance of getting informations about the shape and the bioactive conformation of the Wiley-VCH Verlag GmbH, bioligands is included. The second one introduces the Alemanha; 2008 phenomena related to receptor-ligand interactions point- ing the more frequent types of bonds involved in the binding and how the enthalpic and entropic contribu- ISBN: 978-3527314324 tions could benefit the formation of stable complexes.
    [Show full text]
  • Fast Three Dimensional Pharmacophore Virtual Screening of New Potent Non-Steroid Aromatase Inhibitors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE J. Med. Chem. 2009, 52, 143–150 143 provided by Estudo Geral Fast Three Dimensional Pharmacophore Virtual Screening of New Potent Non-Steroid Aromatase Inhibitors Marco A. C. Neves,† Teresa C. P. Dinis,‡ Giorgio Colombo,*,§ and M. Luisa Sa´ e Melo*,† Centro de Estudos Farmaceˆuticos, Laborato´rio de Quı´mica Farmaceˆutica, Faculdade de Farma´cia, UniVersidade de Coimbra, 3000-295, Coimbra, Portugal, Centro de Neurocieˆncias, Laborato´rio de Bioquı´mica, Faculdade de Farma´cia, UniVersidade de Coimbra, 3000-295, Coimbra, Portugal, and Istituto di Chimica del Riconoscimento Molecolare, CNR, 20131, Milano, Italy ReceiVed July 28, 2008 Suppression of estrogen biosynthesis by aromatase inhibition is an effective approach for the treatment of hormone sensitive breast cancer. Third generation non-steroid aromatase inhibitors have shown important benefits in recent clinical trials with postmenopausal women. In this study we have developed a new ligand- based strategy combining important pharmacophoric and structural features according to the postulated aromatase binding mode, useful for the virtual screening of new potent non-steroid inhibitors. A small subset of promising drug candidates was identified from the large NCI database, and their antiaromatase activity was assessed on an in vitro biochemical assay with aromatase extracted from human term placenta. New potent aromatase inhibitors were discovered to be active in the low nanomolar range, and a common binding mode was proposed. These results confirm the potential of our methodology for a fast in silico high-throughput screening of potent non-steroid aromatase inhibitors. Introduction built and proved to be valuable in understanding the binding 14-16 Aromatase, a member of the cytochrome P450 superfamily determinants of several classes of inhibitors.
    [Show full text]
  • Lipophilicity (Logd7.4) of N-Aryl Benzo Hydroxamic Acids
    Global Journal of Pharmacy & Pharmaceutical Sciences ISSN: 2573-2250 Mini Review Glob J Pharmaceu Sci Volume 4 Issue 5 - february 2018 Copyright © All rights are reserved by Ajita Dixit DOI: 10.19080/GJPPS.2018.04.555648 Lipophilicity (LogD7.4) of N-Aryl Benzo Hydroxamic Acids Ajita Dixit* Pandit Ravishankar Shukla University, India Submission: July 24, 2017; Published: February 21, 2018 *Corresponding author: Ajita Dixit, Pandit Ravishankar Shukla University, India, Email: Abstract Hydroxamic acids are polyfunctional molecules which show a wide spectrum of biological and medicinal activities. Lipophilicity is known to be important for absorption, permeability and in vivo distribution of organic compound. Lipophilicity is also a major structural factor that influences the pharmacokinetic and pharmacodynamic behaviour of compound. Introduction homogeneously but rather, a gradient is formed that varies Lipophilicity is known to be important for absorption, with the composition and geometry of membrane [7]. The high permeability and in vivo distribution of organic compound degree of ordering of solutes in a lipid bi layer compared with a [1]. Since about one century, it is recognized as a meaningful parameter in Structure-activity relationship studies and with and partitioning. Never the less good correlation between the epoch making contributions of Hansch et al. [2] has become bulk liquid phase also significantly changes the thermodynamic the single most informative and successful physico-chemical membrane /buffer and octanol/water two phase’s systems has the partition coefficient of various lipophilic compounds in been observed [8]. property in medicinal chemistry. Lipophilicity is defined for a lipophilic environment.” Lipophilicity is determined Material and Methods “Lipophilicity represents the affinity of a molecule or a moiety valid only for a single chemical species) or as distribution experimentally as partition coefficients (written as logP and In the present investigation partition coefficient or n-Octanol and buffer as solvent.
    [Show full text]
  • Downloading Only Compounds with the Properties “Drug-Like”, “Purchasable”
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.02.433618; this version posted June 9, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A Pharmacophore Model for SARS-CoV-2 3CLpro Small Molecule Inhibitors and in Vitro Experimental Validation of Computationally Screened Inhibitors Enrico Glaab*†1, Ganesh Babu Manoharan2, Daniel Abankwa*2 1Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg 2Department of Life Sciences and Medicine, University of Luxembourg, 7 avenue des Hauts Fourneaux, L-4362 Esch-sur-Alzette, Luxembourg *EG and DA are joint senior autHors †Contact: [email protected] Abstract Among the biomedical efforts in response to the current coronavirus (COVID-19) pandemic, pharmacological strategies to reduce viral load in patients with severe forms of the disease are being studied intensively. One of the main drug target proteins proposed so far is the SARS- CoV-2 viral protease 3CLpro (also called Mpro), an essential component for viral replication. Ongoing ligand- and receptor-based computational screening efforts would be facilitated by an improved understanding of the electrostatic, hydrophobic and steric features that characterize small molecule inhibitors binding stably to 3CLpro, as well as by an extended collection of known binders. Here, we present combined virtual screening, molecular dynamics simulation, machine learning and in vitro experimental validation analyses which have led to the identification of small molecule inhibitors of 3CLpro with micromolar activity, and to a pharmacophore model that describes functional chemical groups associated with the molecular recognition of ligands by the 3CLpro binding pocket.
    [Show full text]
  • Lipophilicity As a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives
    molecules Article Lipophilicity as a Central Component of Drug-Like Properties of Chalchones and Flavonoid Derivatives Teodora Constantinescu 1, Claudiu Nicolae Lungu 2,* and Ildiko Lung 3 1 Department of Chemistry, Faculty of Pharmacy, Iuliu Hatieganu University, 400012 Cluj-Napoca, Romania; [email protected] 2 Department of Chemistry, Faculty of Chemistry and Chemical Engineering, Babes-Bolyai University, 400028 Cluj-Napoca, Romania 3 National Institute for Research & Development of Isotopic and Molecular Technologies 67-103 Donath street, 400293 Cluj-Napoca, Romania; [email protected] * Correspondence: [email protected]; Tel.: +40-(0)-742-255-099 Received: 11 March 2019; Accepted: 10 April 2019; Published: 17 April 2019 Abstract: Lipophilcity is an important physico-chemical parameter that influences membrane transport and binding ability to action. Migration distance following complete elution of compounds was used to calculate different lipophilicity-related parameters. The aim of this study is to show that lipophilicity is a central component of thiazole chalcones and flavonoid derivatives regarding their drug-like properties. Experimental and computational methods were used. This study considers 44 previously synthesized compounds (thiazole chalcones, flavanones, flavones, 3-hydroxyflavones, and their acetylated derivatives). The concerned compounds have shown antitumoral hallmarks and antibacterial activity in vitro. The experimental method used to determine compounds’ lipophilicity was the reverse-phase thin layer chromatography (RP-TLC). Lipophilicity related 0 parameters—isocratic retention factor (RM), relative lipophily (RM ), slope (b), chromatographic hydrophobic index ('0), scores of principal components (PC1/RM)—were determined based on reverse-phase chromatography results. Keywords: lipophilicity; retention factor; chalcones; QSAR; chromatography; drug design 1. Introduction Lipophilicity is an important feature of molecules in pharmaceutical, biochemical, and medical chemistry fields.
    [Show full text]
  • The Selection & Application of Free Prediction Models for Drug Discovery
    The selection & application of free prediction models for drug discovery • Scope • Sources of in silico models • Assessing model quality in series optimisation • Model quality in general • Models & HTS triage • Lipophilicity • Tautomers Disclaimer: There are lots of opinions on this topic, these are ours…. With many thanks to Caroline Low & Alexander Alex 1 Scope • Models of pharmacokinetics & toxicity • Activity models, docking and scoring are not explicitly considered though many of the principles will be applicable • A selection of models & tools, the list is not exhaustive specific models general ‘models’ brain penetration lipophilicity druglikeness solubility pKa toxicity metabolism absorption/efflux 2 Models, models, models octanol water metabolism logP kinetic solubility cytotoxicity • We use a multitude of models in drug discovery • Many are experimentally derived ‘surrogate endpoints’ that we hope will correlate with something useful in human • in silico models are often predictions of the surrogate endpoints 3 Example software & in silico models (not an exhaustive list) DataWarrior1 swissADME2 ChemBench3 StarDrop4 chembench.mml.unc.edu/ openmolecules.org swissadme.ch prediction.action optibrium.com • logP • logP • 125 models • logP • solubility • 6 methods including: • logD7.4 • solubility • BBB • solubility • 3 methods • tox (various) • aq • absorption • PPB • PBS pH7.4 • GI • skin • HIA • BBB permeability • BBB • skin • Transporters • P450 affinities • Pgp • Pgp • Cyps (5) • hERG • PPB 1. Free 2. Free but require users to
    [Show full text]
  • Solvent Effect Modelling of Isocyanuric Products Synthesis by Chemometric Methods
    Journal of Automated Methods & Management in Chemistry Vol. 24, No. 4 (July–August 2002) pp. 111–119 Solvent e´ ect modelling of isocyanuric products synthesis by chemometric methods Jean-Louis Havet, Myriam Billiau-Loreau, electric constant) or by empirical parameters (Dimroth± Catherine Porte* and Alain Delacroix Reichardt constant, Kosower constant). These data can Laboratoire de Chimie Industrielle et Geè nie des Proceè deè s, Conservatoire National be considered as good but partial indicators of polarity. des Arts et Meè tiers, 2 rue Conteè , F-75003 Paris, France Furthermore, the accumulation of empirical values shows that none of these de® nitions is totally convenient. The Chemometric tools were used to generate the modelling of solvent use of several parameters that are not independent in N e¡ects on the -alkylation of an isocyanuric acid salt. The method multiparametric equations allows one to improve the proceeded from a central composite design applied on the Carlson quanti® cation of polarity, but it remains insuæ cient to solvent classi¢cation using principal components analysis. The have a general classi® cation of solvents [3]. selectivity of the reaction was studied from the production of di¡erent substituted isocyanuric derivatives. Response graphs were The most ambitious approach for a general classi® cation obtained for each compound and used to devise a strategy for of solvents uses multivariate statistical methods [4, 5]. solvent selection. The prediction models were validated and used to The compilation of the physicochemical constants of search for the best selectivity for the reaction system. The solvent solvents allows one to take diå erent properties simulta- most often selected as the best for the reaction is the N,N- neously into account.
    [Show full text]
  • AP42 Chapter 9 Reference
    Background Report Reference AP-42 Section Number: 9.2.2 Background Chapter: 4 Reference Number: 22 Title: "Critical Review of Henry's Law Constants fro Pesticides" in Reviews of Environmental Contamination and Toxicology L.R. Suntio 1988 AP-42 Section 9! Reference Report Sect. 3c L2% Critical Review of Henry's Law Constants Reference for Pesticides L.R. Sunti0,'W.Y. Shiu,* D. Mackay,* J.N. Seiber,** and D. Glotfelty*** Contents ......... ........... ........... ............. IV. Data Analysis ........ ........... ......... I V. Discussion .......... ........... .......... 41 ............. so .......... ............ I. Introduction Pesticides play an important role in maintaining agricultural productivity, but they may also be causes of contamination of air, water, soil, and food, with possible adverse effects on human and animal health. The proper use of pesticide chemicals must be based on an understanding of the behavior of the chemicals as they interact with air, water, soil, and biota, react or degrade, and migrate. This behavior is strongly influenced by the chemicals' physical- chemical properties of solubility in water, vapor pressure or volatility, and tendency to sorb to organic and mineral matter in the soil. Reviews of such physical-chemical properties have been compiled by Kenaga (1980), Kenaga and Goring (1980), Briggs (1981), and Bowman and Sans (1983) for aqueous solubility, octanol-water partition coefficient, bio- accumulation, and soil sorption; Spencer and Cliath (1970, 1973. 1983). and Spencer (1976) for vapor pressure and volatilization from soil. In this chapter we compile and discuss data for Henry's Law constant H (which is the ratio of solute partial pressure in the air to the equilibrium water concentration and thus has units of Pa m3/mol) or the air-water partition 'Department ofchemical Engineering and Applied Chemistry.
    [Show full text]
  • Medical Science 2321–7367
    REPORTANALYSIS ARTICLE 24(106), November - December, 2020 ISSN 2321–7359 EISSN Medical Science 2321–7367 Application of computational tools for ADME and target modeling of bioactive compounds from hydroalcoholic extracts of Erodium glaucophyllum flowers Fares Alshammari Department of Health Informatics, College of Public Health and Health Informatics, University of Ha'il, Ha'il, Kingdom of Saudi Arabia; Email: [email protected] Article History Received: 12 September 2020 Reviewed & Revised: 14/September/2020 to 04/November/2020 Accepted: 05 November 2020 E-publication: 12 November 2020 P-Publication: November - December 2020 Citation Fares Alshammari. Application of computational tools for ADME and target modeling of bioactive compounds from hydroalcoholic extracts of Erodium glaucophyllum flowers. Medical Science, 2020, 24(106), 4178-4183 Publication License This work is licensed under a Creative Commons Attribution 4.0 International License. General Note Article is recommended to print as color digital version in recycled paper. ABSTRACT Computational approaches based on predictive software used for computer-aided drug design to improve the quality control of drugs become a key tool in the selection and prioritization of drug targets. Seventeen identified compounds isolated from hydroalcoholic extracts of Erodium glaucophyllum flowers were subjected to in silico ADME and target prediction to evaluate their pharmacokinetics, drug-likeness and coupled target classes using Swiss ADME and Swiss Target Prediction programs. Results 4178 revealed that most of the tested compounds displayed good oral bioavailability and skin permeation suggesting that they are easily absorbed. They are also able to penetrate the blood-brain barrier and therefore to affect the central nervous system (CNS).
    [Show full text]
  • The Effect of Lipophilicity on the Antibacterial Activity
    J. Serb. Chem. Soc. 73 (10) 967–978 (2008) UDC 577.15:547.53:615.281–188 JSCS–3778 Original scientific paper The effect of lipophilicity on the antibacterial activity of some 1-benzylbenzimidazole derivatives S. O. PODUNAVAC-KUZMANOVIĆ1*#, D. D. CVETKOVIĆ1 and D. J. BARNA2 1Faculty of Technology, Bulevar Cara Lazara 1, 21000 Novi Sad and 2Institute of Public Health, Zmaj Jovina 30, 24000 Subotica, Serbia (Received 27 February, revised 13 May 2008) Abstract: In the present paper, the antibacterial activity of some 1-benzylbenz- imidazole derivatives were evaluated against the Gram-negative bacteria Esche- richia coli. The minimum inhibitory concentration was determined for all the compounds. Quantitative structure–activity relationship (QSAR) was employed to study the effect of the lipophilicity parameters (log P) on the inhibitory ac- tivity. Log P values for the target compounds were experimentally determined by the “shake-flask” method and calculated by using eight different software products. Multiple linear regression was used to correlate the log P values and antibacterial activity of the studied benzimidazole derivatives. The results are dis- cussed based on statistical data. The most acceptable QSAR models for the pre- diction of the antibacterial activity of the investigated series of benzimidazoles were developed. High agreement between the experimental and predicted inhi- bitory values was obtained. The results of this study indicate that the lipophi- licity parameter has a significant effect on the antibacterial activity of this class of compounds, which simplifies the design of new biologically active molecules. Keywords: benzimidazole derivatives; lipophilicity; quantitative structure–acti- vity relationship; antibacterial; in vitro studies.
    [Show full text]
  • Online Computational Tools for the Prediction of Toxicity, Druglikeness, Receptor Inhibition and Ligand Based Pharmacophore Dete
    International Journal of Pharmacy and Biological Sciences TM ISSN: 2321-3272 (Print), ISSN: 2230-7605 (Online) IJPBSTM | Volume 8 | Issue 4 | OCT-DEC | 2018 | 1213-1224 Research Article | Pharmaceutical Sciences | Open Access | MCI Approved| |UGC Approved Journal | ONLINE COMPUTATIONAL TOOLS FOR THE PREDICTION OF TOXICITY, DRUGLIKENESS, RECEPTOR INHIBITION AND LIGAND BASED PHARMACOPHORE DETECTION OF NOVEL 2-(2-OXO-DIHYDRO-2H- INDOL-2-YLIDENE) HYDRAZINE CARBOXMIDE SCHIFF BASES Maddumala Sowjanya2, Baratam Anupama1, R. Satyavani1, Koneru Poojitha1 and KNV Chenchu Lakshmi1* 1*Department of Pharmaceutical Chemistry, KVSR Siddhartha College of Pharmaceutical Sciences, Vijayawada, Andhra Pradesh, India. 2Department of Pharmaceutical Chemistry, Sri Chundi Ronganakulu College, Chilakalurpet, Andhra Pradesh, India. *Corresponding Author Email: [email protected] ABSTRACT Drug discovery and development is complicated and time-consuming process. Recently, a trend towards the use of Insilico chemistry and molecular modelling for computer-aided drug design has gained significant importance. Insilico drug design skills are used in nanotechnology, molecular biology, biochemistry etc. The main benefit of the Insilico drug design is cost effective in research and development of drugs. There are wide ranges of software that are used in Insilico drug design, Grid computing, window based general PBPK/PD modelling software, PKUDDS for structure-based drug design, Molinspiration, PHARMAGIST, Chemaxon, Data warrior, O-Series, O Chem, JAVA, Perl and Python. The present study was focused to evaluate the series of building blocks with 2-(3-oxo-dihydro-2H- indol-2-ylidene) hydrazinecarboxmide Schiff bases moiety as a target molecule for anti-convulsant activity. The hypothetically developed 2-(2-oxo-dihydro-2H-indol-2-ylidene) hydrazinecarboxmide Schiff bases targets are ensured of their reliability on in silico drug designing model.
    [Show full text]