Invasive Ventilation No Conflict of Interest

Total Page:16

File Type:pdf, Size:1020Kb

Invasive Ventilation No Conflict of Interest 21/09/2018 Invasive Ventilation Is lung protection necessary in the ED? Helen Askitopoulou MD, PhD, FRCA, DA Professor Emeritus, University of Crete No Conflict of Interest 1 21/09/2018 Invasive Positive Pressure Ventilation Is lung protection necessary in the ED? • Invasive ventilation in the ED: the facts? • Ventilator Lung Injury: Why? How soon? • Is it necessary to protect the lungs from IPPV in the ED? Invasive Positive Pressure Ventilation in the ED What are the facts? 2 21/09/2018 2012;30;1183‐8 • approximately 240.000 patients per year are ventilated in US EDs, representing approximately 0.23% of all ED visits or 0.85 visits per year per 1000 US population • ¾ of ventilated patients stayed in the ED almost 2 hrs, • ¼ were present for more than 5 hrs • 24% in‐hospital mortality of mechanically ventilated pts pts mechanically ventilated in the ED • Many mechanically ventilated pts in the ED have protracted lengths of stay while awaiting ICU admission – Scand J Trauma Resusc Emerg Med 2012;20:30 – Crit Care Med 2007;35(6):1477‐83 • more than 20% of ED pts receiving ventilation develop pulmonary complications, such as ARDS and ventilator-associated conditions, which adversely affect outcome – Shock 2013;40:375‐381 – J Crit Care 2015;30:1163‐1168 3 21/09/2018 Emergency Department concerns about the quality of mechanical ventilation in the ED the portal of entry of the highest risk patients for ARDS • Lung protective ventilation was uncommon in the ED • Given – the frequency of ALI & ARDS in the ED, – the progression to ARDS shortly after ICU admission, – that ventilator‐induced lung injury (VILI) can develop within hours, and progression to ALI occurs early in the course of respiratory failure • The effect of ED‐based interventions to reduce the sequelae of ALI should be investigated further 4 21/09/2018 Key messages • higher tidal volumes are causal in the development of ARDS. • ARDS occurs early in the course of mechanical ventilation, • suggesting that ARDS‐PREVENTION trials should occur EARLY in the course of mechanical ventilation, • such as in the EMERGENCY DEPARTMENT. Protecting the lungs in the ED Ventilation Induced Lung Injury (VILI) Understanding the mechanisms of lung damage 5 21/09/2018 VentilaTOR‐Induced Lung Injury VILI ventilatory setting VentilaTION‐Induced Lung Injury forces acting on lung parenchyma how mechanical ventilation injures the lungs wide series of lung damages VILI from edema to gross pneumothorax Gattinoni et al. Crit Care Clin 34 (2018) 343–35 One GATTINONI ΗΙΤ MODEL Volu‐ Strain trauma stress risers stress Atelec‐ VILI trauma Baro‐ trauma Bio‐trauma 6 21/09/2018 physical forces may cause release of various intracellular Biotrauma mediators either directly or indirectly ⇒ Biotrauma Slutsky AS, Ranieri M. Ventilator induced lung injury. NEJM 2013;369:2126 “Biotrauma Hypothesis” One Hit OR Multiple HITS? • Strong form: – mechanical ventilaTION induced inflammation may suffice to injure the lungs much stronger than explained by the mechanical forces alone (one hit model) • Weak form: – ventilaTOR‐induced inflammation contributes to the mortality of ARDS patients in conjunction with other factors (multiple hits model) Anesthesiology 2017; 126:909‐22 7 21/09/2018 Multiple ΗΙΤ MODEL direct lung indirect insult lung insult ARDS potentially Sepsis Pneumonia Trauma Aspiration iatrogenic Pancreatitis Toxic inhalation disease Post arrest syndrome Lung injury Transfusions multiple Lung vasculitis Serious burns Harmful mechanical ventilation leading to VILI in healthy lungs Intensive Care Med 2013;39:6–15 protective strategies to reduce lung damage during mechanical ventilation ↓ VT /EELV ↓ strain ↓ Ptp or respiratory ↓ rate ↓ Pplateau mechanic ↓ stress VILI↓ al power ↓ Ppeak stress PEEP ↓risers recruitment 8 21/09/2018 volutrauma ↓strain lung protective ventilation: 1st Strategy focuses on Low‐tidal Volume Ventilation (< 6 ml/kg/PBW) to reduce lung strain from Volutrauma and over-distension of alveoli from large tidal volumes VT = 6 ml/kg/PBW safe for all patients?? 9 21/09/2018 the “baby lung” of ARDS areas with very low compliance make the functional lung inflated smaller than expected from small somatometric airway features collapse alveolar VT is directed to collapse alveoli with normal compliance causing Gattinoni L, et al. The ‘‘baby lung’’ became an OVERDISTENTION adult. Intensive Care Med 2016;42:663–673 Barotrauma ↓ stress lung protective ventilation: 2nd Strategy focuses on reducing lung stress & barotrauma by adjusting tidal volumes according to static compliance to lower driving pressure (VT/CRS) Ventilation even at low lung volumes can also cause injury 10 21/09/2018 Driving Pressure (ΔP) = Ptp(insp) –Ptp(exp) = Pplateau – PEEP Pplateau mean Paw Palv Intrinsic PEEP Ppl External PEEP Palv at zero flow = Pplateau Ppl is measured as Poesophageal … driving pressure as opposed to tidal volume and PEEP could further enhance lung protection by adjusting tidal volumes according to the size of the lung available for ventilation (reflected by the static compliance) ΔP = Pplateau – PEEP 15‐20 cmH2O CRS = VT / [Pplateau – PEEP] ΔP = VT / CRS 11 21/09/2018 higher Pplateau: not always protective higher PEEP: not always protective ΔP = driving pressure, S1‐S5 = five distinct subsamples of patients • lower survival rate among patients with higher ∆P and • higher survival among patients with lower ∆P • independent of concomitant variations in PEEP and plateau pressure 12 21/09/2018 Atelectrauma Stress ↓ risers lung protective ventilation: 3rd Strategy focuses on adjusting PEEP to stabilize the lung & minimize repeated opening and closing of alveolar units and open up the lung Atelectrauma / dynamic strain Ventilation that occurs at low lung volumes can also cause injury through multiple mechanisms, including repetitive opening and closing of airways and lung units, causing ⇒ Slutsky AS, Ranieri M. Ventilator induced lung injury. NEJM 2013;369:2126 13 21/09/2018 • “‘The best PEEP’ does not exist” – we may find a PEEP level that avoids intra‐ tidal recruitment–derecruitment, …, – without causing hyperinflation and affecting hemodynamics, – reflects a wishful dream that has nothing to do with the reality • we should use a ‘better PEEP’ approach • as a reasonable compromise among • oxygenation, hemodynamics status, intra‐tidal opening and closing – Higher PEEP in severe ARDS (range 15–20 cmH2O) – Lower PEEP in mild ARDS (range 5–10 cmH2O) – Intermediated in moderate ARDS paying attention to the Ecw and hemodynamic impairment 14 21/09/2018 mechan ical energy x power time lung protective ventilation: 4th Strategy focuses on respiratory rate energy and time define the mechanical power Crit Care Clin 2018;34:343–356 Mechanical power: a new way of looking at VILI • VILI is caused by the delivery of a critical amount of mechanical energy to the lung applied over time • energy and time are the 2 essential components of VILI • considered together, they define the mechanical power • every component of the mechanical ventilation: – VT, driving pressure, respiratory rate, flow, & PEEP • contribute, each one at a different extent, to the mechanical power delivered to the respiratory system (and to the lung) Critical Care Medicine 2017;45(3):e327–e328 Crit Care Clin 2018;34:343–356 15 21/09/2018 Lung‐Protective Ventilation to reduce the risk of VILI A Neglected Area in the ED that it is necessary to change EDITORIALS AJRCCM 2015;191(2):125‐126 HOW SOON? Clinicians should move to initiate low tidal volume ventilation as soon as possible in ARDS ... timely recognition of ARDS and timely adherence to low tidal volume ventilation is important for reducing mortality 16 21/09/2018 Which patients? healthy ARDS lungs lung homogeneity lung in‐ homogeneity Healthy Lungs Injured Lungs initial settings initial settings V = 6‐8 ml/Kg IBW T VT = 4‐6 ml/Kg IBW PEEP = 6‐8 cmH O 2 PEEP = 8‐15 cmH2O recruitment /30‐45 min recruitment selected pts goal ‐ monitoring goal ‐ monitoring Pplateau < 25 cmH2O Pplateau < 30 cmH2O ETCO2 > 35‐45 mmHg ETCO2 > 40‐55 mmHg SpO2 95 % pH = 7.30‐7.40 SpO2 92 % Anesthesiology 2014;121:400‐8 17 21/09/2018 Protecting the lungs in the ED In Summary Key challenges of IPPV in the ED: personalisation of mechanical ventilation • minimise STRAIN (volutrauma) – reduce VT (on driving pressure) = 6 mL/kg PBW • minimise STRESS (barotrauma) – reduce Pplateau (on driving pressure) • ARDS < 30 cm H2O • healthy lungs < 15‐20 cm H2O • maintain driving pressure ≤ 15‐20 cmH2O • minimise LUNG INHOMOGENEITY (atelectrauma) – personalise PEEP (on driving pressure ‐ dynamic compliance ‐ stress index) start 5 cmH2O – personalise recruitment manoeuvre • adjust RESPIRATORY FREQUENCY 18–22 breaths/min – personalise according to mechanical energy of ventilator 18 21/09/2018 Invasive Ventilation Is lung protection necessary in the ED? a lot of Data but still more questions than answers Thank you Transpulmonary Pressure (Ptp) ‐ Driving Pressure (ΔP) • Transpulmonary Pressure Ptp = Paw –Ppl separates the pressure delivered to the lung from the one acting on chest wall PEEP and abdomen – Paw = Palv at zero flow = Pplateau – Ppl is measured as Poesophageal • Driving Pressure (ΔP) ΔP = Ptp(insp) –Ptp(exp) = Pplateau – PEEP reflects the distending pressure taken by the lungs when VT is delivered stands for the VT‐induced lung stress 19 21/09/2018 Impact of PEEP on lung hemodynamics – ICP ICP ‐ CPP ΡΕΕΡ Preexisting cardiovascular conditions VR ‐ CO PVR ‐ RV afterload LV afterload ‐ CO (M. Vardas, et al. PEEP Role in ICU and Operating Room Scientific World J 2014) 20.
Recommended publications
  • Management of Primary Blast Lung Injury: a Comparison of Airway Pressure Release Versus Low Tidal Volume Ventilation Timothy E
    Scott et al. Intensive Care Medicine Experimental (2020) 8:26 Intensive Care Medicine https://doi.org/10.1186/s40635-020-00314-2 Experimental RESEARCH Open Access Management of primary blast lung injury: a comparison of airway pressure release versus low tidal volume ventilation Timothy E. Scott1, Anup Das2* , Mainul Haque3, Declan G. Bates2 and Jonathan G. Hardman4,5 * Correspondence: anup.das@ warwick.ac.uk Abstract 2School of Engineering, University of Warwick, Coventry CV4 7AL, UK Background: Primary blast lung injury (PBLI) presents as a syndrome of respiratory Full list of author information is distress and haemoptysis resulting from explosive shock wave exposure and is a available at the end of the article frequent cause of mortality and morbidity in both military conflicts and terrorist attacks. The optimal mode of mechanical ventilation for managing PBLI is not currently known, and clinical trials in humans are impossible due to the sporadic and violent nature of the disease. Methods: A high-fidelity multi-organ computational simulator of PBLI pathophysiology was configured to replicate data from 14 PBLI casualties from the conflict in Afghanistan. Adaptive and responsive ventilatory protocols implementing low tidal volume (LTV) ventilation and airway pressure release ventilation (APRV) were applied to each simulated patient for 24 h, allowing direct quantitative comparison of their effects on gas exchange, ventilatory parameters, haemodynamics, extravascular lung water and indices of ventilator-induced lung injury. Results: The simulated patients responded well to both ventilation strategies. Post 24-h investigation period, the APRV arm had similar PF ratios (137 mmHg vs 157 mmHg), lower sub-injury threshold levels of mechanical power (11.9 J/min vs 20.7 J/min) and lower levels of extravascular lung water (501 ml vs 600 ml) compared to conventional LTV.
    [Show full text]
  • Mechanical Ventilation Page 1 of 5
    UTMB RESPIRATORY CARE SERVICES Policy 7.3.53 PROCEDURE - Mechanical Ventilation Page 1 of 5 Mechanical Ventilation Effective: 10/26/95 Formulated: 11/78 Revised: 04/11/18 Mechanical Ventilation Purpose Mechanical Artificial Ventilation refers to any methods to deliver volumes of gas into a patient's lungs over an extended period of time to remove metabolically produced carbon dioxide. It is used to provide the pulmonary system with the mechanical power to maintain physiologic ventilation, to manipulate the ventilatory pattern and airway pressures for purposes of improving the efficiency of ventilation and/or oxygenation, and to decrease myocardial work by decreasing the work of breathing. Scope Outlines the procedure of instituting mechanical ventilation and monitoring. Accountability • Mechanical Ventilation may be instituted by a qualified licensed Respirator Care Practitioner (RCP). • To be qualified the practitioner must complete a competency based check off on the ventilator to be used. • The RCP will have an understanding of the age specific requirements of the patient. Physician's Initial orders for therapy must include a mode (i.e. mandatory Order Ventilation/Assist/Control, pressure control etc., a Rate, a Tidal Volume, and an Oxygen concentration and should include a desired level of Positive End Expiratory Pressure, and Pressure Support if applicable. Pressure modes will include inspiratory time and level of pressure control. In the absence of a complete follow up order reflecting new ventilator changes, the original ventilator settings will be maintained in compliance with last order until physician is contacted and the order is clarified. Indications Mechanical Ventilation is generally indicated in cases of acute alveolar hypoventilation due to any cause, acute respiratory failure due to any cause, and as a prophylactic post-op in certain patients.
    [Show full text]
  • The Future of Mechanical Ventilation: Lessons from the Present and the Past Luciano Gattinoni1*, John J
    Gattinoni et al. Critical Care (2017) 21:183 DOI 10.1186/s13054-017-1750-x REVIEW Open Access The future of mechanical ventilation: lessons from the present and the past Luciano Gattinoni1*, John J. Marini2, Francesca Collino1, Giorgia Maiolo1, Francesca Rapetti1, Tommaso Tonetti1, Francesco Vasques1 and Michael Quintel1 Abstract The adverse effects of mechanical ventilation in acute respiratory distress syndrome (ARDS) arise from two main causes: unphysiological increases of transpulmonary pressure and unphysiological increases/decreases of pleural pressure during positive or negative pressure ventilation. The transpulmonary pressure-related side effects primarily account for ventilator-induced lung injury (VILI) while the pleural pressure-related side effects primarily account for hemodynamic alterations. The changes of transpulmonary pressure and pleural pressure resulting from a given applied driving pressure depend on the relative elastances of the lung and chest wall. The term ‘volutrauma’ should refer to excessive strain, while ‘barotrauma’ should refer to excessive stress. Strains exceeding 1.5, corresponding to a stress above ~20 cmH2O in humans, are severely damaging in experimental animals. Apart from high tidal volumes and high transpulmonary pressures, the respiratory rate and inspiratory flow may also play roles in the genesis of VILI. We do not know which fraction of mortality is attributable to VILI with ventilation comparable to that reported in recent clinical practice surveys (tidal volume ~7.5 ml/kg, positive end-expiratory pressure (PEEP) ~8 cmH2O, rate ~20 bpm, associated mortality ~35%). Therefore, a more complete and individually personalized understanding of ARDS lung mechanics and its interaction with the ventilator is needed to improve future care.
    [Show full text]
  • What Links Ventilator Driving Pressure with Survival in the Acute Respiratory Distress Syndrome? a Computational Study Anup Das1 , Luigi Camporota2, Jonathan G
    Das et al. Respiratory Research (2019) 20:29 https://doi.org/10.1186/s12931-019-0990-5 RESEARCH Open Access What links ventilator driving pressure with survival in the acute respiratory distress syndrome? A computational study Anup Das1 , Luigi Camporota2, Jonathan G. Hardman3 and Declan G. Bates1* Abstract Background: Recent analyses of patient data in acute respiratory distress syndrome (ARDS) showed that a lower ventilator driving pressure was associated with reduced relative risk of mortality. These findings await full validation in prospective clinical trials. Methods: To investigate the association between driving pressures and ventilator induced lung injury (VILI), we calibrated a high fidelity computational simulator of cardiopulmonary pathophysiology against a clinical dataset, capturing the responses to changes in mechanical ventilation of 25 adult ARDS patients. Each of these in silico patients was subjected to the same range of values of driving pressure and positive end expiratory pressure (PEEP) used in the previous analyses of clinical trial data. The resulting effects on several physiological variables and proposed indices of VILI were computed and compared with data relating ventilator settings with relative risk of death. Results: Three VILI indices: dynamic strain, mechanical power and tidal recruitment, showed a strong correlation with the reported relative risk of death across all ranges of driving pressures and PEEP. Other variables, such as alveolar pressure, oxygen delivery and lung compliance, correlated poorly with the data on relative risk of death. Conclusions: Our results suggest a credible mechanistic explanation for the proposed association between driving pressure and relative risk of death. While dynamic strain and tidal recruitment are difficult to measure routinely in patients, the easily computed VILI indicator known as mechanical power also showed a strong correlation with mortality risk, highlighting its potential usefulness in designing more protective ventilation strategies for this patient group.
    [Show full text]
  • On the Transition from Control Modes to Spontaneous Modes During ECMO
    Journal of Clinical Medicine Article On the Transition from Control Modes to Spontaneous Modes during ECMO Krista Stephens 1, Nathan Mitchell 2 , Sean Overton 3 and Joseph E. Tonna 2,4,* 1 Department of Emergency Medicine, University of New Mexico, Albuquerque, NM 87131, USA; [email protected] 2 Division of Emergency Medicine, Department of Surgery, University of Utah Health, Salt Lake City, UT 84132, USA; [email protected] 3 Division of Critical Care, Department of Anesthesiology, University of Utah Health, Salt Lake City, UT 84132, USA; [email protected] 4 Division of Cardiothoracic Surgery, Department of Surgery, University of Utah Health, Salt Lake City, UT 84132, USA * Correspondence: [email protected]; Tel.: +1-801-587-9373 Abstract: The transition from control modes to spontaneous modes is ubiquitous for mechanically ventilated patients yet there is little data describing the changes and patterns that occur to breathing during this transition for patients on ECMO. We identified high fidelity data among a diverse cohort of 419 mechanically ventilated patients on ECMO. We examined every ventilator change, describing the differences in >30,000 sets of original ventilator observations, focused around the time of transition from control modes to spontaneous modes. We performed multivariate regression with mixed effects, clustered by patient, to examine changes in ventilator characteristics within patients, including a subset among patients with low compliance (<30 milliliters (mL)/centimeters water (cmH2O)). We found that during the transition to spontaneous modes among patients with low compliance, patients exhibited greater tidal volumes (471 mL (364,585) vs. 425 mL (320,527); p < 0.0001), higher Citation: Stephens, K.; Mitchell, N.; respiratory rate (23 breaths per minute (bpm) (18,28) vs.
    [Show full text]
  • Mechanical Power As Surrogate of Energy Dissipation
    Editorial Page 1 of 5 Risk factors of ventilator-induced lung injury: mechanical power as surrogate of energy dissipation Alessandro Santini1, Francesca Collino1, Emiliano Votta2, Alessandro Protti1 1Department of Anesthesia and Intensive Care Medicine, Humanitas Clinical and Research Center - IRCCS, Rozzano, Milan, Italy; 2Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milan, Italy Correspondence to: Alessandro Protti. Department of Anesthesia and Intensive Care Medicine, Humanitas Clinical and Research Center - IRCCS, via Manzoni 56, 20089 Rozzano, Milan, Italy. Email: [email protected]. Provenance: This is an invited Editorial commissioned by Section Editor Dr. Yibing Zhu (Department of Critical Care Medicine, Fuxing Hospital, Capital Medical University, Beijing, China). Comment on: Serpa Neto A, Deliberato RO, Johnson AEW, et al. Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 2018;44:1914-22. Received: 14 February 2019; Accepted: 18 February 2019; Published: 05 March 2019. doi: 10.21037/jeccm.2019.02.02 View this article at: http://dx.doi.org/10.21037/jeccm.2019.02.02 Soon after physicians began to artificially ventilate patients and the volume axis. Alternatively, it can be readily and with respiratory insufficiency due to poliomyelitis (1) quite accurately computed from volume, pressure and flow and intensive care units developed, risks of mechanical displayed on common multi-parametric monitors, according ventilation—namely ventilator-induced lung injury to a modified equation of motion, as shown below. The (VILI)—became evident (2). The recognition of this mechanical power thus depends on, and summarizes, all the iatrogenic, and potentially lethal, syndrome led to a slow variables currently implicated in the pathogenesis of VILI: change in the goal of mechanical ventilation for respiratory volume, pressure, flow and respiratory rate.
    [Show full text]
  • Supplemental Digital Content 1 Mechanical Power and the Development of Ventilator-Induced Lung Injury
    Supplemental Digital Content 1 Mechanical power and the development of Ventilator-Induced Lung Injury Massimo Cressoni, Miriam Gotti, Chiara Chiurazzi, Dario Massari, Ilaria Algieri, Martina Amini, Antonio Cammaroto, Matteo Brioni, Klodiana Nikolla, Mariateresa Guanziroli, Daniele Dondossola, Stefano Gatti, Vincenza Valerio, Paola Pugni, Paolo Cadringher, Nicoletta Gagliano, Luciano Gattinoni 1 TABLE OF CONTENTS SUPPLEMENTAL DIGITAL CONTENT 1 ................................................................................................. 1 MECHANICAL POWER AND THE DEVELOPMENT OF VENTILATOR-INDUCED LUNG INJURY ............................................................................................................................................................. 1 STUDY PROTOCOL – ADDITIONAL METHODS ................................................................................... 4 Hemodynamic protocol ........................................................................................................................ 5 Data collection and computation ......................................................................................................... 5 Sacrifice and autopsy ........................................................................................................................... 6 Light microscopy .................................................................................................................................. 7 Wet to dry ratio ...................................................................................................................................
    [Show full text]
  • Volutrauma and Atelectrauma: Which Is Worse? Luciano Gattinoni1*, Michael Quintel1 and John J
    Gattinoni et al. Critical Care (2018) 22:264 https://doi.org/10.1186/s13054-018-2199-2 EDITORIAL Open Access Volutrauma and atelectrauma: which is worse? Luciano Gattinoni1*, Michael Quintel1 and John J. Marini2 The first recognized form of ventilator-induced lung injury barotrauma recognize excessive mechanical energy as (VILI) was named barotrauma, a word that stresses the role causal to repeated nonphysiological strain. of pressure as a causative agent [1]. Following the work of Dreyfuss et al., which called attention to volume instead of Volutrauma pressure [2], volutrauma was recognized as the primary Volutrauma is usually interpreted to imply lung overdisten- driver of VILI. While airway pressure distributes across the sion. The constraining physical limit of lung structure is series-linked thoracic cage and lungs in proportions deter- achieved at total lung capacity (TLC; two- to threefold the mined by their relative elastances, volume is a unique vari- FRC), a volume at which the collagen fibers are maximally able common to both. Any conceptual distinction between elongated. Damage occurs if the energy applied distends volutrauma and barotrauma vanishes if one considers the lung unit repeatedly above its TLC-associated strain [7], transpulmonary pressure (PL; stress) instead of airway in large part through “microfractures” of the extracellular pressure, and strain (i.e., volume change (ΔV) relative to matrix, inflammatory signaling, and vascular stresses that resting lung volume (functional residual capacity (FRC)) in- lead to tissue wounding and/or inflammatory activation [8]. stead of tidal volume [3]. These two variables are inextric- ably coupled by a proportionality constant having the units Atelectrauma of pressure (specific elastance, or Espec), which in man Stress and strain amplify at interfaces between regions – approximates 12 13 cmH2O[4]: with different elasticity; these junctions act as “stress ” Stress ¼ k∙Strain risers [9].
    [Show full text]
  • Clinical Research Protocol
    Study Title: A randomized controlled trial of respiratory function monitoring during stabilization of preterm infants at birth Short Title: MONITOR Trial NCT Number: NCT03256578 Document IRB Approval Date: February 14, 2019 MONITOR TRIAL (Monitoring Neonatal Resuscitation Trial) A multi-center randomized controlled trial of respiratory function monitoring during stabilization of preterm infants at birth Local Principal Investigator (1) Elizabeth Foglia MD MSCE1 Division of Neonatology 3400 Spruce St. Ravdin 8 215-662-3228 [email protected] Coordinating Site Principal Investigator (2) Arjan te Pas2 C.Omar Kamlin3 Prof Maximo Vento4 Gianluca Lista5 Kajsa Bohlin7 Co-Investigators (3) Henriette van Zanten2 Prof Colin Morley3 Enrico Lopriore2 Prof Peter G Davis3 Marta Thio3 Charles Christopher Röhr2 Marta Aguar4 Francesco Cavigioli5 Erik van Zwet6 1. Hospital of the University of Pennsylvania, Philadelphia, United States 2. Leiden University Medical Center, Leiden, the Netherlands 3. Department of Newborn Research, Royal Women’s Hospital, Melbourne, Australia 4. Maternal & Children’s University Hospital La Fe, Valencia, Spain 5. Neonatal Intensive Care Unit, V.Buzzi Children's Hospital, Milan, Italy 6. Department of Medical Statistics, Leiden University Medical Center, Leiden, the Netherlands 7. Karolinska University Hospital Huddinge, Stockholm, Sweden Protocol Version: UPenn MONITOR Protocol Version 3.0 February 5, 2019 IRB Number: 826695 Coordinating Site Protocol Version: Protocol 12.295 v5 December 8, 2017 Netherlands Trial Registry:
    [Show full text]
  • Imposed Work of Breathing During High-Frequency Oscillatory Ventilation in Spontaneously Breathing Neonatal and Pediatric Models
    Imposed Work of Breathing During High-Frequency Oscillatory Ventilation in Spontaneously Breathing Neonatal and Pediatric Models Alice Bordessoule MD, Lise Piquilloud MD, Aissam Lyazidi PhD, Amelia Moreira MD, and Peter C Rimensberger MD BACKGROUND: High-frequency oscillatory ventilation (HFOV) is used in cases of neonatal and pediatric acute respiratory failure, sometimes even as the primary ventilatory mode. Allowing patients (at least neonates) on HFOV to breathe spontaneously soon after intubation has been shown to be feasible, and this is becoming a more generally used approach for infants and small children. However, such an approach may increase the imposed work of breathing (WOB), raising the question of whether the imposed WOB varies with the use of newer-generation HFOV devices, which operate according to different functional principles. METHODS: A bench test was designed to compare the pressure-time product (PTP), a surrogate marker of the imposed WOB, produced with the use of 7 HFOV devices. Scenarios corresponding to various age groups (preterm newborn [1 kg], term newborn [3.5 kg], infant [10 kg], and child [25 kg]) and 2 respiratory system conditions (physiologic and pathologic) were tested. RESULTS: The PTP varied between devices and increased with the oscillation frequency for all devices, independent of the respiratory system condition. Furthermore, the PTP increased with age and was higher for physiologic than for pathologic respiratory system conditions. We considered a change of > 20% as being of clinically relevant; the effect of oscillation frequency was the most important parameter influencing imposed WOB during spontaneous breathing. CONCLUSIONS: Variations in imposed WOB, as expressed by PTP values, during spontaneous breathing depend mainly on the oscillator frequency, respiratory system condition, and, though to a lesser extent, on the device itself.
    [Show full text]
  • Optimizing Mechanical Ventilation: Initiation and Weaning, the Art And
    Optimizing Mechanical Ventilation: The Art and Science Steven M. Donn, MD, FAAP Professor of Pediatrics Division of Neonatal-Perinatal Medicine C.S. Mott Children’s Hospital University of Michigan Health System Objectives • Review the components of mechanical ventilation • Discuss options for choosing initial ventilator settings based on individual pathophysiology • Consider ways to avoid oxygen toxicity • Outline strategies for weaning Neonatal Ventilation ca. 1975 The Baby Bird • Flow 8-10 LPM • PIP 20 cm H2O • PEEP 4 cm H2O • Ti 0.4 sec It Didn’t Matter… Preterm Baby RDS Term Baby MAS It Didn’t Matter… Preterm Baby RDS Term Baby MAS Neonatal Ventilation ca. 2016 Optimizing Mechanical Ventilation: Choosing the Initial Settings A Patient • 25 weeks, 720 grams • 17 y/o G1P0 • C/S for severe pre-eclampsia, treated with MgSO4 • One dose of betamethasone to mom • Apgar scores 2 (HR 136) and 5 (HR 140, color pink with bagging, no tone, no respiratory effort, minimal grimace) Initial Evaluation • ABG: 7.21/55/47 • Hgb/Hct: 14.0/43% • Cord Mg++: 5.5 • BP: 36/20 (25) Define the Pathophysiology • Lung volumes? • Compliance? • Resistance? • Time constant? • Respiratory drive? • Oxygenation? • Ventilation? Initial Ventilatory Options • CPAP • Conventional (tidal) ventilation • High-Frequency ventilation HFJV HFOV Target Variables • Pressure Pressure Limited Pressure Control • Volume Ventilator-Induced Lung Injury Atelectotrauma: Volutrauma: Repetitive alveolar Over-distension of opening and closing normally aerated of under-recruited alveoli from
    [Show full text]
  • Mechanical Power Normalized to Lung-Thorax Compliance Predicts
    Ghiani et al. BMC Pulm Med (2021) 21:202 https://doi.org/10.1186/s12890-021-01566-8 RESEARCH Open Access Mechanical power normalized to lung-thorax compliance predicts prolonged ventilation weaning failure: a prospective study Alessandro Ghiani1* , Joanna Paderewska1, Swenja Walcher1 and Claus Neurohr1,2 Abstract Background: Mechanical power (MP) of artifcial ventilation, the energy transferred to the respiratory system, is a chief determinant of adequate oxygenation and decarboxylation. Calculated MP, the product of applied airway pres- sure and minute ventilation, may serve as an estimate of respiratory muscle workload when switching to spontane- ous breathing. The aim of the study was to assess MP’s discriminatory performance in predicting successful weaning from prolonged tracheostomy ventilation. Methods: Prospective, observational study in 130 prolonged mechanically ventilated, tracheotomized patients in a specialized weaning center. Predictive weaning outcome ability of arterial blood gas analyses and indices derived from calculated MP at beginning and end of weaning was determined in terms of area under receiver operating char- acteristic curve (AUROC) and measures derived from k-fold cross-validation (likelihood ratios, diagnostic odds ratio, F 1 score, and Matthews correlation coefcient [MCC]). Results: Forty-four (33.8%) patients experienced weaning failure. Absolute MP showed poor discrimination in predicting outcome; whereas specifc MP (MP normalized to dynamic lung-thorax compliance, LTC dyn-MP) had moderate diagnostic accuracy (MCC 0.38; AUROC 0.79, 95%CI [0.71‒0.86], p < 0.001), further improved by correction for corresponding mechanical ventilation PaCO2 (termed the power index of the respiratory system [PIrs]: MCC 0.52; AUROC 0.86 [0.79‒0.92], p < 0.001).
    [Show full text]