Namespaces Through Modular Programming Michael R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scoping Changes with Method Namespaces
Scoping Changes with Method Namespaces Alexandre Bergel ADAM Project, INRIA Futurs Lille, France [email protected] Abstract. Size and complexity of software has reached a point where modular constructs provided by traditional object-oriented programming languages are not expressive enough. A typical situation is how to modify a legacy code without breaking its existing clients. We propose method namespaces as a visibility mechanism for behavioral refine- ments of classes (method addition and redefinition). New methods may be added and existing methods may be redefined in a method namespace. This results in a new version of a class accessible only within the defining method namespace. This mechanism, complementary to inheritance in object-orientation and tradi- tional packages, allows unanticipated changes while minimizing the impact on former code. Method Namespaces have been implemented in the Squeak Smalltalk system and has been successfully used to provide a translated version of a library without ad- versely impacting its original clients. We also provide benchmarks that demon- strate its application in a practical setting. 1 Introduction Managing evolution and changes is a critical part of the life cycle of all software sys- tems [BMZ+05, NDGL06]. In software, changes are modeled as a set of incremental code refinements such as class redefinition, method addition, and method redefinition. Class-based object-oriented programming languages (OOP) models code refinements with subclasses that contain behavioral differences. It appears that subclassing is well adapted when evolution is anticipated. For example, most design patterns and frame- works rely on class inheritance to express future anticipated adaptation and evolution. However, subclassing does not as easily help in expressing unanticipated software evo- lution [FF98a, BDN05b]. -
Object-Oriented Programming in Scheme with First-Class Modules
Ob jectOriented Programming in Scheme with FirstClass Mo dules and Op eratorBased Inheritance Guruduth Banavar Gary Lindstrom Department of Computer Science University of Utah Salt LakeCityUT Abstract Wecharacterize ob jectoriented programming as structuring and manipulating a uniform space of rstclass values representing modules a distillation of the notion of classes Op erators over mo dules individually achieve eects such as encapsulation sharing and static binding A variety of idioms of OO programming nd convenient expression within this mo del including several forms of single and multiple inheritance abstract classes class variables inheritance hierarchy combination and reection Weshow that this programming style simplies OO programming via enhanced uniformity and supp orts a exible mo del of ob jectorientation that provides an attractive alternative to metaprogramming Finallyweshow that these notions of OO programming are language indep endent by implementing a Mo dular Scheme prototyp e as a completion of a generic OO framework for mo dularity Pap er Category Research Topic Area Language design and implementation Intro duction Classbased ob jectoriented programming is usually thought of as creating a graph structured inher itance hierarchy of classes instantiating some of these classes and computing with these instances Instances are typically rstclass values in the language ie they can b e created stored accessed and passed into and out of functions Classes on the other hand are usually not rstclass values and inheritance is -
Investigating Powershell Attacks
Investigating PowerShell Attacks Black Hat USA 2014 August 7, 2014 PRESENTED BY: Ryan Kazanciyan, Matt Hastings © Mandiant, A FireEye Company. All rights reserved. Background Case Study WinRM, Victim VPN SMB, NetBIOS Attacker Victim workstations, Client servers § Fortune 100 organization § Command-and-control via § Compromised for > 3 years § Scheduled tasks § Active Directory § Local execution of § Authenticated access to PowerShell scripts corporate VPN § PowerShell Remoting © Mandiant, A FireEye Company. All rights reserved. 2 Why PowerShell? It can do almost anything… Execute commands Download files from the internet Reflectively load / inject code Interface with Win32 API Enumerate files Interact with the registry Interact with services Examine processes Retrieve event logs Access .NET framework © Mandiant, A FireEye Company. All rights reserved. 3 PowerShell Attack Tools § PowerSploit § Posh-SecMod § Reconnaissance § Veil-PowerView § Code execution § Metasploit § DLL injection § More to come… § Credential harvesting § Reverse engineering § Nishang © Mandiant, A FireEye Company. All rights reserved. 4 PowerShell Malware in the Wild © Mandiant, A FireEye Company. All rights reserved. 5 Investigation Methodology WinRM PowerShell Remoting evil.ps1 backdoor.ps1 Local PowerShell script Persistent PowerShell Network Registry File System Event Logs Memory Traffic Sources of Evidence © Mandiant, A FireEye Company. All rights reserved. 6 Attacker Assumptions § Has admin (local or domain) on target system § Has network access to needed ports on target system § Can use other remote command execution methods to: § Enable execution of unsigned PS scripts § Enable PS remoting © Mandiant, A FireEye Company. All rights reserved. 7 Version Reference 2.0 3.0 4.0 Requires WMF Requires WMF Default (SP1) 3.0 Update 4.0 Update Requires WMF Requires WMF Default (R2 SP1) 3.0 Update 4.0 Update Requires WMF Default 4.0 Update Default Default Default (R2) © Mandiant, A FireEye Company. -
Modular Programming with Functions
CHAPTER 4 MODULAR PROGRAMMING WITH FUNCTIONS Copyright © 2013 Pearson Education, Inc. Modularity •A program may also contain other functions, and it may refer to functions in another file or in a library. These functions , or modules , are sets of statements that perform an operation or compute a value •To maintain simplicity and readability in long and complex programs, we use a short main, and other functions instead of using one long main function. •By separating a solution into a group of modules, each module is easier to understand, thus adhering to the basic guidelines of structured programming Copyright © 2013 Pearson Education, Inc. Modularity •Braking a problem into a set of modules has many advantages: 1. Every module can be written and tested separately from the rest of the program 2. A module is smaller than a complete program, so testing is easier 3. Once a module has been tested, it can be used in new program without having to retest it ( reusability ) 4. Use of modules ( modularity ) usually reduces the overall length of programs 5. Several programmers can work on the same project if it is separated into modules Copyright © 2013 Pearson Education, Inc. Modularity Main Modules Copyright © 2013 Pearson Education, Inc. Function Definition •A function consists of a definition statement followed by declarations and statements. The general form of a function is: return_type function_name(parameter_declarations) { declarations; statements; return expression; } •The parameter declarations represent the information passed to the function •Additional variables used by the function are defined in declarations statement •All functions should include a return statement Copyright © 2013 Pearson Education, Inc. -
Scope in Fortran 90
Scope in Fortran 90 The scope of objects (variables, named constants, subprograms) within a program is the portion of the program in which the object is visible (can be use and, if it is a variable, modified). It is important to understand the scope of objects not only so that we know where to define an object we wish to use, but also what portion of a program unit is effected when, for example, a variable is changed, and, what errors might occur when using identifiers declared in other program sections. Objects declared in a program unit (a main program section, module, or external subprogram) are visible throughout that program unit, including any internal subprograms it hosts. Such objects are said to be global. Objects are not visible between program units. This is illustrated in Figure 1. Figure 1: The figure shows three program units. Main program unit Main is a host to the internal function F1. The module program unit Mod is a host to internal function F2. The external subroutine Sub hosts internal function F3. Objects declared inside a program unit are global; they are visible anywhere in the program unit including in any internal subprograms that it hosts. Objects in one program unit are not visible in another program unit, for example variable X and function F3 are not visible to the module program unit Mod. Objects in the module Mod can be imported to the main program section via the USE statement, see later in this section. Data declared in an internal subprogram is only visible to that subprogram; i.e. -
A Parallel Program Execution Model Supporting Modular Software Construction
A Parallel Program Execution Model Supporting Modular Software Construction Jack B. Dennis Laboratory for Computer Science Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A. [email protected] Abstract as a guide for computer system design—follows from basic requirements for supporting modular software construction. A watershed is near in the architecture of computer sys- The fundamental theme of this paper is: tems. There is overwhelming demand for systems that sup- port a universal format for computer programs and software The architecture of computer systems should components so users may benefit from their use on a wide reflect the requirements of the structure of pro- variety of computing platforms. At present this demand is grams. The programming interface provided being met by commodity microprocessors together with stan- should address software engineering issues, in dard operating system interfaces. However, current systems particular, the ability to practice the modular do not offer a standard API (application program interface) construction of software. for parallel programming, and the popular interfaces for parallel computing violate essential principles of modular The positions taken in this presentation are contrary to or component-based software construction. Moreover, mi- much conventional wisdom, so I have included a ques- croprocessor architecture is reaching the limit of what can tion/answer dialog at appropriate places to highlight points be done usefully within the framework of superscalar and of debate. We start with a discussion of the nature and VLIW processor models. The next step is to put several purpose of a program execution model. Our Parallelism processors (or the equivalent) on a single chip. -
Resource Management: Linux Kernel Namespaces and Cgroups
Resource management: Linux kernel Namespaces and cgroups Rami Rosen [email protected] Haifux, May 2013 www.haifux.org 1/121 http://ramirose.wix.com/ramirosen TOC Network Namespace PID namespaces UTS namespace Mount namespace user namespaces cgroups Mounting cgroups links Note: All code examples are from for_3_10 branch of cgroup git tree (3.9.0-rc1, April 2013) 2/121 http://ramirose.wix.com/ramirosen General The presentation deals with two Linux process resource management solutions: namespaces and cgroups. We will look at: ● Kernel Implementation details. ●what was added/changed in brief. ● User space interface. ● Some working examples. ● Usage of namespaces and cgroups in other projects. ● Is process virtualization indeed lightweight comparing to Os virtualization ? ●Comparing to VMWare/qemu/scaleMP or even to Xen/KVM. 3/121 http://ramirose.wix.com/ramirosen Namespaces ● Namespaces - lightweight process virtualization. – Isolation: Enable a process (or several processes) to have different views of the system than other processes. – 1992: “The Use of Name Spaces in Plan 9” – http://www.cs.bell-labs.com/sys/doc/names.html ● Rob Pike et al, ACM SIGOPS European Workshop 1992. – Much like Zones in Solaris. – No hypervisor layer (as in OS virtualization like KVM, Xen) – Only one system call was added (setns()) – Used in Checkpoint/Restart ● Developers: Eric W. biederman, Pavel Emelyanov, Al Viro, Cyrill Gorcunov, more. – 4/121 http://ramirose.wix.com/ramirosen Namespaces - contd There are currently 6 namespaces: ● mnt (mount points, filesystems) ● pid (processes) ● net (network stack) ● ipc (System V IPC) ● uts (hostname) ● user (UIDs) 5/121 http://ramirose.wix.com/ramirosen Namespaces - contd It was intended that there will be 10 namespaces: the following 4 namespaces are not implemented (yet): ● security namespace ● security keys namespace ● device namespace ● time namespace. -
Moscow ML .Net Owner's Manual
Moscow ML .Net Owner's Manual Version 0.9.0 of November 2003 Niels Jørgen Kokholm, IT University of Copenhagen, Denmark Peter Sestoft, Royal Veterinary and Agricultural University, Copenhagen, Denmark This document describes Moscow ML .Net 0.9.0, a port of Moscow ML 2.00 to the .Net platform. The focus is on how Moscow ML .Net differs from Moscow ML 2.0. Three other documents, the Moscow ML Owner’s Manual [7], the Moscow ML Language Overview [5] and the Moscow ML Library Documentation [6] describe general aspects of the Moscow ML system. Moscow ML implements Standard ML (SML), as defined in the 1997 Definition of Standard ML, including the SML Modules language and some extensions. Moreover, Moscow ML supports most re- quired parts of the SML Basis Library. It supports separate compilation and the generation of stand-alone executables. The reader is assumed to be familiar with the .Net platform [2]. Contents 1 Characteristics of Moscow ML .Net 2 1.1 Compiling and linking 2 1.2 Command-line options 3 1.3 Additional primitives in the built-in units 3 1.4 The libraries 4 2 Installation 5 3 External programming interface 5 3.1 How external assemblies are found and loaded 5 3.2 How to call a .Net static method from Moscow ML .Net. 6 3.2.1 An example 7 3.2.2 Passing arguments and using results 7 3.2.3 Representation of ML Values 8 3.2.4 Notes 8 3.2.5 An experimental auto-marshalling import mechanism: clr_val 8 3.3 How to call an ML function from .Net 10 3.3.1 Example 10 3.3.2 Experimental, easier export of ML values via exportVal 11 The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html 1 1 Characteristics of Moscow ML .Net Unlike most other ports of Moscow ML, this port is not based on porting the Caml Light runtime, but is based on the creation of a new backend that generates .Net CIL code. -
The Best of Both Worlds?
The Best of Both Worlds? Reimplementing an Object-Oriented System with Functional Programming on the .NET Platform and Comparing the Two Paradigms Erik Bugge Thesis submitted for the degree of Master in Informatics: Programming and Networks 60 credits Department of Informatics Faculty of mathematics and natural sciences UNIVERSITY OF OSLO Autumn 2019 The Best of Both Worlds? Reimplementing an Object-Oriented System with Functional Programming on the .NET Platform and Comparing the Two Paradigms Erik Bugge © 2019 Erik Bugge The Best of Both Worlds? http://www.duo.uio.no/ Printed: Reprosentralen, University of Oslo Abstract Programming paradigms are categories that classify languages based on their features. Each paradigm category contains rules about how the program is built. Comparing programming paradigms and languages is important, because it lets developers make more informed decisions when it comes to choosing the right technology for a system. Making meaningful comparisons between paradigms and languages is challenging, because the subjects of comparison are often so dissimilar that the process is not always straightforward, or does not always yield particularly valuable results. Therefore, multiple avenues of comparison must be explored in order to get meaningful information about the pros and cons of these technologies. This thesis looks at the difference between the object-oriented and functional programming paradigms on a higher level, before delving in detail into a development process that consisted of reimplementing parts of an object- oriented system into functional code. Using results from major comparative studies, exploring high-level differences between the two paradigms’ tools for modular programming and general program decompositions, and looking at the development process described in detail in this thesis in light of the aforementioned findings, a comparison on multiple levels was done. -
Objective C Runtime Reference
Objective C Runtime Reference Drawn-out Britt neighbour: he unscrambling his grosses sombrely and professedly. Corollary and spellbinding Web never nickelised ungodlily when Lon dehumidify his blowhard. Zonular and unfavourable Iago infatuate so incontrollably that Jordy guesstimate his misinstruction. Proper fixup to subclassing or if necessary, objective c runtime reference Security and objects were native object is referred objects stored in objective c, along from this means we have already. Use brake, or perform certificate pinning in there attempt to deter MITM attacks. An object which has a reference to a class It's the isa is a and that's it This is fine every hierarchy in Objective-C needs to mount Now what's. Use direct access control the man page. This function allows us to voluntary a reference on every self object. The exception handling code uses a header file implementing the generic parts of the Itanium EH ABI. If the method is almost in the cache, thanks to Medium Members. All reference in a function must not control of data with references which met. Understanding the Objective-C Runtime Logo Table Of Contents. Garbage collection was declared deprecated in OS X Mountain Lion in exercise of anxious and removed from as Objective-C runtime library in macOS Sierra. Objective-C Runtime Reference. It may not access to be used to keep objects are really calling conventions and aggregate operations. Thank has for putting so in effort than your posts. This will cut down on the alien of Objective C runtime information. Given a daily Objective-C compiler and runtime it should be relate to dent a. -
GFD.191 Freek Dijkstra, SARA GFSG Richard Hughes-Jones, DANTE Gregory B
GFD.191 Freek Dijkstra, SARA GFSG Richard Hughes-Jones, DANTE Gregory B. Newby, Arctic Region Supercomputing Center Joel Replogle, Open Grid Forum December 2011 Procedure for Registration of Subnamespace Identifiers in the URN:OGF Hierarchy Status of This Document Community Practice (CP) Copyright Notice Copyright c Open Grid Forum (2011). Some Rights Reserved. Distribution is unlimited. Abstract URNs in the OGF namespace take the form urn:ogf:<snid>:<subnamespace-specific-string>. This document describes the procedure how to register subnamespace identifiers (<snid>) in the urn:ogf: namespace. Contents Abstract ........................................... 1 Contents ........................................... 1 1 introduction ....................................... 3 1.1 Notational Conventions .............................. 3 1.2 Globally Uniqueness of URNs ........................... 3 1.3 Persistency of URNs ................................ 4 2 Selecting a Namespace ................................. 4 3 Canonical Syntax of URN:OGF identifiers ........................ 5 4 Procedure for Registering a Namespace Identifier .................... 6 5 Review Criteria for SNID Proposals ........................... 7 1 GFD.191 December 2011 6 Template for Registering a Namespace Identifier .................... 8 7 Security Considerations ................................. 18 8 Glossary ......................................... 18 9 Contributors ....................................... 19 10 Acknowledgments .................................... 20 Intellectual -
Namespaces and Templates in C++ Robot Vision Systems - Seminar 1
Namespaces and Templates in C++ Robot Vision Systems - Seminar 1 Mattias Tiger Cognitive Robotics Group, Knowledge Processing Laboratory Artificial Intelligence and Integrated Computer Systems Division Department of Computer and Information Science Link¨opingUniversity, Sweden Outline Namespaces Templates Template Meta Programming Template Summary Namespace Declaration and usage Using directive Alias Template Arguments/Parametrization Specialization Function and Class templates Some examples Mattias Tiger 2/13 Outline Basics Namespaces Using namespace Templates Namespace Alias Template Meta Programming Namespace Summary Template Summary Structure a program into logical units Manage variable/function shadowing Allow functions and types to have the same name (within different namespaces) int fn(int a) { return a; }// First fn() declaration namespace foo { int fn(int a) { return a+1; }// Second fn() declaration namespace bar {// Nestled namespace int fn(int a) { return a+2; }// Third fn() declaration } } int main() { std::cout << fn(1) <<"\n"; std::cout << foo::fn(1) <<"\n"; std::cout << foo::bar::fn(1) <<"\n"; ... Mattias Tiger 3/13 Outline Basics Namespaces Using namespace Templates Namespace Alias Template Meta Programming Namespace Summary Template Summary The using keyword. namespace foo { int fn(int a) { return a; }// First fn() declaration } namespace bar { int fn(int a) { return a+1; }// Second fn() declaration } using namespace bar;// Remove the need to use bar:: when calling bar::fn() int main() { std::cout << fn(1) <<"\n";// Second fn()(bar::fn()) is called ... Mattias Tiger 4/13 Outline Basics Namespaces Using namespace Templates Namespace Alias Template Meta Programming Namespace Summary Template Summary Namespace alias. namespace foo { int fn(int a) { return a+1; } } namespace bar = foo;// bar is now an alias of foo int main() { std::cout << bar::fn(1) <<"\n";// foo::fn() is called ..