New Therapeutic Developments in Lipidology
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The SOLID-TIMI 52 Randomized Clinical Trial
RM2007/00497/06 CONFIDENTIAL The GlaxoSmithKline group of companies SB-480848/033 Division: Worldwide Development Information Type: Protocol Amendment Title: A Clinical Outcomes Study of Darapladib versus Placebo in Subjects Following Acute Coronary Syndrome to Compare the Incidence of Major Adverse Cardiovascular Events (MACE) (Short title: The Stabilization Of pLaques usIng Darapladib- Thrombolysis In Myocardial Infarction 52 SOLID-TIMI 52 Trial) Compound Number: SB-480848 Effective Date: 26-FEB-2014 Protocol Amendment Number: 05 Subject: atherosclerosis, Lp-PLA2 inhibitor, acute coronary syndrome, SB-480848, darapladib Author: The protocol was developed by the members of the Executive Steering Committee on behalf of GlaxoSmithKline (MPC Late Stage Clinical US) in conjunction with the Sponsor. The following individuals provided substantial input during protocol development: Non-sponsor: Braunwald, Eugene (TIMI Study Group, USA); Cannon, Christopher P (TIMI Study Group, USA); McCabe, Carolyn H (TIMI Study Group, USA); O’Donoghue, Michelle L (TIMI Study Group, USA); White, Harvey D (Green Lane Cardiovascular Service, New Zealand); Wiviott, Stephen (TIMI Study Group, USA) Sponsor: Johnson, Joel L (MPC Late Stage Clinical US); Watson, David F (MPC Late Stage Clinical US); Krug-Gourley, Susan L (MPC Late Stage Clinical US); Lukas, Mary Ann (MPC Late Stage Clinical US); Smith, Peter M (MPC Late Stage Clinical US); Tarka, Elizabeth A (MPC Late Stage Clinical US); Cicconetti, Gregory (Clinical Statistics (US)); Shannon, Jennifer B (Clinical Statistics (US)); Magee, Mindy H (CPMS US) Copyright 2014 the GlaxoSmithKline group of companies. All rights reserved. Unauthorised copying or use of this information is prohibited. 1 Downloaded From: https://jamanetwork.com/ on 09/24/2021 RM2007/00497/06 CONFIDENTIAL The GlaxoSmithKline group of companies SB-480848/033 Revision Chronology: RM2007/00497/01 2009-OCT-08 Original RM2007/00497/02 2010-NOV-30 Amendment 01: The primary intent is to revise certain inclusion and exclusion criteria. -
Effect of Darapladib on Plasma Lipoprotein-Associated
Advance Publication by-J-STAGE Circulation Journal Official Journal of the Japanese Circulation Society http://www.j-circ.or.jp Effect of Darapladib on Plasma Lipoprotein-Associated Phospholipase A2 Activity in Japanese Dyslipidemic Patients, With Exploratory Analysis of a PLA2G7 Gene Polymorphism of Val279Phe Hiroyuki Daida, MD, PhD; Takayuki Iwase, PhD; Shigeru Yagi, BSc; Hidekazu Ando, BSc; Hiromu Nakajima, MD, PhD Background: Lipoprotein-associated phospholipase A2 (Lp-PLA2) is being evaluated as a therapeutic target for treatment of atherosclerosis. This is the first study to examine the effects of darapladib, a novel selective Lp-PLA2 inhibitor, on Lp-PLA2 activity in Japanese dyslipidemic patients with/without the Val279Phe (V279F) single-nucleotide polymorphism (SNP) of the PLA2G7 gene. Exploratory analysis to examine the effects of V279F on Lp-PLA2 inhibi- tion of darapladib was also performed. Methods and Results: This was a 4-week, multicenter, randomized, double-blind, placebo-controlled, parallel- group, dose-ranging trial of darapladib in 107 Japanese patients with dyslipidemia receiving statins. Patients were randomized to placebo (n=25), darapladib 40 mg (n=28), 80 mg (n=28), or 160 mg (n=26). All darapladib doses produced sustained dose-dependent inhibition of Lp-PLA2 activity of approximately 49%, 58%, and 67%, respec- tively (P<0.001 for all comparisons). The inhibitory effect achieved a plateau by 1 week. Patients with the V279F homogenous mutation who have no circulating levels of Lp-PLA2, were excluded from the study. The Lp-PLA2 activ- ity was inhibited in both homozygous wild-type and heterozygote genotypes of the V279F polymorphism subjects to a similar extent, although the heterogeneous mutation has almost half the level of Lp-PLA2 activity compared with that of wild-type in Japanese people. -
(12) United States Patent (10) Patent No.: US 9,000,132 B2 Miller Et Al
USOO9000132B2 (12) United States Patent (10) Patent No.: US 9,000,132 B2 Miller et al. (45) Date of Patent: *Apr. 7, 2015 (54) LIPOPROTEIN-ASSOCATED 5,532,152 A 7/1996 Cousens et al. PHOSPHOLPASE A2 ANTIBODY 5,545,806 A 8/1996 Lonberg et al. 5,545,807 A 8, 1996 Surani et al. COMPOSITIONS AND METHODS OF USE 5,565,332 A 10/1996 Hoogenboom et al. 5,567,610 A 10, 1996 Borrebaecket al. (71) Applicant: dialDexus, Inc., South San Francisco, 5,569,825 A 10/1996 Lonberg et al. CA (US) 5,571,894 A 11/1996 Wells et al. 5,573,905 A 11/1996 Lerner et al. Inventors: 5,587,458 A 12/1996 King et al. (72) Paul Levi Miller, South San Francisco, 5,591,669 A 1/1997 Krimpenfort et al. CA (US); Laura Corral, San Francisco, 5,605,801 A 2f1997 Cousens et al. CA (US) 5,641,669 A 6/1997 Cousens et al. 5,641,870 A 6/1997 Rinderknecht et al. (73) Assignee: dialDexus, Inc., South San Francisco, 5,648,237 A 7, 1997 Carter 5,656,431 A 8, 1997 Cousenset al. CA (US) 5,698,403 A 12/1997 Cousens et al. 5,731, 168 A 3, 1998 Carter et al. (*) Notice: Subject to any disclaimer, the term of this 5,739,277 A 4/1998 Presta et al. patent is extended or adjusted under 35 5,789,199 A 8/1998 Joly et al. U.S.C. 154(b) by 0 days. 5,821,337 A 10, 1998 Carter et al. -
PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. -
Stems for Nonproprietary Drug Names
USAN STEM LIST STEM DEFINITION EXAMPLES -abine (see -arabine, -citabine) -ac anti-inflammatory agents (acetic acid derivatives) bromfenac dexpemedolac -acetam (see -racetam) -adol or analgesics (mixed opiate receptor agonists/ tazadolene -adol- antagonists) spiradolene levonantradol -adox antibacterials (quinoline dioxide derivatives) carbadox -afenone antiarrhythmics (propafenone derivatives) alprafenone diprafenonex -afil PDE5 inhibitors tadalafil -aj- antiarrhythmics (ajmaline derivatives) lorajmine -aldrate antacid aluminum salts magaldrate -algron alpha1 - and alpha2 - adrenoreceptor agonists dabuzalgron -alol combined alpha and beta blockers labetalol medroxalol -amidis antimyloidotics tafamidis -amivir (see -vir) -ampa ionotropic non-NMDA glutamate receptors (AMPA and/or KA receptors) subgroup: -ampanel antagonists becampanel -ampator modulators forampator -anib angiogenesis inhibitors pegaptanib cediranib 1 subgroup: -siranib siRNA bevasiranib -andr- androgens nandrolone -anserin serotonin 5-HT2 receptor antagonists altanserin tropanserin adatanserin -antel anthelmintics (undefined group) carbantel subgroup: -quantel 2-deoxoparaherquamide A derivatives derquantel -antrone antineoplastics; anthraquinone derivatives pixantrone -apsel P-selectin antagonists torapsel -arabine antineoplastics (arabinofuranosyl derivatives) fazarabine fludarabine aril-, -aril, -aril- antiviral (arildone derivatives) pleconaril arildone fosarilate -arit antirheumatics (lobenzarit type) lobenzarit clobuzarit -arol anticoagulants (dicumarol type) dicumarol -
Atherogenesis Inhibition by Darapladib Administration in Dyslipidemia Model Sprague-Dawley Rats
Research Article Atherogenesis inhibition by darapladib administration in dyslipidemia model Sprague-Dawley rats Teuku Heriansyah1, Titin Andri Wihastuti2, Kenty Wantri Anita3, Agustin Iskandar4, Riski Bagus Suhendra5, Patan Ahmad Setiabudi5, Lintang Widya Sishartami5 1Department of Cardiology, Faculty of Medicine, Syiah Kuala University, Aceh, Indonesia. 2Department of Biomedicine, Faculty of Medicine, Brawijaya University, Malang, Indonesia. 3Department of Pathology Anatomy, Faculty of Medicine, Brawijaya University, Malang, Indonesia. 4Department of Clinical Pathology, Faculty of Medicine, Brawijaya University, Malang, Indonesia. 5Bachelor Programme, Faculty of Medicine, Brawijaya University, Malang, Indonesia. Correspondence to: Titin Andri Wihastuti, E-mail: [email protected] Received September 29, 2015. Accepted October 24, 2015 || ABSTRACT Background: Atherosclerosis is a chronic inflammation disease that is caused by the interaction between monocyte and endothelial injury in tunica intima. One of the major factor of atherosclerosis is dyslipidemia. Chronic dyslipidemia, especially hypercholesterolemia, can directly alter endothelial cell through reactive oxygen species (ROS) production that oxidizes low-density lipoprotein (LDL) to become oxidized LDL (Ox-LDL). Proinflammatory cytokines, the products of perivascular adipocyte tissue (PVAT), may draw macrophage. Macrophage then engulfs Ox-LDL and becomes foam cell within tunica intima. Lipoprotein-associated phospholipase A2 (Lp-pLA2) is an enzyme that cleaves Ox-LDL to become proatherosclerotic products. Darapladib, an Lp-pLA2 inhibitor, is expected to inhibit atherosclerotic lesion progressivity. Aims and Objective: To know the effects of darapladib on Ox-LDL level, PVAT thickness, and foam cell number. Materials and Methods: This study used in vivo posttest controlled group design with two time series. Thirty male Sprague–Dawley rats divided into two group based on time series (8 weeks and 16 weeks). -
Kevin C Maki CV 20June2019
Kevin C. Maki, PhD, CLS, FNLA, FTOS, FACN Tel: 630-469-6600; Fax: 773-980-7151 Administrative Office Chicago Research Clinic Boca Raton Research Clinic Midwest Biomedical Great Lakes Clinical Trials MB Clinical Research Research 5149 North Ashland Ave. 751 Park of Commerce Drive 211 East Lake Street Chicago, Illinois 60640 Suite 118 Suite 3 Co-located with Great Boca Raton, Florida 33487 Addison, Illinois 60101 Lakes Clinical Trials E-MAIL: [email protected] [email protected] ACADEMIC & PROFESSIONAL EXPERIENCE: 2013-Present President and Chief Scientist MB Clinical Research and Consulting, LLC [MBClinicalResearch.com] Divisions: • Midwest Biomedical Research: Center for Metabolic & Cardiovascular Health, Addison, Illinois • MB Clinical Research Boca Raton, Florida 2014-Present Investigator Great Lakes Clinical Trials Chicago, Illinois 2013-Present Adjunct Faculty, Epidemiology and Biostatistics DePaul University, Department of Nursing Chicago, Illinois 2016-2018 Adjunct Faculty, Epidemiology and Biostatistics Illinois Institute of Technology Department of Food Science and Nutrition Chicago, Illinois 2004-2013 Chief Science Officer Biofortis Clinical Research (Formerly Provident Clinical Research) Addison, Illinois 2003-2004 Chief Science Officer Radiant Development (Formerly Protocare Development) Chicago, Illinois 2002-2003 Senior Vice President and Chief Science Officer Protocare Development, Inc. Chicago, Illinois 2000-2002 Vice President Protocare Development, Inc. Chicago, Illinois Kevin C. Maki, Ph.D. – Curriculum Vitae -
On the Present and Future Role of Lp-PLA in Atherosclerosis-Related
State of the art paper Cardiology On the present and future role of Lp-PLA2 in atherosclerosis-related cardiovascular risk prediction and management Zlatko Fras1,2, Jure Tršan1,3, Maciej Banach4,5 1Centre for Preventive Cardiology, Department of Vascular Medicine, Corresponding author: Division of Medicine, University Medical Centre Ljubljana, Ljubljana, Slovenia Prof. Zlatko Fras MD, PhD, 2Chair of Internal Medicine, Medical Faculty, University of Ljubljana, Ljubljana, FESC, FACC Slovenia Centre for 3Medical Faculty, University of Ljubljana, Ljubljana, Slovenia Preventive Cardiology 4Department of Hypertension, Medical University of Lodz, Poland Department of 5Polish Mother’s Memorial Hospital Research Institute, Lodz, Poland Vascular Medicine Division of Medicine Submitted: 10 January 2020; Accepted: 2 February 2020 University Medical Online publication: 20 August 2020 Centre Ljubljana Zaloška 7 Arch Med Sci 2021; 17 (4): 954–964 SI-1525 Ljubljana, Slovenia DOI: https://doi.org/10.5114/aoms.2020.98195 Medical Faculty Copyright © 2020 Termedia & Banach University of Ljubljana Vrazov trg 2 SI-1000 Ljubljana, Slovenia Abstract Phone: +386-1-522-31-52 E-mail: [email protected] Circulating concentration and activity of secretory phospholipase A2 (sPLA2) and lipoprotein-associated phospholipase A2 (Lp-PLA2) have been proven as biomarkers of increased risk of atherosclerosis-related cardiovascular dis- ease (ASCVD). Lp-PLA2 might be part of the atherosclerotic process and may contribute to plaque destabilisation through inflammatory activity within atherosclerotic lesions. However, all attempts to translate the inhibition of phospholipase into clinically beneficial ASCVD risk reduction, including in randomised studies, by either non-specific inhibition of sPLA2 (by varesp- ladib) or specific Lp-PLA2 inhibition by darapladib, unexpectedly failed. -
Annual Information Form
Annual Information Form Fiscal Year Ended April 30, 2019 July 26, 2019 Table of Contents Advisories ................................................................................................................................................................................... 4 Forward-Looking Information .................................................................................................................................................... 4 Corporate Structure ................................................................................................................................................................... 6 Name and Incorporation ............................................................................................................................................................................ 6 Inter-Corporate Relationships .................................................................................................................................................................... 6 Description of Business ............................................................................................................................................................. 6 The Drug Development Process ................................................................................................................................................................ 6 Resverlogix Current Development Stage: Phase 3 Nearing Completion ................................................................................................ -
Clinical Approach to the Inflammatory Etiology of Cardiovascular Diseases T Massimiliano Ruscicaa, Alberto Corsinia,B, Nicola Ferric, Maciej Banachd,E,F,*, Cesare R
Pharmacological Research 159 (2020) 104916 Contents lists available at ScienceDirect Pharmacological Research journal homepage: www.elsevier.com/locate/yphrs Invited Review Clinical approach to the inflammatory etiology of cardiovascular diseases T Massimiliano Ruscicaa, Alberto Corsinia,b, Nicola Ferric, Maciej Banachd,e,f,*, Cesare R. Sirtoria a Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy b Multimedica IRCCS, Milano, Italy c Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padua, Italy d Department of Hypertension, WAM University Hospital in Lodz, Medical University of Lodz, Lodz, Poland e Polish Mother’s Memorial Hospital Research Institute (PMMHRI), Lodz, Poland f Cardiovascular Research Centre, University of Zielona Gora, Zielona Gora, Poland ARTICLE INFO ABSTRACT Keywords: Inflammation is an obligatory marker of arterial disease, both stemming from the inflammatory activityof Apabetalone cholesterol itself and from well-established molecular mechanisms. Raised progenitor cell recruitment after C-reactive protein major events and clonal hematopoiesis related mechanisms have provided an improved understanding of factors Inflammation regulating inflammatory phenomena. Trials with inflammation antagonists have led to an extensive evaluation Hypertension of biomarkers such as the high sensitivity C reactive protein (hsCRP), not exerting a causative role, but fre- Microbiome quently indicative of the individual cardiovascular (CV) risk. Aim of this review is to provide indication on the Nutraceuticals anti-inflammatory profile of agents of general use in CV prevention, i.e. affecting lipids, blood pressure, diabetes as well nutraceuticals such as n-3 fatty acids. A crucial issue in the evaluation of the benefit of the anti-in- flammatory activity is the frequent discordance between a beneficial activity on a major risk factor andasso- ciated changes of hsCRP, as in the case of statins vs PCSK9 antagonists. -
CURRENT MEDICAL CHEMISTRY Repositioning of TAK-475 in Mevalonate Kinase Disease: Translating Theory Into Practice
CURRENT MEDICAL CHEMISTRY Repositioning of TAK-475 in Mevalonate Kinase Disease: translating theory into practice Annalisa Marcuzzia, Claudia Loganesb, Claudio Celeghinic, Giulio Kleinerd,* a Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy. b Institute for Maternal and Child Health - IRCCS “Burlo Garofolo”, Trieste, Italy c Department of Life Sciences, University of Trieste, Trieste, Italy. d Department of Neurology, Columbia University Medical Center, New York, NY, USA *Address correspondence to this author at the Department of Neurology, Columbia University Medical Center, New York, NY, USA. Tel/Fax: 212-305-1637 E-mail: [email protected] Abstract Mevalonate Kinase Deficiency (MKD, OMIM #610377) is a rare autosomal recessive metabolic and inflammatory disease. In MKD, defective function of the enzyme mevalonate kinase (MK) due to mutation in the MVK gene, leads to the shortage of mevalonate-derived intermediates, which results in unbalanced prenylation of proteins and altered metabolism of sterols. These defects are reflected in a complex multisystemic inflammatory and metabolic syndrome. Although biologic therapies blocking the pro-inflammatory cytokine interleukin -1, can significantly reduce inflammation, they cannot completely control the clinical symptoms, in particular those affecting the nervous system. For this reason, MKD has been designed as an orphan drug disease. Of note, zaragozic acid, an inhibitor of squalene synthase, has been proven to inhibit the hyper-inflammatory response in cellular models of MKD, by diverting mevalonate intermediates toward geranylgeranylation rather than to the synthesis of squalene. A similar action might be obtained by Lapaquistat (TAK-475, Takeda), a drug that underwent extensive clinical trials as cholesterol lowering agent 10 years ago with a good safety profile. -
Novel Bullet for Dyslipidemia and Cardiovascular Disease in the Horizon: Does Genetics Contribute to the Blueprint?
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Indonesian Journal of Cardiology Jurnal Kardiologi Indonesia J Kardiol Indones. 2014;35:137-8 Editorial ISSN 0126/3773 Novel Bullet for Dyslipidemia and Cardiovascular Disease in the Horizon: Does Genetics Contribute to the Blueprint? Anwar Santoso he development of novel therapy for cholesteryl ester transfer protein (CETP) inhibitor dyslipidemia and cardiovascular diseases (dalcetrapib)5, secreted phospholipase A2 (sPLA2) (CVD) had been constrained by some inhibitor (varespladib)6, and lipoprotein-associated challenges, and several recent approaches phospholipase A2 (LpPLA2) inhibitor (darapladib)7 Thave failed for lack of efficacy. Progress had been failed to convey important clinical benefits in reducing made by a single, greatest contribution from statins CVD outcome. in reducing the risk of CVD. However, the burden of Regrettably, animal models of atherosclerosis CVD and residual risk remains quite high, and new have not reliably convinced at predicting new anti- pathways to prevent and treat the diseases are still atherosclerotic therapies that would be effective in needed. Despite this clear unmet need, nevertheless human. Further, non-invasive atherosclerosis imaging many research institutions have begun to withdraw approaches had not been predictive of clinical outcomes their efforts in discovering ‘the new bullet’ for this in response to therapy. Dalcetrapib, varespladib and prevalent diseases1. darapladib were all shown, to some extent, to get positive Though statins are effective drugs, their utilization and beneficial effects in animal models and in imaging is sometimes fraught with issues, such as failure of studies in humans as well, but unfortunately failed in adequate lipid control in approximately 30% of cases large CVD outcome trials.