Picture As Pdf Download

Total Page:16

File Type:pdf, Size:1020Kb

Picture As Pdf Download BITES AND STINGS Severity of Irukandji syndrome and nematocyst identification from skin scrapings Truc T Huynh, Jamie Seymour, Peter Pereira, Richard Mulcahy, Paul Cullen, Teresa Carrette and Mark Little JELLYFISH STINGS in northern Aus- ABSTRACT tralia cause significant morbidity and mortality.The Medical Since Journal early ofdescriptions Australia ISSN: of Objectives: (1) To identify the causative jellyfish species by examining skin scrapings Irukandji0025-729X syndrome, 6 January1,2 2003relatively 178 1 38-41little in patients presenting to Cairns Base Hospital with marine stings, and (2) to describe further©The knowledge Medical Journal has of beenAustralia gained 2002 clinical outcomes of those with Irukandji syndrome and those in whom nematocysts www.mja.com.au about it. Although Carukia barnesi has were identified from skin scrapings. Bites and Stings 3 been shown to cause the syndrome, Design and setting: (1) A retrospective case series of 128 patients, identified from other species of jellyfish are also sus- 3-7 Cairns Base Hospital emergency department records with discharge diagnoses of pected to be responsible. marine stings between 1 July 2001 and 30 June 2002. (2) A prospective study of skin We hypothesise, firstly, that many dif- scrapings from 50 patients presenting with marine stings from the same period. ferent cubozoans may produce Iru- kandji syndrome in Cairns, and Main outcome measures: Number of patients with Irukandji syndrome, their opioid secondly, that these different species of requirements and cardiac findings (where available); identification of causative species jellyfish may be responsible for different from nematocysts isolated from skin scrapings. severities of this syndrome. Results: 116 patients retrospectively identified with marine stings had Irukandji syndrome. Of 50 patients who had skin scrapings, 39 had nematocysts consistent with Carukia barnesi. Symptoms experienced ranged from local pain alone to severe Irukandji syndrome with elevated troponin I levels, changes on electrocardiogram, METHODS cardiac dysfunction on echocardiography, and high opioid dose requirements. One Retrospective case series patient had an unidentified cnidome on his skin scraping. He developed severe Irukandji syndrome and subsequently died from its complications. All patients with a discharge diagnosis Conclusion: This is the first published report of Carukia barnesi being successfully of “marine stings” (ICD-10 code identified from skin scrapings. Most patients with identifiable cnidomes experiencing T63.6)8 after presenting to Cairns Base Hospital, Queensland, between 1 July Irukandji syndrome were stung by Carukia barnesi, which we show causes a wide 2001 and 30 June 2002 were retrospec- range of illness, including cardiac dysfunction. Our finding of a cnidome not consistent tively identified from the emergency with Carukia barnesi in the setting of Irukandji syndrome makes it possible that other department computer database, and species of jellyfish may also cause this syndrome. epidemiological and clinical data were MJA 2003; 178: 38–41 extracted and entered on a standardised form. Details collected included geo- fentanyl according to clinician prefer- ing to emergency department protocols, graphic location of sting, physiological ence, we arbitrarily converted their opi- and additionally had skin scrapings of parameters, analgesia required, bio- oid dose to “morphine equivalents” their sting site performed. Exceptions chemical abnormalities, electrocardio- (where 1 mg morphine = 10 mg were distressed children, patients with graphic and echocardiographic findings. pethidine = 10 ␮g fentanyl) to give a stings to the face, women with stings to We assessed the clinical severity of rough comparison of analgesic require- the breast region, and patients in whom each patient’s condition at presentation ments between patients. an obvious sting site could not be iden- according to peak systolic blood pres- tified; these patients did not have skin sure, total opioid dose administered, scrapings performed. Prospective case series peak troponin I level, and length of The sampling procedure was hospital stay. As individual patients Patients presenting with marine stings explained to patients and verbal consent received either morphine, pethidine or during this period were treated accord- was obtained. The sting site was scraped firmly with a sterile scalpel Emergency Department, Cairns Base Hospital, Cairns, QLD. blade, which was then placed in a sterile Truc T Huynh, MB BS, Emergency Registrar; Peter Pereira, FACEM, Director of Emergency; specimen container containing 10% Richard Mulcahy, FACEM, Emergency Consultant; Paul Cullen, FACEM, Emergency Consultant. buffered formalin. The scalpel was School of Tropical Biology, James Cook University, Smithfield, QLD. shaken vigorously in the specimen con- Jamie Seymour, PhD, Senior Lecturer; Teresa Carrette, BSc, Marine scientist. Emergency Department, Sir Charles Gairdner Hospital, Perth, WA. tainer to cause adherent scrapings to fall Mark Little, FACEM, Emergency Consultant. off. The specimen was then centrifuged Reprints will not be available from the authors. Correspondence: Dr Peter Pereira, Emergency at 5000 revolutions per minute for 10 Department, Cairns Base Hospital, PO Box 902, Cairns, QLD 4870. [email protected] minutes, stained with eosin and distrib- 38 MJA Vol 178 6 January 2003 BITES AND STINGS General clinical findings Forty-two patients (36%) were dis- 1: Map showing the coastline, charged home directly from the emer- islands and reef where patients Peak systolic blood pressure in the 94 were stung gency department within eight hours of adults with Irukandji syndrome ranged presentation. Fifty-four patients (47%) from 100 mmHg to 230 mmHg, with a 16 N were discharged from the emergency Cape Tribulation 147 mean of 145 mmHg. Nineteen of the 22 department observation ward the next Opal Reef G children had their blood pressures day, eight were transferred to the coro- r e recorded. Seven had a systolic blood a nary care unit (CCU), and 11 were t pressure 140 mmHg or above; the high- transferred to the general medical or est of these was 165/95 mmHg in a 12- paediatric ward for ongoing analgesia. year-old child. B Additionally, one patient was trans- a Port Douglas r Total analgesic requirements for r ferred to the intensive care unit in ie adults during their hospital stay ranged r Townsville General Hospital for neuro- from 0 to 255 mg of morphine equiva- surgical care for an intracerebral haem- lents (mean, 31 mg). Of the 10 children orrhage. Palm Cove who had their weight recorded, analge- Green island R sic dose ranged from 0 to 1.4 mg per kg e Skin scrapings e morphine equivalents (mean, 0.29 mg f Cairns per kg). Skin scrapings were taken from 50 Fitzroy Island patients. Of these, four patients had 17 Cardiac findings local symptoms only, and the remainder had symptoms consistent with Irukandji Queensland Normanby Troponin levels (cTnI) were measured syndrome. Forty patients (80%) had Island in 103 patients whose pain did not settle positive scrapings, while, in the remain- with a single dose of parenteral opioid der, either no nematocysts were found uted onto a Kova slide for microscopic analgesia. Twenty five (22%) had ele- or the nematocysts were too damaged to examination. vated cTnI levels, ranging from 1.0 to be confidently identified (positive pre- Specimens were prepared and exam- 34.0 ␮g/L (reference range, < 0.7 ␮g/ dictive value of 80%). Thirty-nine ined by one of the authors (J S), who L). None of these patients had clinical patients had a nematocyst cnidome was blinded to the source. Identification or chest x-ray findings of pulmonary identifiable as Carukia barnesi; two of of jellyfish species was based on a cnid- oedema. Eleven patients had non-spe- these experienced only a mild sting at ome database (a cnidome is a collection cific electrocardiogram (ECG) abnor- the site, and 37 had Irukandji syn- of nematocysts used to distinguish malities, most involving T-wave drome. Of these 39 patients, 13 had a between species of jellyfish) being for- inversion and ST-segment depression. raised cTnI level; five of these had mulated by the examiner and due for Echocardiograms were performed in 18 abnormal echocardiograms and seven publication in 2003. of the 25 patients with elevated cTnI had abnormal ECGs. Thirty-one The results of the species identifica- levels, and abnormalities were found in patients with Carukia barnesi identified tion was then matched to the clinical six. Echocardiographic abnormalities on skin scrapings (79%) were stung at data. ranged from mild impairment of systolic local mainland beaches. The rest were function to moderate dysfunction with stung at Fitzroy Island (4), Green Island segmental hypokinesis. One patient had (1), and Normanby Island (1) (see Box global myocardial dysfunction. Two 1). RESULTS patients had serial echocardiographic The patient with the most severe studies showing normalisation of their symptoms who had Carukia barnesi From 1 July 2001 to 30 June 2002, 128 systolic function over time (one within identified from skin scrapings was a 44- patients at the Cairns Base Hospital three months and the other over six year-old man with a peak blood pres- emergency department had a discharge months). sure of 160/100 mmHg and peak cTnI diagnosis of marine stings. Of these, Among the 91 remaining patients level of 30.8 ␮g/L, who required a total 116 had symptoms consistent with Iru- only one
Recommended publications
  • Marine Envenomations
    Environmental Marine envenomations Ingrid Berling Geoffrey Isbister Background The majority of marine envenomings are minor and do Marine stings are common but most are minor and do not not require medical intervention. Jellyfish stings are a require medical intervention. Severe and systemic marine frequent reason for presentation to first aid and primary envenoming is uncommon, but includes box jellyfish stings, healthcare providers. A knowledge of the variety of stings Irukandji syndrome, major stingray trauma and blue-ringed and envenoming syndromes that occur in Australia, octopus envenoming. Almost all marine injuries are caused including those that are clinically significant, and available by jellyfish stings, and penetrating injuries from spiny fish, treatments, is necessary for practitioners, particularly those stingrays or sea urchins. working in coastal regions. Objective This article describes the presentation and management Marine envenoming can be considered in two broad categories: of marine envenomations and injuries that may occur in jellyfish stings and penetrating venomous marine injuries. Jellyfish Australia. stings range from the life-threatening major box jellyfish (Chironex Discussion fleckeri) to painful, but generally benign, bluebottle stings common First aid for jellyfish includes tentacle removal, application to most southeastern Australian beaches (Figure 1). Penetrating of vinegar for box jellyfish, and hot water immersion (45°C venomous marine injuries often occur when handling fish, but can for 20 min) for bluebottle jellyfish stings. Basic life support occur to anyone involved in water activities, fresh water or marine. is essential for severe marine envenomings that result in They are typically more painful than just the trauma of the wound, and cardiac collapse or paralysis.
    [Show full text]
  • Pupillary Response to Light in Three Species of Cubozoa (Box Jellyfish)
    Plankton Benthos Res 15(2): 73–77, 2020 Plankton & Benthos Research © The Plankton Society of Japan Pupillary response to light in three species of Cubozoa (box jellyfish) JAMIE E. SEYMOUR* & EMILY P. O’HARA Australian Institute for Tropical Health and Medicine, James Cook University, 11 McGregor Road, Smithfield, Qld 4878, Australia Received 12 August 2019; Accepted 20 December 2019 Responsible Editor: Ryota Nakajima doi: 10.3800/pbr.15.73 Abstract: Pupillary response under varying conditions of bright light and darkness was compared in three species of Cubozoa with differing ecologies. Maximal and minimal pupil area in relation to total eye area was measured and the rate of change recorded. In Carukia barnesi, the rate of pupil constriction was faster and final constriction greater than in Chironex fleckeri, which itself showed faster and greater constriction than in Chiropsella bronzie. We suggest this allows for differing degrees of visual acuity between the species. We propose that these differences are correlated with variations in the environment which each of these species inhabit, with Ca. barnesi found fishing for larval fish in and around waters of structurally complex coral reefs, Ch. fleckeri regularly found acquiring fish in similarly complex mangrove habitats, while Ch. bronzie spends the majority of its time in the comparably less complex but more turbid environments of shallow sandy beaches where their food source of small shrimps is highly aggregated and less mobile. Key words: box jellyfish, cubozoan, pupillary mobility, vision invertebrates (Douglas et al. 2005, O’Connor et al. 2009), Introduction none exist directly comparing pupillary movement be- The primary function of pupil constriction and dilation tween species in relation to their habitat and lifestyle.
    [Show full text]
  • Successful Use of Heat As First Aid for Tropical Australian Jellyfish Stings
    Toxicon 122 (2016) 142e144 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Case report Successful use of heat as first aid for tropical Australian jellyfish stings * Mark Little a, b, , Richard Fitzpatrick d, Jamie Seymour c a FACEM MPH &TM DTM & H Department of Emergency Medicine, Cairns Hospital, Cairns, Australia b Queensland Tropical Health Alliance School of Public Health and Tropical Medicine, James Cook University, Australia c Queensland Tropical Health Alliance, School of Public Health and Tropical Medicine, Centre for Biodiscovery & Molecular Development of Therapeutics, Queensland Emergency Medical Research Foundation, Faculty of Medicine, Health & Molecular Sciences, James Cook University, Cairns Campus, Mcgregor Road, 4878, Cairns, Australia d Queensland Tropical Health Alliance, James Cook University, Cairns Campus, Mcgregor Road, 4878, Cairns, Australia article info abstract Article history: Currently the Australian Resuscitation Council (ARC) recommends dousing with vinegar followed by ice Received 24 June 2016 as first aid for jellyfish stings in tropical Australia, with limited evidence to support this recommendation Received in revised form (Li et al., 2013). We report our successful experience in using hot water immersion as first aid in treating 29 September 2016 two people stung by venomous tropical Australian jellyfish, one by Chironex fleckeri and one by Carukia Accepted 4 October 2016 barnesi. Available online 6 October 2016 © 2016 Elsevier Ltd. All rights reserved. Keywords: Jellyfish First aid Hot water Cubozoan Chironex fleckeri Carukia barnesi 1. Clinical record The jellyfish, wrapped around the victims arm, was captured and later identified as Carukia barnesi. A 35 yo M cinematographer was filming documentary on Iru- A 40yo M biologist was at Palm Cove collecting Box jellyfish kandji jellyfish at Palm Cove, Queensland.
    [Show full text]
  • Awareness, Prevention and Treatment of World-Wide Marine Stings and Bites
    Awareness, Prevention and Treatment of world-wide marine stings and bites Dr Peter Fenner Honorary Medical Officer, Surf Life Saving Australia International Life Saving Federation Medical/Rescue Conference Proceedings September 1997 Abstract The most common world-wide first aid treatment used by the average lifesaver/lifeguard is the treatment of marine envenomation, especially the treatment of jellyfish stings. It is important to use the correct first aid treatment for each type of envenomation. This study provides a simplified protocol for: - 1. Awareness of the geographical distribution and possibilities of envenomation enabling: - 2. Preventative strategies to reduce morbidity and mortality from marine envenomation 3. First aid treatment of marine envenomation by jellyfish or other marine animals This discussion is based on protocols developed for Surf Life Saving Australia and other first aid providers in Australia over the past ten years. Their success has been proven by a 30% reduction in the number of stings over the past 10 years (statistics from the author’s records). Information for this article has been taken from: - 1. Venomous and poisonous marine animals: a medical and biological handbook produced by Surf Life Saving Queensland 2. The global problem of cnidarian stinging. MD Thesis by the author for the University of London. Introduction The global problem of marine envenomation is not fully appreciated. Each year hundreds of deaths occur from poisoning (by ingestion or eating) or by envenomation (stinging by jellyfish, or biting by venomous marine animals). The morbidity is even greater with jellyfish stings world-wide being numbered in their millions. Each summer it is estimated that up to half a million stings occur on the east coast of the United States from the Portuguese man-o’-war (Physalia physalis).
    [Show full text]
  • Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish
    diversity Review Population Structures and Levels of Connectivity for Scyphozoan and Cubozoan Jellyfish Michael J. Kingsford * , Jodie A. Schlaefer and Scott J. Morrissey Marine Biology and Aquaculture, College of Science and Engineering and ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, QLD 4811, Australia; [email protected] (J.A.S.); [email protected] (S.J.M.) * Correspondence: [email protected] Abstract: Understanding the hierarchy of populations from the scale of metapopulations to mesopop- ulations and member local populations is fundamental to understanding the population dynamics of any species. Jellyfish by definition are planktonic and it would be assumed that connectivity would be high among local populations, and that populations would minimally vary in both ecological and genetic clade-level differences over broad spatial scales (i.e., hundreds to thousands of km). Although data exists on the connectivity of scyphozoan jellyfish, there are few data on cubozoans. Cubozoans are capable swimmers and have more complex and sophisticated visual abilities than scyphozoans. We predict, therefore, that cubozoans have the potential to have finer spatial scale differences in population structure than their relatives, the scyphozoans. Here we review the data available on the population structures of scyphozoans and what is known about cubozoans. The evidence from realized connectivity and estimates of potential connectivity for scyphozoans indicates the following. Some jellyfish taxa have a large metapopulation and very large stocks (>1000 s of km), while others have clade-level differences on the scale of tens of km. Data on distributions, genetics of medusa and Citation: Kingsford, M.J.; Schlaefer, polyps, statolith shape, elemental chemistry of statoliths and biophysical modelling of connectivity J.A.; Morrissey, S.J.
    [Show full text]
  • Chironex Fleckeri
    CHIRONEX FLECKERI - THE NORTH AUSTRALIAN BOX-JELLYFISH CHIRODROPID BOX JELLYFISH WORLDWIDE Appearance Bell The bell is large and transparent and is very difficult to see in its natural habitat. Chironex bell size may grow to 30cm diameter in the largest specimens in Queensland. Large Chironex are common at the end of the season (March - May/June), but sometimes, for no apparent reason, large specimens may occasionally be found at the beginning of the season (September - November). Chironex generally appear earlier in the summer season closer to the equator than they do in the tropics. Specimens in Darwin, which usually appear each year in August, do not appear to grow larger than 14cm. bell diameter during the year, unlike their larger cousins in Queensland. The reason for this is not known. Chiropsalmus quadrigatus is similar to Chironex and occurs in a similar area. However, the trained observer can detect the differences. The bell is always smaller - maximum size about 15cm bell diameter, and the characteristic appearances of the pedalia (see Anatomy Chapter, and below) are different. Many similar species of jellyfish around the world have been given this species name in many areas of the world, making description and discussion very difficult. There is still much uncertainty about the species overlap with subtle differences occurring in the jellyfish anatomy as the geographic area changes. Tentacles Chironex fleckeri has up to 15 tentacles in each corner (60 in total). Other chirodropids may have between 7-16 tentacles when fully-grown. The tentacles are thick - like bootlaces. They are contracted when the jellyfish is swimming and may be just 5 -15cm.
    [Show full text]
  • Etiology of Irukandji Syndrome with Particular Focus on the Venom Ecology and Life History of One Medically Significant Carybdeid Box Jellyfish Alatina Moseri
    ResearchOnline@JCU This file is part of the following reference: Carrette, Teresa Jo (2014) Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri. PhD thesis, James Cook University. Access to this file is available from: http://researchonline.jcu.edu.au/40748/ The author has certified to JCU that they have made a reasonable effort to gain permission and acknowledge the owner of any third party copyright material included in this document. If you believe that this is not the case, please contact [email protected] and quote http://researchonline.jcu.edu.au/40748/ Etiology of Irukandji Syndrome with particular focus on the venom ecology and life history of one medically significant carybdeid box jellyfish Alatina moseri Thesis submitted by Teresa Jo Carrette BSc MSc December 2014 For the degree of Doctor of Philosophy in Zoology and Tropical Ecology within the College of Marine and Environmental Sciences James Cook University Dedication: “The sea, once it casts its spell, holds one in its net of wonder forever.” Jacques Yves Cousteau To my family – and my ocean home ii Acknowledgements Firstly, I have to acknowledge my primary supervisor Associate Professor Jamie Seymour. We have spent the last 17 years in a variable state of fatigue, blind enthusiasm, inspiration, reluctance, pain-killer driven delusion, hope and misery. I have you to blame/thank for it all. Just when I think all hope is lost and am about to throw it all in you seem to step in with the words of wisdom that I need.
    [Show full text]
  • Rainforest Meets Reef: Joint Conference of CRC Reef and Rainforest CRC
    CRC REEF RESEARCH CENTRE TECHNICAL REPORT NO. 64 Rainforest meets Reef: Joint conference of CRC Reef and Rainforest CRC 22-24 November 2005 Townsville Conference Abstracts Edited by Louise Goggin1 and Tim Harvey1 1 CRC Reef Research Centre CRC Reef Research Centre provides research solutions to protect, conserve and restore the world’s coral reef ecosystems. CRC Reef Research Centre is a knowledge-based partnership of coral reef managers, researchers and industry. Partner organisations are Association of Marine Park Tourism Operators, Australian Institute of Marine Science, Great Barrier Reef Marine Park Authority, Great Barrier Reef Research Foundation, James Cook University, Queensland Department of Primary Industries and Fisheries, Queensland Seafood Industry Association and Sunfish Queensland Inc. The University of Queensland is an associate member. Established and supported under the Australian Government’s Cooperative Research Centres Programme CRC Reef Research Centre Ltd PO Box 772, Townsville Queensland 4810 Australia Phone: 07 4729 8400 Fax: 07 4729 8499 Email: [email protected] Web: www.reef.crc.org.au ©CRC Reef Research Centre Ltd National Library of Australia Cataloguing-in-Publication entry Rainforest meets Reef: joint conference of CRC Reef and Rainforest CRC : 22-24 November 2005, Townsville : conference abstracts. Bibliography. Includes index. ISBN 1 876054 72 7. 1. Rainforests - Australia - Environmental aspects - Congresses. 2. Great Barrier Reef (Qld.) – Environmental aspects - Congresses. 3. Water quality - Queensland - Congresses. 4. Ecosystem management - Australia - Congresses. I. Goggin, Louise. II. Harvey, Tim. III. CRC Reef Research Centre. IV. Cooperative Research Centre for Tropical Rainforest Ecology and Management. (Series : CRC Reef Research Centre technical report ; no 64). 333.955309943 This publication should be cited as: Goggin CL, Harvey T.
    [Show full text]
  • Marine Stingers Factsheet
    Marine Stingers Frequently Asked Questions What are Irukandji? Irukandji is a group of jellyfish which are known to cause symptoms of a potentially dangerous syndrome called Irukandji Syndrome. There are currently 14 known species of Irukandji, however only a few of these species have the potential to occur in the waters around the Whitsundays. Irukandji can occur coastally and around the reef and islands. What is Irukandji Syndrome? Irukandji Syndrome is a syndrome which can affect people who have been stung by an Irukandji jellyfish. While the Irukandji sting itself can be relatively mild, the symptoms of the Irukandji Syndrome, in very rare cases, can be life-threatening. Symptoms of Irukandji Syndrome can take 5 to 45 (typically 20-30) minutes to develop after being stung. Some symptoms include: • Lower backache, overall body pain and muscular cramps. The pain from this can be severe. • Nausea/vomiting • Chest pain and difficulty breathing • Pins and needles • Anxiety and a feeling of “impending doom” • Headache, usually severe • Increased respiratory rate • Piloerection (hair standing on end) • High blood pressure which can lead to stroke or heart failure • A sting is rarely evident – usually just a pale red mark with goose pimples or sweating. Are Irukandji only prevalent in Australia? No. Species of Irukandji occur in South East Asia, the Caribbean, Hawaii, South Africa and even the United Kingdom. Australia is leading the study of these creatures, which is probably the reason why the jellyfish may be wrongly associated with occurring only in Australia. What are Box Jellyfish? While globally the term ‘Box Jellyfish’ is the general term given to any jellyfish which has a bell (head) shaped like a box, in Australia, the name always refers to a particular species of jellyfish called Chironex fleckeri.
    [Show full text]
  • Abundant Box Jellyfish, Chironex Sp. (Cnidaria: Cubozoa: Chirodropidae), Discovered at Depths of Over 50 M on Western Australian Coastal Reefs
    www.nature.com/scientificreports OPEN Abundant box jellyfish,Chironex sp. (Cnidaria: Cubozoa: Chirodropidae), discovered at depths of over 50 m Received: 28 September 2015 Accepted: 11 February 2016 on western Australian coastal reefs Published: 29 February 2016 John K. Keesing1,5, Joanna Strzelecki1,5, Marcus Stowar2, Mary Wakeford2,5, Karen J. Miller2,5, Lisa-Ann Gershwin3 & Dongyan Liu4 Box jellyfish cause human fatalities and have a life cycle and habit associated with shallow waters (<5 m) in mangrove creeks, coastal beaches, embayments. In north-western Australia, tow video and epibenthic sled surveys discovered large numbers (64 in a 1500 m tow or 0.05 m−2) of Chironex sp. very near to the benthos (<50 cm) at depths of 39–56 m. This is the first record of a population of box jellyfish closely associated with the benthos at such depths. Chironex were not widespread, occurring only in 2 of 33 tow videos and 3 of 41 epibenthic sleds spread over 2000 km2. All Chironex filmed or captured were on low to medium relief reefs with rich filter feeder communities. None were on soft sediment habitat despite these habitats comprising 49% of all sites. The importance of the reef habitat to Chironex remains unclear. Being associated with filter feeder communities might represent a hazard, and other studies have shown C. fleckeri avoid habitats which represent a risk of entanglement of their tentacles. Most of our observations were made during the period of lowest tidal current flow in the morning. This may represent a period favourable for active hunting for prey close to the seabed.
    [Show full text]
  • The Tropical Box Jellyfish in North East Australia
    Tropical box jellyfish: the world's deadliest animals Tom Cross1, 3, Dorothy Cross2 and Marc Shorten1 1 Department of Zoology, Ecology and Plant Science, University College Cork 2 Mullaghgloss, Renvyle, County Galway 3 Arising from a public lecture delivered by TC in December 2002 Introduction The opportunity arose, because of a sciart award (sponsored by the Wellcome Trust and British Arts Council and other bodies, and designed to allow scientists and artists to work together) to brother and sister, scientist Tom Cross and artist Dorothy Cross, to work on the tropical box jellyfish in North East Australia. The data collected in the form of digital video "footage" of swimming, provided the materials used by Marc Shorten in his MSc project. In a talk forming part of the 2002/2003 UCC public lecture series, Professor Tom Cross described the features of these animals and then recounted the work undertaken on swimming biomechanics. A similar format is used in this chapter. Chironex fleckeri in mid water General characteristics Box jellyfish, also known as “marine stingers” or “sea wasps”, are of great interest because the group, called Cubomedusa by zoologists, contain some of the most venomous animals on earth, but appear to have been the object of very little scientific study. Cubomedusa are very different from medusae of other classes of the Phylum Cnidaria (“true jellyfish”) being far more substantial than animals of Classes Syphozoa or Hydrozoa. Whereas the bell of these other two classes are extremely jelly-like in their consistency, cubozoans are more akin to polyurethane than jelly. Cubozoans are roughly cubical, and this is where they get their vernacular name “box jellyfish”.
    [Show full text]
  • Rapid and Accurate Species-Specific PCR for the Identification of Lethal
    International Journal of Environmental Research and Public Health Article Rapid and Accurate Species-Specific PCR for the Identification of Lethal Chironex Box Jellyfish in Thailand Nuankanya Sathirapongsasuti 1,* , Kasetsin Khonchom 1, Thunyaporn Poonsawat 2,3, Mitila Pransilpa 4, Supaporn Ongsara 5, Usawadee Detsri 5,6, Suwimon Bungbai 7, Sam-ang Lawanangkoon 8, Worawut Pattanaporkrattana 8 and Satariya Trakulsrichai 9,10 1 Section of Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; [email protected] 2 Marine and Coastal Resources Research Center, Central Gulf of Thailand, Chumphon 86000, Thailand; thunya-fl[email protected] 3 Marine and Coastal Resources Research Center, Lower Gulf of Thailand, Songkhla 90100, Thailand 4 Marine and Coastal Resources Research Center, Eastern Gulf of Thailand, Rayong 21170, Thailand; [email protected] 5 Marine and Coastal Resources Research Center, Lower Andaman, Trang 92150, Thailand; [email protected] (S.O.); [email protected] (U.D.) 6 Phuket Marine Biological Center, Phuket 83000, Thailand 7 Koh Kut Hospital, Trat 23170, Thailand; [email protected] 8 Koh Phangan Hospital, Surat Thani 84280, Thailand; [email protected] (S.-a.L.); [email protected] (W.P.) 9 Ramathibodi Poison Center, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; [email protected] 10 Department of Emergency Medicine, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand * Correspondence: [email protected]; Tel.: +66-(0)2-201-2613; Fax: +66-(0)2-201-0116 Citation: Sathirapongsasuti, N.; Khonchom, K.; Poonsawat, T.; Abstract: Box jellyfish are extremely potent venom-producing marine organisms. While they have Pransilpa, M.; Ongsara, S.; Detsri, U.; been found worldwide, the highest health burden has been anticipated to be the tropical Indo-Pacific Bungbai, S.; Lawanangkoon, S.-a.; of Southeast Asia (SEA).
    [Show full text]