WO 2018/011056 Al 18 January 2018 (18.01.2018) W !P O PCT

Total Page:16

File Type:pdf, Size:1020Kb

WO 2018/011056 Al 18 January 2018 (18.01.2018) W !P O PCT (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/011056 Al 18 January 2018 (18.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A 37/22 (2006.01) A01P 7/00 (2006.01) kind of national protection available): AE, AG, AL, AM, A01P 5/00 (2006.01) A01N 37/46 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/EP20 17/066975 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 06 July 2017 (06.07.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY,TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 16179088.6 12 July 2016 (12.07.2016) EP kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: BASF AGROCHEMICAL PRODUCTS UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, B.V. [NL/NL]; Groningensingel 1, 6835 EA Arnhem (NL). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventors: REINHARD, Robert; Berwartsteinstrasse 6, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, 671 17 Limburgerhof (DE). SIKULJAK, Tatjana; Sophien MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, Strasse 18, 68165 Mannheim (DE). BINDSCHAEDLER, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, Pascal; Gartenstr. 34a, 67354 Roemerberg (DE). KOER- KM, ML, MR, NE, SN, TD, TG). BER, Karsten; Hintere Lisgewann 26, 69214 Eppelheim (DE). LANGEWALD, Juergen; Joseph-Haydn-Strasse Published: 3-5, 68165 Mannheim (DE). — with international search report (Art. 21(3)) (74) Agent: BASF IP ASSOCIATION; BASF SE, G-FLP - C006, 67056 Ludwigshafen (DE). (54) Title: PESTICIDALLY ACTIVE MIXTURES (I) o (la) © 00 (57) Abstract: The present invention relates to pesticidal mixtures comprising a pesticidally active compound I selected from a) com pound a) of formula (I), b) compound b) of formula (la), c) mixtures comprising compounds a) and b), and at least one further pesticidal o active ingredient. The invention relates further to methods and use of these mixtures for combating and controlling insects, acarids or nematodes in and on plants, and for protecting such plants being infested with pests. Pesticidally active mixtures The present invention relates to mixtures of active ingredients having synergistically enhanced action and to methods comprising applying said mixtures. The present invention relates to pesticidal mixtures comprising as active compounds 1) at least one compound I selected from a) compound a) of formula (I) compound b) of formula (la) and c) mixtures comprising compounds a) and b), or the tautomers, enantiomers, diastereomers, or salts thereof; and 2) one or more pesticidally active compounds II selected from the group of of fo rm u l of formula 11.2 (II.2) of formula 11.3-1 o r II.3-2 (11.3-1 ) (II.3-2) wherein the moiety -C(0)NHR 115 in compounds 11.5-1 to II. 5-4 is connected to position 4 of the indazole moiety and wherein the moiety -C(0)NHR 5 in compounds II. 5-5 to 11.5-10 is connected to position 5 of the indazole moiety; 2.6. a compound of formula 11.6 2.7. compound II. 7 N-[4-chloro-3-(cyclopropylcarbamoyl)phenyl]-2-methyl-5-(1 , 1 ,2,2,2- pentafluoroethyl)-4-(trifluoromethyl)pyrazole-3-carboxamide; 2.8. compound 11. 8 N-[4-chloro-3-[(1-cyanocyclopropyl)carbamoyl]phenyl]-2-methyl-5- ( 1 , 1 ,2,2,2-pentafluoroethyl)-4-(trifluoromethyl)pyrazole-3-carboxamide; 2.9. compound II. 9 acynonapyr; 2.10. compound 11.10 benzpyrimoxan; 2.1 1. compound 11.1 1 2-chloro-N-(1-cyanocyclopropyl)-5-[1-[2-methyl-5-(1 , 1 ,2,2,2-pen- tafluoroethyl)-4-(trifluoromethyl)pyrazol-3-yl]pyrazol-4-yl]benzamide; in a pesticidally effective amount. The asterisk "* " denotes the bond in the group, which forms the connection to the rest of the molecule. In a preferred embodiment, the invention relates to pesticidal mixtures comprising as active compounds at least one compound I selected from compound a), compound b), and mixtures comprising a) and b) and at least one compound II as defined above, in synergisticaly effective amounts. Preferred as compound I is compound a) of formula (I). Compound a) of formula (I) is also known as broflanilide. One typical problem arising in the field of pest control lies in the need to reduce the dosage rates of the active ingredient in order to reduce o r avoid unfavorable environmental o r toxicological effects whilst still allowing effective pest control. Another problem encountered concerns the need to have available pest control agents which are effective against a broad spectrum of pests. There also exists the need for pest control agents that combine knock-down activity with prolonged control, that is, fast action with long lasting action. Another difficulty in relation to the use of pesticides is that the repeated and exclusive applica- tion of a n individual pesticidal compound leads in many cases to a rapid selection of pests which have developed natural o r adapted resistance against the active compound in question. Therefore there is a need for pest control agents that help prevent o r overcome resistance in¬ duced by pesticides. Furthermore, there is a desire for pesticide compounds o r combination of compounds, which when applied improve plants, which may result in "plant health", "vitality of plant propaga¬ tion material" o r "increased plant yield". It is therefore a n object of the present invention to provide agricultural combinations which solves one o r more than one of the discussed problems as - reducing the dosage rate, - enhancing the spectrum of activity, - combining knock-down activity with prolonged control, - improving resistance management, - Improved plant health; - Improved vitality of plant propagation material, also termed seed vitality; - Increased plant yield.. It was therefore a n object of the present invention to provide pesticidal mixtures which solve at least one of the discussed problems as reducing the dosage rate, enhancing the spectrum of activity o r combining knock-down activity with prolonged control o r as to resistance manage¬ ment. It has been found that this object is in part o r in whole achieved by the combination of active compounds as defined herein. A s used herein, the term "mixture(s) of the present invention" o r "mixture(s) according to the in¬ vention" refers to the mixtures comprising - compound I selected from compound a) of formula (I), compound b) of formula (la), and mixtures comprising compounds a ) and b) as defined above, which are also referred to as "compound(s) I", and compound(s) of formula (II) as defined above, i.e. compounds of formula (11.1), (N-2), (N.3.), (II.4), (II.5), (II.6), o r compounds II.7, II.8, II.9, 11.10, o r 11.1 1, which are also re- ferred to as "compound(s) of formula II" o r "compound(s) II". The compounds I and the compounds II are understood to include their salts, tautomers, stereo¬ isomers, and N-oxides. The present invention relates to a mixture of at least one compound I of the present invention , preferably compound a) of formula (I), with at least one mixing partner II as defined above. In one embodiment, the invention relates to binary mixtures of one compound I with one mixing partner II as defined above as compound II. Preferred weight ratios for such binary mixtures are from 5000: 1 to 1:5000, preferably from 1000: 1 to 1:1000, more preferably from 100: 1 to 1:100, particularly preferably from 10 :1 to 1:10 . In such binary mixtures, compounds I and II may be used in equal amounts, or an excess of compound I, or an excess of compound II may be used. In the mixtures of the present invention, the ingredients may be used sequentially or in combination with each other, if appropriate also added only immediately prior to use (tank mix). For example, the plant(s) may be sprayed with compound II either before or after being treated with compound I. Depending on the substitution pattern, the compounds of the present invention may have one or more centers of chirality, in which case they are present as mixtures of enantiomers or diastere- omers. The invention provides both the pure enantiomers or pure diastereomers of the com pounds of the present invention, and their mixtures and the use according to the invention of the pure enantiomers or pure diastereomers of the compounds of the present invention or their m ix tures. Suitable compounds of the formula of the present invention also include all possible geo- metrical stereoisomers (cis/trans isomers) and mixtures thereof. Cis/trans isomers may be pre sent with respect to an alkene, carbon-nitrogen double-bond, nitrogen-sulfur double bond or amide group.
Recommended publications
  • The Panicle Rice Mite: Identification, Scouting and Possible Management Options
    The panicle rice mite: identification, scouting and possible management options Natalie A. Hummel, Ph.D. Assistant Professor Rice Extension Entomologist [email protected] Identification and Biology 1. Tarsonemid mite – 1/100 inch long 2. Feed inside leaf sheath & on developing panicles – Grain sterility, blanks 3. Difficult to scout – Extremely small size 4. Many modes of dispersal 5. Regulatory response – No decisions have been made Panicle Rice Mite Life Cycle 3-21 days generation time 50-70 eggs/female Source: Botero 2005 Eggs: Pupa: 3 d at 77 °F 2.5 d at 77 °F Larva: 2.2 d at 77 °F (Dossmann et al. 2005. El Aceituno) (Pictures by E. Erbe USDA-ARS) Phenology • Seedling bed (Asia) Æ no mites • Tillering Æ low density • Flowering Æ density increases • Milk Æ density continues to increase • Grain maturing Æ decreasing density • Second crop Æ higher densities from the beginning (Lo and Hor 1977, Ou and Fang 1978, Lo and Ho 1980, Jiang 1994, Leyva et al. 2003, Ramos and Rodriguez 2001 ) Overwintering • Dominican Republic – Stubble • Volunteer regrowth – Broken stems • nitrogen and reflood for ratoon crop • residue carrying mites floats into water – Regrowth from seeds lost during harvest – Weeds on field margins (Pellarano unpublished data) Symptoms Associated with PRM • Leaf sheath discoloration (sheath rot) – Chocolate-brown discoloration – Continues in new leafs J. Saichuk – No distinct edge of lesion • Bacterial panicle blight symptoms – Empty panicles C. Rush • Herbicide drift symptoms – Parrot-beaking • Panicle Deformation J. Saichuk How to scout for mites: Look behind the leaf sheath • View with 16X, 20X or 30X hand microscope C.
    [Show full text]
  • Niche Modeling May Explain the Historical Population Failure of Phytoseiulus Persimilis in Taiwan: Implications of Biocontrol Strategies
    insects Article Niche Modeling May Explain the Historical Population Failure of Phytoseiulus persimilis in Taiwan: Implications of Biocontrol Strategies Jhih-Rong Liao 1 , Chyi-Chen Ho 2, Ming-Chih Chiu 3,* and Chiung-Cheng Ko 1,† 1 Department of Entomology, National Taiwan University, Taipei 106332, Taiwan; [email protected] (J.-R.L.); [email protected] (C.-C.K.) 2 Taiwan Acari Research Laboratory, Taichung 413006, Taiwan; [email protected] 3 Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama 7908577, Japan * Correspondence: [email protected] † Deceased, 29 October 2020. This paper is dedicated to the memory of the late Chiung-Cheng Ko. Simple Summary: Phytoseiulus persimilis Athias-Henriot, a mite species widely used in pest manage- ment for the control of spider mites, has been commercialized and introduced to numerous countries. In the 1990s, P. persimilis was imported to Taiwan, and a million individuals were released into the field. However, none have been observed since then. In this study, we explored the ecological niche of this species to determine reasons underlying its establishment failure. The results indicate that P. persimilis was released in areas poorly suited to their survival. To the best of our knowledge, the present study is the first to predict the potential distribution of phytoseiids as exotic natural enemies. This process should precede the commercialization of exotic natural enemies and their introduction Citation: Liao, J.-R.; Ho, C.-C.; Chiu, into any country. M.-C.; Ko, C.-C. Niche Modeling May Explain the Historical Population Abstract: Biological control commonly involves the commercialization and introduction of natural Failure of Phytoseiulus persimilis in enemies.
    [Show full text]
  • Biology of Rice Sheath Mite, Steneotarsonemus Spinki Smiley
    Oryza Vol. 46. No.4, 2009 (318-322) Biology of rice sheath mite, Steneotarsonemus spinki Smiley K. A. Patel* and M. S. Purohit Department of Agricultural Entomology, N.M. College of Agriculture, Navsari Agricultural University, Navsari – 396450, Gujarat, India ABSTRACT Biology of the rice tarsonemid mite Steneotarsonemus spinki was studied under laboratory at 28 ± 2.1°C temperature and 88 ± 5.9 per cent relative humidity during September 2003.Both the sexes passed through three stages viz. egg, larva, and adult and a short resting period known as quiescent stage. The egg stage lasted on an average 3.32 ± 0.55 days. Average larval period for male was 1.23 ± 0.44 and for female 1.52 ± 0.52 days and quiescent period was 0.53 ± 0.22 day for male and 0.66 0.24 day for female. Adult period was 5.28 0.54 days for male and 6.68±0.98 days for female. The total life cycle was completed in 12.20 ± 1.47 days and 13.75 ± 1.17 days for male and female, respectively. The pre-oviposition, oviposition and post-oviposition periods were 1.40 ± 0.39, 4.50 ± 1.20 and 1.65 ± 0.47 days, respectively. The female laid average 20 ± 5.03 eggs during its life span. The sex ratio (female:male) was recorded 1:1.5 and 1:2.8 in laboratory and field conditions, respectively. Key words: rice, sheath mite, Steneotarsonemus spinki, biology South Gujarat is an important rice growing tract of the Tarsonemid mites directly or indirectly causes state covering 2.3 lakh hectares area under cultivation considerable amount of quantitative and qualitative which accounts for 34.63 per cent of the total rice losses in rice production.
    [Show full text]
  • Table of Contents: Acarology XIII
    02-Sumario:02-Sumario 11/22/11 3:37 AM Page 5 Zoosymposia 6: 5–8 (2011) ISSN 1178-9905 (print edition) www.mapress.com/zoosymposia/ ZOOSYMPOSIA Copyright © 2011 . Magnolia Press ISSN 1178-9913 (online edition) Acarology XIII: Proceedings of the International Congress GILBERTO JOSÉ DE MORAES & HEATHER PROCTOR (EDITORS) Table of contents 9 Summary of the history of the International Congresses of Acarology CARLOS H.W. FLECHTMANN 14 Comparative and functional morphology of the mouthparts in larvae of Parasitengona (Acariformes) ANDREY B. SHATROV 24 Discovery and description of nymphal stages of a heterozerconid mite (Acari: Mesostigmata: Heterozerconidae) from coastal forest litter in southeastern São Paulo State, Brazil GERALD W. KRANTZ & GILBERTO J. DE MORAES 34 Some statistics on the taxonomy of the family Cunaxidae (Acari: Prostigmata) JACOB DEN HEYER 39 Asymmetry in the number of solenidia on tarsi II of Brevipalpus (Acari: Tenuipalpidae) populations from Argentina ELLIOT W. KITAJIMA, ALINE D. TASSI, VALDENICE M. NOVELLI, SARA CACE - RES, ALCIDES AGUIRRE, NORMA COSTA & GILBERTO J. DE MORAES 45 Mites (Acari) important in different agroecosystems and their control in Romania IOAN ROSCA, MINODORA GUTUE & CATALIN GUTUE 51 Eriophyid mites (Acari: Eriophyidae) from Turkey EVSEL DENIZHAN 56 Diversity of mites (Acari) on medicinal and aromatic plants in India SALIL K. GUPTA & KRISHNA KARMAKAR 62 Predatory mite fauna associated with agri-horticultural crops and weeds from the Gangetic Plains of West Bengal, India KRISHNA KARMAKAR & SALIL K. GUPTA
    [Show full text]
  • Isoxazoline Derivatives As Insecticidal Compounds Isoxazolinderivate Als Insektizidverbindungen Dérivés D’Isoxazoline Convenant Comme Composés Insecticides
    (19) TZZ __T (11) EP 2 748 155 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 331/04 (2006.01) C07D 409/12 (2006.01) 20.12.2017 Bulletin 2017/51 C07D 413/12 (2006.01) A01N 43/36 (2006.01) A01N 43/80 (2006.01) (21) Application number: 12748717.1 (86) International application number: (22) Date of filing: 24.08.2012 PCT/EP2012/066554 (87) International publication number: WO 2013/026931 (28.02.2013 Gazette 2013/09) (54) ISOXAZOLINE DERIVATIVES AS INSECTICIDAL COMPOUNDS ISOXAZOLINDERIVATE ALS INSEKTIZIDVERBINDUNGEN DÉRIVÉS D’ISOXAZOLINE CONVENANT COMME COMPOSÉS INSECTICIDES (84) Designated Contracting States: • PITTERNA, Thomas AL AT BE BG CH CY CZ DE DK EE ES FI FR GB CH-4332 Stein (CH) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • EL QACEMI, Myriem PL PT RO RS SE SI SK SM TR CH-4332 Stein (CH) (30) Priority: 25.08.2011 EP 11178921 (74) Representative: Syngenta International AG 03.08.2012 EP 12179257 WRO B8-Z1-30 06.08.2012 EP 12179385 Schwarzwaldallee 215 07.08.2012 PCT/EP2012/065421 4058 Basel (CH) (43) Date of publication of application: (56) References cited: 02.07.2014 Bulletin 2014/27 WO-A1-2010/020521 WO-A1-2011/104088 WO-A1-2011/104089 WO-A1-2011/154555 (73) Proprietor: Syngenta Participations AG WO-A1-2012/067235 WO-A2-2009/080250 4058 Basel (CH) WO-A2-2012/104331 (72) Inventors: Remarks: • CASSAYRE, Jérôme, Yves Thefile contains technical information submitted after CH-4332 Stein (CH) the application was filed and not included in this • RENOLD, Peter specification CH-4332 Stein (CH) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • The Panicle Rice Mite, Steneotarsonemus Spinki Smiley, a Re-Discovered Pest of Rice in the United States
    ARTICLE IN PRESS Crop Protection xxx (2009) 1–14 Contents lists available at ScienceDirect Crop Protection journal homepage: www.elsevier.com/locate/cropro Review The panicle rice mite, Steneotarsonemus spinki Smiley, a re-discovered pest of rice in the United States Natalie A. Hummel a,*, Boris A. Castro b, Eric M. McDonald c, Miguel A. Pellerano d, Ronald Ochoa e a Department of Entomology, Louisiana State University Agricultural Center, 404 Life Sciences Building, Baton Rouge, LA 70803, USA b Dow AgroSciences, Western U.S. Research Center, 7521W. California Ave., Fresno, CA 93706, USA c USDA-APHIS, PPQ, Plant Inspection Facility, 19581 Lee Road, Humble, TX 77338, USA d Department of Horticulture, National Botanical Garden, Moscoso, Santo Domingo, Dominican Republic e Systematic Entomology Laboratory, ARS, PSI, USDA, BARC-West, 10300 Baltimore Ave., Beltsville, MD 20705, USA article info abstract Article history: The panicle rice mite (PRM), Steneotarsonemus spinki Smiley, was reported in 2007 in the United States in Received 23 December 2008 greenhouses and/or field cultures of rice ( Oryza sativa L.) in the states of Arkansas, Louisiana, New York, Received in revised form and Texas. PRM had not been reported in rice culture in the United States since the original type 17 March 2009 specimen was collected in Louisiana in association with a delphacid insect in the 1960s. PRM is the most Accepted 20 March 2009 important and destructive mite pest attacking the rice crop worldwide. It has been recognized as a pest of rice throughout the rice-growing regions of Asia since the 1970s. Historical reports of rice crop damage Keywords: dating back to the 1930s also have been speculatively attributed to the PRM in India.
    [Show full text]
  • Biological Attributes of Rice Sheath Mite, Steneotarsonemus Spinki Smiley on Alternate Hosts of Rice
    Int.J.Curr.Microbiol.App.Sci (2018) 7(2): 1596-1601 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 7 Number 02 (2018) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2018.702.192 Biological Attributes of Rice Sheath Mite, Steneotarsonemus spinki Smiley on Alternate Hosts of Rice S.D. Chaudhari1* and P.D. Ghoghari2 1Depepartment of Entomology, N. M. College of Agriculture, NAU, Navsari, Gujarat, India 2Main Rice Research Centre, N.A.U., Navsari, Gujarat, India *Corresponding author ABSTRACT The biology and morphometrics of Steneotarsonemus spinki Smiley on alternate hosts of rice: Jungle rice (Echinochloa colonum L.) and Nut grass (Cyperus rotundus L.) were K e yw or ds studied in laboratory conditions. The average incubation period of S. spinki was 2.75 ± Steneotarsonemus 0.679 days and 2.4 ± 0.476 days on E. colonum and C. rotundus, respectively. The total spinki, Echinochloa larval period of S. spinki was 2.5 ± 0.513 and 3.45 ± 0.626 days on E. colonum and C. colonum, Cyperus rotundus. The quiescent period was 0.591 ± 0.202 day and 0.688 ± 0.372 day on E. rotundus , Morphometrics, Life colonum and C. rotundus, respectively. The male and female longevity of S. spinki was 3.15 ± 1.203 days and 4.05 ± 0.643 days on E. colonum, whereas it was 2.8 ± 0.715 days cycle and 3.7 ± 0.888 days on C. rotundus. The pre-oviposition period was 1 to 2.5 days on E. Articl e Info colonum and C.
    [Show full text]
  • Rice Sheath Rot: an Emerging Ubiquitous Destructive Disease Complex
    REVIEW published: 11 December 2015 doi: 10.3389/fpls.2015.01066 Rice Sheath Rot: An Emerging Ubiquitous Destructive Disease Complex Vincent de P. Bigirimana1,2, Gia K. H. Hua1, Obedi I. Nyamangyoku2 and Monica Höfte1* 1 Laboratory of Phytopathology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium, 2 Department of Crop Science, School of Agriculture, Rural Development and Agricultural Economics, College of Agriculture, Animal Science and Veterinary Medicine, University of Rwanda, Musanze, Rwanda Around one century ago, a rice disease characterized mainly by rotting of sheaths was reported in Taiwan. The causal agent was identified as Acrocylindrium oryzae, later known as Sarocladium oryzae. Since then it has become clear that various other organisms can cause similar disease symptoms, including Fusarium sp. and fluorescent pseudomonads. These organisms have in common that they produce a range of phytotoxins that induce necrosis in plants. The same agents also cause grain discoloration, chaffiness, and sterility and are all seed-transmitted. Rice sheath rot disease symptoms are found in all rice-growing areas of the world. The disease is Edited by: now getting momentum and is considered as an important emerging rice production Brigitte Mauch-Mani, Université de Neuchâtel, Switzerland threat. The disease can lead to variable yield losses, which can be as high as 85%. This Reviewed by: review aims at improving our understanding of the disease etiology of rice sheath rot Choong-Min Ryu, and mainly deals with the three most reported rice sheath rot pathogens: S. oryzae, Korea Research Institute the Fusarium fujikuroi complex, and Pseudomonas fuscovaginae. Causal agents, of Bioscience and Biotechnology, South Korea pathogenicity determinants, interactions among the various pathogens, epidemiology, Javier Plasencia, geographical distribution, and control options will be discussed.
    [Show full text]
  • Caribbean Food Crops Society
    CARIBBEAN FOOD CROPS SOCIETY SERVING THE CARIBBEAN SINCE 1963 CARIBBEAN FOOD CROPS SOCIETY 47 Forty-Seventh Annual Meeting 2011 Bridgetown, Barbados Volume XLVII - Number 1 T-STAR Invasive Species Symposium PROCEEDINGS OF THE 47th ANNUAL MEETING Caribbean Food Crops Society 47th Annual Meeting July 3-8, 2011 Lloyd Erskine Sandiford Centre Bridgetown, Barbados "Assuring Caribbean food and nutrition security in the context of climate change" United States Department of Agriculture, T-STAR Sponsored Invasive Species Symposium Toward a Collective Safeguarding System for the Greater Caribbean Region: Assessing Accomplishments since the first Symposium in Grenada (2003) and Coping with Current Threats to the Region Special Symposium Edition Edited by Edward A. Evans, Carlton G. Davis, and Fredy Ballen Published by the Caribbean Food Crops Society © Caribbean Food Crops Society, 2011 ISSN 95-07-0410 Copies of this publication may be received from: Secretariat, CFCS c/o University of the Virgin Islands USVI Cooperative Extension Service Route 02, Box 10,000 Kingshill, St. Croix US Virgin Islands 00850 Or from CFCS Treasurer P.O. Box 506 Isabella, Puerto Rico 00663 Mention of company and trade names does not imply endorsement by the Caribbean Food Crops Society. The Caribbean Food Crops Society is not responsible for statements and opinions advanced in its meeting or printed in its proceedings; they represent the views of the individuals to whom they are credited and are not binding on the Society as a whole. Proceedings of the Caribbean Food Crops Society 47(109-120), 2011 IMPACTS OF RECENTLY EMERGED INVASIVE EXOTIC SPECIES AND MAJOR THREATS TO THE DOMINICAN AGRICULTURE Colmar-Α.
    [Show full text]
  • 12.2% 122000 135M Top 1% 154 4800
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE We are IntechOpen, provided by IntechOpen the world’s leading publisher of Open Access books Built by scientists, for scientists 4,800 122,000 135M Open access books available International authors and editors Downloads Our authors are among the 154 TOP 1% 12.2% Countries delivered to most cited scientists Contributors from top 500 universities Selection of our books indexed in the Book Citation Index in Web of Science™ Core Collection (BKCI) Interested in publishing with us? Contact [email protected] Numbers displayed above are based on latest data collected. For more information visit www.intechopen.com Chapter Invasive Mite Species in the Americas: Bioecology and Impact Carlos Vásquez and Yelitza Colmenárez Abstract Invasive species represent one of the most relevant threats for biodiversity in many ecosystems, mainly in those so-called agroecosystems due to which they exhibit reduced biodiversity and simplified trophic interactions. These two fac- tors make many niches unoccupied, thus increasing the risk that invasive species especially arthropod pests occupy these niches or compete with native species. In spite of potential impact of invasive species, our understanding of their ecological consequences is developing slowly. In the last years, more attention is being paid on phytophagous mites because several noneconomic species have become severe pests on many crops as a consequence of irrational use of agrochemicals. Also, due to the small size of the mites, they can be transported throughout the world and estab- lished in new areas where favorable conditions and the absence of efficient natural enemies favor their development.
    [Show full text]
  • Plant Diseases, Insects and Weeds
    Subpart 3-Bureau of Plant Industry Chapter 01-Plant Diseases, Insects and Weeds Declaration Of Pests That Are Public Nuisances and/or especially injurious 100 The Bureau of Plant Industry, Mississippi Department of Agriculture and Commerce, does declare certain pests to be public nuisances and/or especially injurious. Accordingly, the Bureau establishes two categories or lists for pests of regulatory concern in sections 101 and 102 below. (Adopted April 3, 1991; amended June 26, 2008.) Source: Miss. Code Ann. §69-25-1. Regulated Pests of Non-Quarantine Significance (List A) 101 Regulated Pests of non-quarantine significance (List A): Includes pests of such destructive significance that they shall be controlled to meet general certification of nursery stock and/or other commodities for sale or shipment from wholesale and retail establishments. Plants and other commodities found infested/infected with pests in LIST A shall, at the discretion of the inspector, be declared unfit for sale and subject to immediate stop-sale and/or non-certification until treatment and pest control is achieved or the infested material destroyed to the satisfaction of the state entomologist. Plant material being transported into Mississippi from other states found infested/infected with pests in LIST A may be placed under stop-sale, the shipper notified of such, and arrangements made for the material to be treated and returned to the shipper. No additional quarantine measures shall be in effect unless the pest is officially placed on List B. Nursery stock and other commodities in order to meet general certification standards must be apparently free of the following pests: 1.
    [Show full text]
  • Biology of Rice Sheath Mite, Steneotarsonemus Spinki Smiley On
    Journal of Entomology and Zoology Studies 2019; 7(5): 39-42 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Biology of rice sheath mite, Steneotarsonemus JEZS 2019; 7(5): 39-42 © 2019 JEZS spinki Smiley on rice Received: 18-07-2019 Accepted: 22-08-2019 SD Chaudhari SD Chaudhari, HR Kachhela and HD Zinzuvadiya P.G. Scholars, Department of Entomology, N. M. College of Abstract Agriculture, Navsari Agricultural University, Navsari, The biology and morphometrics of Steneotarsonemus spinki Smiley on rice variety GR-11 was studied in Gujarat, India laboratory condition at 31.1 ± 0.9 ºC and 28.9 ± 0.6 ºC maximum and minimum with 54.8 ± 15.18 per cent and 69.3 ± 11.4 per cent mean morning and evening relative humidity, respectively. The average HR Kachhela biology of S. spinki showed that the egg, larval, quiescent and adult (male and female) periods were P.G. Scholars, Department of 1.875 ± 0.559 days, 3.575 ± 0.613 days, 0.556 ± 0.167 days, 3.75 ± 0.425 days and 5.00 ± 0.972 days, Entomology, N. M. College of respectively. The pre-oviposition period, oviposition period and post-oviposition period were 1 to 2 days, Agriculture, Navsari 1.5 to 3 days and 1.5 to 2.5 days, respectively. Total life cycle of S. spinki male occupied 8.95 ± 0.864 Agricultural University, Navsari, days and female required 10.20 ± 0.856 days. Sex ratio of male: female was 1: 1.59. Gujarat, India Keywords: Biology, rice, Steneotarsonemus spinki Smiley HD Zinzuvadiya P.G. Scholars, Department of Entomology, N.
    [Show full text]