And Semi-Landmark-Based Geometric Morphometric to Identify Four

Total Page:16

File Type:pdf, Size:1020Kb

And Semi-Landmark-Based Geometric Morphometric to Identify Four JOURNAL OF ADVANCED VETERINARY AND ANIMAL RESEARCH ISSN 2311-7710 (Electronic) http://doi.org/10.5455/javar.2019.f345 September 2019 A periodical of the Network for the Veterinarians of Bangladesh (BDvetNET) VOL 6, NO. 3, PAGES 278–283 ORIGINAL ARTICLE Effectiveness of landmark- and semi-landmark-based geometric morphometric to identify four species of Culex mosquitoes in Thailand Tanawat Chaiphongpachara1, Sedthapong Laojun2 1Department of Public Health and Health Promotion, College of Allied Health Science, Suan Sunandha Rajabhat University, Bangkok, Thailand 2Bachelor of Public Health, College of Allied Health Sciences, Suan Sunandha Rajabhat University, Samut Songkhram, Thailand ABSTRACT ARTICLE HISTORY Objective: This research aims to study the effectiveness of landmark- and semi-landmark-based Received January 11, 2019 geometric morphometric (LMSL) in the identification of four Culex vectors, namely, C. quinquefas- Revised January 30, 2019 ciatus, C. visnui, C. sitiens, and C. whitmorei in Thailand and also compared the potential between Accepted February16, 2019 LMSL and the landmark-based geometric morphometric method (LM). Published June 17, 2019 Materials and Methods: The overall size of the wing sample was estimated by the centroid KEYWORDS size. Shape variables were computed as principal components of the “partial warp” calculated after generalized procrustes analysis of raw coordinates. Discriminant analysis of the canonical Geometric morphometrics, Culex variables performed to explore the shape dissimilarity between Culex species has been shown quinquefasciatus, Culex visnui, Culex sitiens, Culex whitmorei as a factor map and to calculate the Mahalanobis distance. Size and shape differences based on pairwise Mahalanobis distances were tested using non-parametric methods (1,000 cycles) with Bonferroni correction at a p-value of <0.05. Results: A total of 120 individuals were used that were divided into 30 individuals per Culex species. The mean CS of C. sitiens had the largest wings followed by C. visnui, C. quinquefasciatus, and C. This is an Open Access article whitmorei in LM and LMSM. The patterns of statistical difference in CS of both methods were distributed under the terms of the similar and wing shapes among Culex species were different based on a comparison of pairwise Creative Commons Attribution 4.0 Mahalanobis distances (p < 0.05) in both methods. For the cross-validated reclassification test, LM Licence (http://creativecommons.org/ provided Culex species separation ranging from 54% to 84% and 51% to 93% for LMSM. licenses/by/4.0) Conclusion: Thus, LMSM is another option to use for the identification in mosquito vectors that have a curved line on the wing specific to the species. Introduction billion people are at risk of infection, while for lymphatic Mosquitoes are small insects belonging to the order Diptera, which are capable of transmitting pathogens to remain at risk of infection [4]. humans, such as Zika virus, chikungunya virus, yellow filariasis,Thailand 856 is millionone of thepeople countries in 52 facingcountries the problemworldwide of Culex-borne diseases, including Japanese encephalitis and nematode [1]. Culex mosquitoes are one of the medically - importantfever, dengue genera, fever, which Japanese have encephalitis members most virus, widespread and filarial to-borne diseases is to reduce the mosquito population in throughout the world [2]. Japanese encephalitis and lym- thelymphatic area filariasis.. There areOne many effective ways way for to mosquito control mosquicontrol, which must be suitably selected with the target species of have Culex species as vectors [3]. Twenty-four countries [5] phatic filariasis are important tropical diseases that often they have similar morphological characteristics in some endemic areas for Japanese encephalitis, and more than 3 species.vectors. It is often difficult to identify mosquito species as in the South-East Asia and Western Pacific regions are Correspondence Tanawat Chaiphongpachara [email protected] Department of Public Health and Health Promotion, Col- lege of Allied Health Science, Suan Sunandha Rajabhat University, Bangkok, Thailand. How to cite: Chaiphongpachara T, Laojun S. Effectiveness of landmark- and semi-landmark-based geometric morphometric to identify four species of Culex mosquitoes in Thailand. J Adv Vet Anim Res 2019; 6(3):278–283. http://bdvets.org/javar/ Chaiphongpachara and Laojun./ J. Adv. Vet. Anim. Res., 6(3): 278–283, September 2019 278 Geometric morphometrics (GM) is a powerful tool Wing preparation arthropods Thirty-three mosquitoes were selected randomly per Culex 7] species for analyses (a total of 120 individuals, including betweento use for species species to eggsidentification, of Triatominae especially , trombiculid 30 individuals of C. quinquefasciatus, 30 individuals of C. mites[6, . Previous[9] research[10] has, mosquitoes applied GM [11, for12] identification. Currently, [8] visnui, 30 individuals of C. sitiens, and 30 individuals of C. whitmorei). The right wing of each adult Culex mosquito particularly, tsetse a landmark-based flies method because their wing was removed from the thorax and mounted on a micro- ismosquito the perfect wing organ is considered for GM analysisto help identification 7]. Although by GMthe landmark-based GM method (LM) is an effective technique of identifying some mosquito species,[6, it is not perfect stereomicroscopescope slide under a(Nikon 0.08–0.12 Corp., mm Tokyo, coverslip Japan) using under Hoyer’s 40× medium. A digital camera connected to a Nikon SMZ745T The landmark- andbecause semi-landmark-based it is difficult to analyze GM method the curve, (LMSL) which is onemay GM be magnificationLandmark-based was method used to (LM) photograph and Landmark- wing images. and semi- techniquethe specific that location was developed of the target to improve species. the weaknesses landmark-based method (LMSL) of LM in curve position analysis. LMSL is a combination of landmark and semi-landmark for analysis [10]. However, In this study, we used two different technical GM methods, the researches that have applied LMSL are relatively few, namely, LM and LMSL, to compare the effectiveness of both which may affect the actual use in other areas. methods. Both methods are similar for analysis and calcu- Thus, this research aims to study the effectiveness of lation but different at anatomical points. For LM, 11 land- Culex vectors in Thailand, namely, C. quinquefasciatus, C. visnui, C. sitiens, and C. whit- LMSL, 11 landmarks (same positions landmarks in LM) moreiLMSL .in Culex the identification quinquefasciatus of four has been considered as the combinedmarks in Fig. with 1A 12 were semi-landmarks digitized in at each the curvedwing image. line of Forthe C. wing vein between landmarks 9 and 10 (Fig. 1B) were dig- visnui and C. sitiens are Japanese encephalitis virus vectors, index was calculated for whileJapanese C. whitmorei encephalitis virus and filarial nematode It also vector, com - evaluating the accuracy of landmarks and semi-landmarks pared the potential between LMSL and LM as a guideline ofitized. both After methods that, bythe comparison repeatability of repeat plots [14]. for further application. is a filarial nematode vector. the CS, which is the square root of the sum of the squared Materials and Methods distancesThe overall from sizethe centroid of the wing to each sample landmark was estimated , and CSby variations of Culex species were shown by quantile boxes. Sample collection Differences of mean CS among species of both[15] methods were compared using non-parametric methods (1,000 In this study, four species of female Culex mosquitoes, as important vectors in Thailand, were used, namely, C. quinquefasciatus, C. visnui, C. sitiens, and C. whitmorei. We collected three species, including C. quinquefascia- tus, C. visnui, and C. whitmorei from Nam Nak village (13°22 34.9E) in Ratchaburi Province, Thailand and Cx. sitiens from the coastal community area of Samut36.0 SongkhramN, 99°16 Province, Thailand (13°24’34.3”N, . Independent mosquito traps (Woodstream Corporation, 100°00’52.9”E) during August 2015 once a week takenUSA) werefrom usedtraps for and adult sent female to the collectionCollege of atAllied night Health (6.00 Sciences,PM–6.00 AM).Suan Every Sunandha morning Rajabhat (6.00 AM), University, mosquitoes Samut were Songkhram Provincial Education Center for species iden- morphologic characters using the illustrated keys to the mosquitoestification by in stereomicroscopicThailand [13]. observation based on Figure 1. Positions of landmarks and semi-landmarks. (A) 11 landmarks for LM analysis and (B) 11 landmarks combined with 12 semi-landmarks for LMSL analysis.. http://bdvets.org/javar/ Chaiphongpachara and Laojun./ J. Adv. Vet. Anim. Res., 6(3): 278–283, September 2019 279 - cance level was set at p cycles)Shape and variables relevant were Bonferroni computed correction. as principal The composignifi- < 0.05. procrustes analysis of raw coordinates. Discriminant anal- ysisnents of of the the canonical “partial variableswarp” calculated performed after to generalizedexplore the shape dissimilarity between Culex species has been shown as a factor map and to calculate the Mahalanobis distance. Shape differences based on pairwise Mahalanobis dis- tances were tested using non-parametric methods (1,000 cycles) with Bonferroni correction at a p accuracy of Culex -value of <0.05. Each wing individual was then reclassified to test the distance scores. Pheneticspecies
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1
    Vol. XVII, No. 3, August, 1961 403 Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1 C. R. Joyce PUBLIC HEALTH SERVICE QUARANTINE STATION U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE HONOLULU, HAWAII Public health workers frequently become concerned over the possibility of the introduction of exotic anophelines or other mosquito disease vectors into Hawaii. It is well known that many species of insects have been dispersed by various means of transportation and have become established along world trade routes. Hawaii is very fortunate in having so few species of disease-carrying or pest mosquitoes. Actually only three species are found here, exclusive of the two purposely introduced Toxorhynchites. Mosquitoes still get aboard aircraft and surface vessels, however, and some have been transported to new areas where they have become established (Hughes and Porter, 1956). Mosquitoes were unknown in Hawaii until early in the 19th century (Hardy, I960). The night biting mosquito, Culex quinquefasciatus Say, is believed to have arrived by sailing vessels between 1826 and 1830, breeding in water casks aboard the vessels. Van Dine (1904) indicated that mosquitoes were introduced into the port of Lahaina, Maui, in 1826 by the "Wellington." The early sailing vessels are known to have been commonly plagued with mosquitoes breeding in their water supply, in wooden tanks, barrels, lifeboats, and other fresh water con tainers aboard the vessels, The two day biting mosquitoes, Aedes ae^pti (Linnaeus) and Aedes albopictus (Skuse) arrived somewhat later, presumably on sailing vessels. Aedes aegypti probably came from the east and Aedes albopictus came from the western Pacific.
    [Show full text]
  • Meta-Analyses of the Proportion of Japanese Encephalitis Virus Infection in Vectors and Vertebrate Hosts Ana R.S
    Oliveira et al. Parasites & Vectors (2017) 10:418 DOI 10.1186/s13071-017-2354-7 RESEARCH Open Access Meta-analyses of the proportion of Japanese encephalitis virus infection in vectors and vertebrate hosts Ana R.S. Oliveira1, Lee W. Cohnstaedt2, Erin Strathe3, Luciana Etcheverry Hernández1, D. Scott McVey2, José Piaggio4 and Natalia Cernicchiaro1* Abstract Background: Japanese encephalitis (JE) is a zoonosis in Southeast Asia vectored by mosquitoes infected with the Japanese encephalitis virus (JEV). Japanese encephalitis is considered an emerging exotic infectious disease with potential for introduction in currently JEV-free countries. Pigs and ardeid birds are reservoir hosts and play a major role on the transmission dynamics of the disease. The objective of the study was to quantitatively summarize the proportion of JEV infection in vectors and vertebrate hosts from data pertaining to observational studies obtained in a systematic review of the literature on vector and host competence for JEV, using meta-analyses. Methods: Data gathered in this study pertained to three outcomes: proportion of JEV infection in vectors, proportion of JEV infection in vertebrate hosts, and minimum infection rate (MIR) in vectors. Random-effects subgroup meta-analysis models were fitted by species (mosquito or vertebrate host species) to estimate pooled summary measures, as well as to compute the variance between studies. Meta-regression models were fitted to assess the association between different predictors and the outcomes of interest and to identify sources of heterogeneity among studies. Predictors included in all models were mosquito/vertebrate host species, diagnostic methods, mosquito capture methods, season, country/region, age category, and number of mosquitos per pool.
    [Show full text]
  • High Diversity of Mosquito Vectors in Cambodian Primary Schools And
    High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille To cite this version: Sebastien Boyer, Sebastien Marcombe, Sony Yean, Didier Fontenille. High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission. PLoS ONE, Public Library of Science, 2020, 15 (6), pp.e0233669. 10.1371/journal.pone.0233669. hal-03053997 HAL Id: hal-03053997 https://hal.archives-ouvertes.fr/hal-03053997 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License PLOS ONE RESEARCH ARTICLE High diversity of mosquito vectors in Cambodian primary schools and consequences for arbovirus transmission 1 2 1 1 Sebastien BoyerID *, Sebastien Marcombe , Sony Yean , Didier Fontenille 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, Boulevard Monivong, Phnom Penh, Cambodia, 2 Medical Entomology Unit, Ministry of Health, Institut Pasteur du Laos, Vientiane, Lao PDR * [email protected] a1111111111 a1111111111 a1111111111 a1111111111 Abstract a1111111111 Only few data exist in Cambodia on mosquito diversity and their potential role as vectors. Many arboviruses, such as dengue and Japanese encephalitis, are endemic and mostly affect children in the country.
    [Show full text]
  • Seasonal Dynamics and Relative Abundance of Seven Japanese
    International Journal of Mosquito Research 2021; 8(2): 134-144 ISSN: 2348-5906 CODEN: IJMRK2 IJMR 2021; 8(2): 134-144 Seasonal dynamics and relative abundance of © 2021 IJMR www.dipterajournal.com seven Japanese encephalitis vectors of Culex Received: 17-01-2021 Accepted: 04-03-2021 sitiens group and their association with Ranjana Rani meteorological factors in various ecological P.G. Department of Zoology, DAV College, Sector-10, habitats of Chandigarh and its surrounding areas Chandigarh, India Sandeep Kaur Ranjana Rani, Sandeep Kaur, Sukhbir Kaur and Sagan Deep Kaur Department of Zoology, Panjab University, Sector-14, DOI: https://doi.org/10.22271/23487941.2021.v8.i2b.527 Chandigarh, India Sukhbir Kaur Abstract Department of Zoology, Panjab Japanese encephalitis (JE) is one of the most common cause of acute viral encephalitis which poses University, Sector-14, serious infection of the brain. Species under Culex sitiens group are major vectors responsible for the Chandigarh, India transmission of JE. The knowledge about the occurrence of Culex sitiens group in Chandigarh and its adjoining areas is very scanty. Hence, present investigations have been carried out to study seasonal Sagan Deep Kaur dynamics and relative abundance of JE vectors in these areas. Detailed surveys have been carried out in P.G. Department of Zoology, various ecological habitats of Chandigarh from June 2017–November 2019. The monthly meteorological DAV College, Sector-10, parameters of the study–area like temperature, rainfall, and relative humidity were compared and Chandigarh, India statistically correlated with JE vector density. As many as 34 mosquito species belonging to 8 genera have been recorded.
    [Show full text]
  • Checklist of the Mosquito Fauna (Diptera, Culicidae) of Cambodia
    Parasite 28, 60 (2021) Ó P.-O. Maquart et al., published by EDP Sciences, 2021 https://doi.org/10.1051/parasite/2021056 Available online at: www.parasite-journal.org RESEARCH ARTICLE OPEN ACCESS Checklist of the mosquito fauna (Diptera, Culicidae) of Cambodia Pierre-Olivier Maquart1,* , Didier Fontenille1,2, Nil Rahola2, Sony Yean1, and Sébastien Boyer1 1 Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge 5, BP 983, Blvd. Monivong, 12201 Phnom Penh, Cambodia 2 MIVEGEC, University of Montpellier, CNRS, IRD, 911 Avenue Agropolis, 34394 Montpellier, France Received 25 January 2021, Accepted 4 July 2021, Published online 10 August 2021 Abstract – Between 2016 and 2020, the Medical and Veterinary Entomology unit of the Institut Pasteur du Cambodge collected over 230,000 mosquitoes. Based on this sampling effort, a checklist of 290 mosquito species in Cambodia is presented. This is the first attempt to list the Culicidae fauna of the country. We report 49 species for the first time in Cambodia. The 290 species belong to 20 genera: Aedeomyia (1 sp.), Aedes (55 spp.), Anopheles (53 spp.), Armigeres (26 spp.), Coquillettidia (3 spp.), Culex (57 spp.), Culiseta (1 sp.), Ficalbia (1 sp.), Heizmannia (10 spp.), Hodgesia (3 spp.), Lutzia (3 spp.), Malaya (2 spp.), Mansonia (5 spp.), Mimomyia (7 spp.), Orthopodomyia (3 spp.), Topomyia (4 spp.), Toxorhynchites (4 spp.), Tripteroides (6 spp.), Uranotaenia (27 spp.), and Verrallina (19 spp.). The Cambodian Culicidae fauna is discussed in its Southeast Asian context. Forty-three species are reported to be of medical importance, and are involved in the transmission of pathogens. Key words: Taxonomy, Mosquito, Biodiversity, Vectors, Medical entomology, Asia.
    [Show full text]
  • Diptera: Culicidae) Within Areas of Japanese Encephalitis Risk Joshua Longbottom1* , Annie J
    Longbottom et al. Parasites & Vectors (2017) 10:148 DOI 10.1186/s13071-017-2086-8 RESEARCH Open Access Mapping the spatial distribution of the Japanese encephalitis vector, Culex tritaeniorhynchus Giles, 1901 (Diptera: Culicidae) within areas of Japanese encephalitis risk Joshua Longbottom1* , Annie J. Browne1, David M. Pigott2, Marianne E. Sinka3, Nick Golding4, Simon I. Hay5,2, Catherine L. Moyes1 and Freya M. Shearer1 Abstract Background: Japanese encephalitis (JE) is one of the most significant aetiological agents of viral encephalitis in Asia. This medically important arbovirus is primarily spread from vertebrate hosts to humans by the mosquito vector Culex tritaeniorhynchus. Knowledge of the contemporary distribution of this vector species is lacking, and efforts to define areas of disease risk greatly depend on a thorough understanding of the variation in this mosquito’s geographical distribution. Results: We assembled a contemporary database of Cx. tritaeniorhynchus presence records within Japanese encephalitis risk areas from formal literature and other relevant resources, resulting in 1,045 geo-referenced, spatially and temporally unique presence records spanning from 1928 to 2014 (71.9% of records obtained between 2001 and 2014). These presence data were combined with a background dataset capturing sample bias in our presence dataset, along with environmental and socio-economic covariates, to inform a boosted regression tree model predicting environmental suitability for Cx. tritaeniorhynchus at each 5 × 5 km gridded cell within areas of JE risk. The resulting fine-scale map highlights areas of high environmental suitability for this species across India, Nepal and China that coincide with areas of high JE incidence, emphasising the role of this vector in disease transmission and the utility of the map generated.
    [Show full text]
  • Surveillance of Mosquitoes Larva at Selected Areas of Mymensingh District in Bangladesh
    Bangl. J. Vet. Med. (2015). 13 (1): 79-88 ISSN: 1729-7893 (Print), 2308-0922 (Online) SURVEILLANCE OF MOSQUITOES LARVA AT SELECTED AREAS OF MYMENSINGH DISTRICT IN BANGLADESH T. Farjana*, M. S. Ahmmed, T. F. Khanom1, N. Alam and N. Begum Department of Parasitology, 1Department of Environmental Science, Bangladesh Agricultural University Mymensingh-2202, Bangladesh ABSTRACT Mosquito borne diseases have a great impact on human and animal health throughout the world including Bangladesh. An entomological survey was conducted at the Bangladesh Agricultural University (BAU) campus and its surrounding areas from January to June, 2013 to identify the mosquito larvae and to investigate the different breeding site preferences of mosquitoes. Mosquito larvae were collected using dipper, ladle spoon, dropper and pipette from rice field, botanical garden, dairy farm, poultry farm, drains, lakes, ponds, staff quarters, residential halls and cattle sheds. A total of 1397 mosquito larvae were collected from the places. Ten species of mosquitoes under three genera were identified. The recorded genera were Anopheles (An.), Culex (Cx.) and Aedes (Ae.). The collected species were An. bengalensis, An. vagus, Cx. fuscocephala, Cx. quinquefasciatus, Cx. tritaeniorhynchus, Cx. gelidus, Cx. vishnui, Cx. whitmorei, Cx. sitiens and Ae. albopictus. Among the collected larvae, Culex was found most prevalent (64.3%), followed by Anopheles (26.7%) and Aedes were the least prevalent (9.0%). The results of this study provide evidence that drains were the most common aquatic habitat of Anopheles and Culex larvae in Boyra, Kewatkhali and Balashpur. In BAU campus, agronomy fields were found having the highest percentage (35.2%) of mosquito larvae than the other places of the campus.
    [Show full text]
  • Detection of the Japanese Encephalitis Vector Mosquito Culex Tritaeniorhynchus in Australia Using Molecular Diagnostics and Morphology Bryan D
    Lessard et al. Parasites Vectors (2021) 14:411 https://doi.org/10.1186/s13071-021-04911-2 Parasites & Vectors RESEARCH Open Access Detection of the Japanese encephalitis vector mosquito Culex tritaeniorhynchus in Australia using molecular diagnostics and morphology Bryan D. Lessard1* , Nina Kurucz2, Juanita Rodriguez1, Jane Carter2 and Christopher M. Hardy3 Abstract Background: Culex (Culex) tritaeniorhynchus is an important vector of Japanese encephalitis virus (JEV) afecting feral pigs, native mammals and humans. The mosquito species is widely distributed throughout Southeast Asia, Africa and Europe, and thought to be absent in Australia. Methods: In February and May, 2020 the Medical Entomology unit of the Northern Territory (NT) Top End Health Service collected Cx. tritaeniorhynchus female specimens (n 19) from the Darwin and Katherine regions. Specimens were preliminarily identifed morphologically as the Vishnui =subgroup in subgenus Culex. Molecular identifcation was performed using cytochrome c oxidase subunit 1 (COI) barcoding, including sequence percentage identity using BLAST and tree-based identifcation using maximum likelihood analysis in the IQ-TREE software package. Once identi- fed using COI, specimens were reanalysed for diagnostic morphological characters to inform a new taxonomic key to related species from the NT. Results: Sequence percentage analysis of COI revealed that specimens from the NT shared 99.7% nucleotide identity to a haplotype of Cx. tritaeniorhynchus from Dili, Timor-Leste. The phylogenetic analysis showed that the NT specimens formed a monophyletic clade with other Cx. tritaeniorhynchus from Southeast Asia and the Middle East. We provide COI barcodes for most NT species from the Vishnui subgroup to aid future identifcations, including the frst genetic sequences for Culex (Culex) crinicauda and the undescribed species Culex (Culex) sp.
    [Show full text]
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Diptera : Culicidae) of Southern Coastal Districts of Orissa
    Rec. zool. Surv. India, 109(Part-2) : 87-98, 2009 A PRELIMINARY NOTE ON THE MOSQUITO FAUNA (DIPTERA : CULICIDAE) OF SOUTHERN COASTAL DISTRICTS OF ORISSA s. DAsH AND R.K. HAZRA* Estuarine Biological Station, Zoological Survey of India, Gopalpur on Sea, Orissa-761 002, India INTRODUCTION The family Culicidae consists of 41 genera and 3500 species known all over the world. Of these, 320 species of 37 genera of mosquitoes are reported from India. Barraud (1934) studied the Indian mosquito fauna and recorded 250 species of Culicinae with type localities in greater India. The mosquito fauna of coastal Orissa was first studied by Fry (1912) and reported the presence of 5 anopheline species. After a gap of over three decades Rodenwaldt recorded 21 sps. of Anopheles mosquitoes (Diptera : Culicidae) from the coastal belt of Orissa. Subsequently Nagpal and Sharma (1983) recorded 32 species of mosquitoes belonging to six genera from coastal districts of Orissa. Later Dash et al. (2000) reported 8 sps. of Culicinae and 14 spp of Anopheline mosquitoes from Chilika Lake area; Rajavel et al. (2005a, b) reported 74 species belonging to 12 genera and 20 subgenera from Jeypore hill tracks of Orissa and fortythree species of mosquitoes belonging to 21 subgenera and 13 genera, from mangrooves of Bhiterkanika. The need for the identification of the mosquitoes is urgently required because some of the mosquito species are the vectors of important tropical diseases including malaria, dengu, filariasis, etc. Although the organizations such as National Centre for Malaria Research (NIMR), Regional Medical Research Centre (RMRC, Bhubaneswar), Vector Control Research Centre (VCRC) and National Institute of Communicable Diseases (NICD) are doing a handful work on mosquito biology, but the taxonomy of Indian mosquito is far from complete.
    [Show full text]
  • Non-Anopheline Mosquitoes of Taiwan: Annotated Catalog and Bibliography1
    Pacific Insects 4 (3) : 615-649 October 10, 1962 NON-ANOPHELINE MOSQUITOES OF TAIWAN: ANNOTATED CATALOG AND BIBLIOGRAPHY1 By J. C. Lien TAIWAN PROVINCIAL MALARIA RESEARCH INSTITUTE2 INTRODUCTION The studies of the mosquitoes of Taiwan were initiated as early as 1901 or even earlier by several pioneer workers, i. e. K. Kinoshita, J. Hatori, F. V. Theobald, J. Tsuzuki and so on, and have subsequently been carried out by them and many other workers. Most of the workers laid much more emphasis on anopheline than on non-anopheline mosquitoes, because the former had direct bearing on the transmission of the most dreaded disease, malaria, in Taiwan. Owing to their efforts, the taxonomic problems of the Anopheles mos­ quitoes of Taiwan are now well settled, and their local distribution and some aspects of their habits well understood. However, there still remains much work to be done on the non-anopheline mosquitoes of Taiwan. Nowadays, malaria is being so successfully brought down to near-eradication in Taiwan that public health workers as well as the general pub­ lic are starting to give their attention to the control of other mosquito-borne diseases such as filariasis and Japanese B encephalitis, and the elimination of mosquito nuisance. Ac­ cordingly extensive studies of the non-anopheline mosquitoes of Taiwan now become very necessary and important. Morishita and Okada (1955) published a reference catalogue of the local non-anophe­ line mosquitoes. However the catalog compiled by them in 1955 was based on informa­ tion obtained before 1945. They listed 34 species, but now it becomes clear that 4 of them are respectively synonyms of 4 species among the remaining 30.
    [Show full text]