What Happened to Hyakutake? on the Trail of a Comet
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Comet's Tale
THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 5, No 1 (Issue 9), 1998 May A May Day in February! Comet Section Meeting, Institute of Astronomy, Cambridge, 1998 February 14 The day started early for me, or attention and there were displays to correct Guide Star magnitudes perhaps I should say the previous of the latest comet light curves in the same field. If you haven’t day finished late as I was up till and photographs of comet Hale- got access to this catalogue then nearly 3am. This wasn’t because Bopp taken by Michael Hendrie you can always give a field sketch the sky was clear or a Valentine’s and Glynn Marsh. showing the stars you have used Ball, but because I’d been reffing in the magnitude estimate and I an ice hockey match at The formal session started after will make the reduction. From Peterborough! Despite this I was lunch, and I opened the talks with these magnitude estimates I can at the IOA to welcome the first some comments on visual build up a light curve which arrivals and to get things set up observation. Detailed instructions shows the variation in activity for the day, which was more are given in the Section guide, so between different comets. Hale- reminiscent of May than here I concentrated on what is Bopp has demonstrated that February. The University now done with the observations and comets can stray up to a offers an undergraduate why it is important to be accurate magnitude from the mean curve, astronomy course and lectures are and objective when making them. -
Small Bodies of the Solar System Don Yeomans
news and views teakre Small bodies of the Solar System Don Yeomans ,-.......-..-.- "_.."..._..".."....".._..I........... ".........._ "_.""".." ".......... " "............_..._.." ....".."-..- ..-.... "....""... Discoveries of comets that behave like asteroids and asteroids that behave like comets are making us reassess our view of Earth's smallest neighbours. cientists have a strong urge to place Mother Nature's objects into neat Sboxes. For most of the past halfcentury, the comets and asteroids of the Solar System did seem to belong in two separate popula- tions -each within their own box. The rules werethatcomets,withawiderangeoforbits, were solid, dirty iceballs originating in the so-called Oort cloud at theedge of the Solar System. Asteroids were definedas bitsofrock anfimed mostly to a region between Mars and Jupiter and travelling roughly in the same plane and inthe same direction as the planets about theSun (Fig. 1).Fromtjme to Lime over the past 50 years, objects were bund that did not really belong in either )OX, but they were onlyconsidered as occa- iional exceptions to the rules. Within the Figure 1 The usual view of corneta and utcroida. The inna Soh System cuntlinr the Sun and the ,ast few years, however,Mother Nature has four terreatrid planar:Mercury, Venu%Euth and Ma.fie lump of mdc that make up thenuin ticked over the boxes entirely, spilling the asteroid bdt between him and Jupiterorbit the Sun in the meplane andthe medirection PJ the :ontents and demanding thatscientists rec- planets. Most tometa have highly dlipticnl orbits, whichmeans they spend most of their timein the )gnizE crossover objects - asteroids that outer reache of the Solar System with only briefpasages dose to the Sun. -
The Comet's Tale
THE COMET’S TALE Journal of the Comet Section of the British Astronomical Association Number 33, 2014 January Not the Comet of the Century 2013 R1 (Lovejoy) imaged by Damian Peach on 2013 December 24 using 106mm F5. STL-11k. LRGB. L: 7x2mins. RGB: 1x2mins. Today’s images of bright binocular comets rival drawings of Great Comets of the nineteenth century. Rather predictably the expected comet of the century Contents failed to materialise, however several of the other comets mentioned in the last issue, together with the Comet Section contacts 2 additional surprise shown above, put on good From the Director 2 appearances. 2011 L4 (PanSTARRS), 2012 F6 From the Secretary 3 (Lemmon), 2012 S1 (ISON) and 2013 R1 (Lovejoy) all Tales from the past 5 th became brighter than 6 magnitude and 2P/Encke, 2012 RAS meeting report 6 K5 (LINEAR), 2012 L2 (LINEAR), 2012 T5 (Bressi), Comet Section meeting report 9 2012 V2 (LINEAR), 2012 X1 (LINEAR), and 2013 V3 SPA meeting - Rob McNaught 13 (Nevski) were all binocular objects. Whether 2014 will Professional tales 14 bring such riches remains to be seen, but three comets The Legacy of Comet Hunters 16 are predicted to come within binocular range and we Project Alcock update 21 can hope for some new discoveries. We should get Review of observations 23 some spectacular close-up images of 67P/Churyumov- Prospects for 2014 44 Gerasimenko from the Rosetta spacecraft. BAA COMET SECTION NEWSLETTER 2 THE COMET’S TALE Comet Section contacts Director: Jonathan Shanklin, 11 City Road, CAMBRIDGE. CB1 1DP England. Phone: (+44) (0)1223 571250 (H) or (+44) (0)1223 221482 (W) Fax: (+44) (0)1223 221279 (W) E-Mail: [email protected] or [email protected] WWW page : http://www.ast.cam.ac.uk/~jds/ Assistant Director (Observations): Guy Hurst, 16 Westminster Close, Kempshott Rise, BASINGSTOKE, Hampshire. -
King David's Altar in Jerusalem Dated by the Bright Appearance of Comet
Annals of Archaeology Volume 1, Issue 1, 2018, PP 30-37 King David’s Altar in Jerusalem Dated by the Bright Appearance of Comet Encke in 964 BC Göran Henriksson Department of Physics and Astronomy, Uppsala University, Box 516, SE 751 20 Uppsala, Sweden *Corresponding Author: Göran Henriksson, Department of Physics and Astronomy, Uppsala University, Box 516, SE 751 20 Uppsala, [email protected] ABSTRACT At the time corresponding to our end of May and beginning of June in 964 BC a bright comet with a very long tail dominated the night sky of the northern hemisphere. It was Comet Encke that was very bright during the Bronze Age, but today it is scarcely visible to the naked eye. It first appeared as a small comet close to the zenith, but for every night it became greater and brighter and moved slowly to the north with its tail pointing southwards. In the first week of June the tail was stretched out across the whole sky and at midnight it was visible close to the meridian. In this paper the author wishes to test the hypothesis that this appearance of Comet Encke corresponds to the motion in the sky above Jerusalem of “the sword of the Angel of the Lord”, mentioned in 1 Chronicles, in the Old Testament. Encke was first circumpolar and finally set at the northern horizon on 8 June in 964 BC at 22. This happened according to the historical chronology between 965 and 960 BC. The calculations of the orbit of Comet Encke have been performed by a computer program developed by the author. -
Ice & Stone 2020
Ice & Stone 2020 WEEK 17: APRIL 19-25, 2020 Presented by The Earthrise Institute # 17 Authored by Alan Hale This week in history APRIL 19 20 21 22 23 24 25 APRIL 20, 1910: Comet 1P/Halley passes through perihelion at a heliocentric distance of 0.587 AU. Halley’s 1910 return, which is described in a previous “Special Topics” presentation, was quite favorable, with a close approach to Earth (0.15 AU) and the exhibiting of the longest cometary tail ever recorded. APRIL 20, 2025: NASA’s Lucy mission is scheduled to pass by the main belt asteroid (52246) Donaldjohanson. Lucy is discussed in a previous “Special Topics” presentation. APRIL 19 20 21 22 23 24 25 APRIL 21, 2024: Comet 12P/Pons-Brooks is predicted to pass through perihelion at a heliocentric distance of 0.781 AU. This comet, with a discussion of its viewing prospects for 2024, is a previous “Comet of the Week.” APRIL 19 20 21 22 23 24 25 APRIL 22, 2020: The annual Lyrid meteor shower should be at its peak. Normally this shower is fairly weak, with a peak rate of not much more than 10 meteors per hour, but has been known to exhibit significantly stronger activity on occasion. The moon is at its “new” phase on April 23 this year and thus the viewing circumstances are very good. COVER IMAGE CREDIT: Front and back cover: This artist’s conception shows how families of asteroids are created. Over the history of our solar system, catastrophic collisions between asteroids located in the belt between Mars and Jupiter have formed families of objects on similar orbits around the sun. -
Southwest Florida Astronomical Society SWFAS the Eyepiece
Southwest Florida Astronomical Society SWFAS The Eyepiece February 2017 Contents: Message from the President .............................................................................. Page 1 Program this Month ......................................................................................... Page 2 Photos by Chuck and Matthew ........................................................................... Page 2 In the Sky this Month ...................................................................................... Page 3 Future Events ................................................................................................. Page 4 Bright Comet Prospects for 2017 ........................................................................ Page 6 Comet Campaign: Amateurs Wanted? ................................................................ Page 14 Club Officers & Positions .................................................................................. Page 16 A MESSAGE FROM THE PRESIDENT I hope everyone is having a good new year. We are now into our heaviest period for public events. On the 11th we have STEMtastic/Edison Day of Discovery downtown. On the 25th we will be at Rotary Park in Cape Coral for the Burrowing Owl Festival. Both of these events are solar observing and displays/handouts. We can use help with these events. You don’t need to bring a scope or even be familiar with solar observing. There is a lot of public interaction and we need people for that. As a followup to the BOF, we will have a public star -
Kuiper Belt and Comets: an Observational Perspective
Kuiper Belt and Comets: An Observational Perspective David Jewitt1 1. Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 [email protected] Note to the Reader These notes outline a series of lectures given at the Saas Fee Winter School held in Murren, Switzerland, in March 2005. As I see it, the main aim of the Winter School is to communicate (especially) with young people in order to inflame their interests in science and to encourage them to see ways in which they can contribute and maybe do a better job than we have done so far. With this in mind, I have written up my lectures in a less than formal but hopefully informative and entertaining style, and I have taken a few detours to discuss subjects that I think are important but which are usually glossed-over in the scientific literature. 1 Preamble Almost exactly 400 years ago, planetary astronomy kick-started the era of modern science, with a series of remarkable discoveries by Galileo concerning the surfaces of the Moon and Sun, the phases of Venus, and the existence and motions of Jupiter’s large satellites. By the early 20th century, the fo- cus of astronomical attention had turned to objects at larger distances, and to questions of galactic structure and cosmological interest. At the start of the 21st century, the tide has turned again. The study of the Solar system, particularly of its newly discovered outer parts, is one of the hottest topics in modern astrophysics with great potential for revealing fundamental clues about the origin of planets and even the emergence of life. -
Water Production Activity of Nine Long-Period Comets from SOHO/SWAN Observations of Hydrogen Lyman-Alpha: 2013–2016 Michael R
Water production activity of nine long-period comets from SOHO/SWAN observations of hydrogen Lyman-alpha: 2013–2016 Michael R. Combi, J. Teemu T. Mäkinen, Jean-Loup Bertaux, Eric Quémerais, Stéphane Ferron, M. Avery, C. Wright To cite this version: Michael R. Combi, J. Teemu T. Mäkinen, Jean-Loup Bertaux, Eric Quémerais, Stéphane Ferron, et al.. Water production activity of nine long-period comets from SOHO/SWAN observations of hydrogen Lyman-alpha: 2013–2016. Icarus, Elsevier, 2018, 300, pp.33 - 46. 10.1016/j.icarus.2017.08.035. insu-01584917 HAL Id: insu-01584917 https://hal-insu.archives-ouvertes.fr/insu-01584917 Submitted on 26 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. NASA Public Access Author manuscript Icarus. Author manuscript; available in PMC 2019 January 15. Published in final edited form as: NASA Author ManuscriptNASA Author Manuscript NASA Author Icarus. 2018 January Manuscript NASA Author 15; 300: 33–46. doi:10.1016/j.icarus.2017.08.035. Water Production Activity of Nine Long-Period Comets from SOHO/SWAN Observations of Hydrogen Lyman-alpha: 2013– 2016 M.R. Combi1, T.T. Mäkinen2, J.-L. -
Thermal and Structural Evolution of Small Bodies in the Solar System
הפקולטה למדעים מדוי יקים RAYMOND AND BEVERLY SACKLER "ע ש ריימונד ובברלי סאקלר FACULTY OF EXACT SCIENCES המחלקה לגיאופיזיקה ומדעים פלנטאריים GEOPHYSICS AND PLANETARY SCIENCES Thermal and Structural Evolution of Small Bodies in the Solar System Thesis submitted for the degree Doctor of Philosophy by Gal Sarid This work was carried out under the supervision of Prof. Dina Prialnik Dept. of Geophysics and Planetary Sciences Submitted to the Senate of Tel Aviv University October 2009 Thermal and Structural Evolution of Small Bodies in the Solar System By Gal Sarid October 2009 Abstract The designation ”small bodies” in Solar System studies refers to astronomical bodies smaller than planets, for which the Sun is the main gravitational attractor. The diversity in the dynamical properties of these bodies may be a result of the specific accretion locations of each class of bodies, or their subsequent orbital evolution, mainly due to gravitational perturbations by the planets. There are many dynamical classes of small bodies, but the ones that share a common dynamical evolution scheme, or a widely accepted chain of origin, are Comets, Centaurs and trans-Neptunian objects. In the work presented here we followed the thermo-chemical evolution of the relevant small bodies. This was done through the use of a sophisticated 1-D or quasi-3D numerical code, which solves the heat transfer and flow equations for a porous multi-component object, with full consideration of interior and exterior boundary conditions. We applied this general thermal evolution code to the modeling of several specific trans-Neptunian objects, which represent a sample of the various physical characteris- tics attributed to this population. -
The Root of a Comet Tail: Rosetta Ion Observations at Comet 67P/Churyumov–Gerasimenko E
A&A 616, A21 (2018) Astronomy https://doi.org/10.1051/0004-6361/201832842 & c ESO 2018 Astrophysics The root of a comet tail: Rosetta ion observations at comet 67P/Churyumov–Gerasimenko E. Behar1,2, H. Nilsson1,2, P. Henri5, L. Berciˇ cˇ1,2, G. Nicolaou1,4, G. Stenberg Wieser1, M. Wieser1, B. Tabone7, M. Saillenfest6, and C. Goetz3 1 Swedish Institute of Space Physics, Kiruna, Sweden e-mail: [email protected] 2 Luleå University of Technology, Department of Computer Science, Electrical and Space Engineering, Kiruna, Sweden 3 Technische Universität Braunschweig Institute for Geophysics and Extraterrestrial Physics, Mendelssohnstraße 3, 38106 Braunschweig, Germany 4 Mullard Space Science Laboratory, University College London, Dorking, UK 5 LPC2E, CNRS, Orléans, 45071, France 6 IMCCE, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, LAL, Université de Lille, 75014 Paris, France 7 LERMA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Université, UPMC Univ. Paris 06, 75014 Paris, France Received 16 February 2018 / Accepted 19 April 2018 ABSTRACT Context. The first 1000 km of the ion tail of comet 67P/Churyumov–Gerasimenko were explored by the European Rosetta spacecraft, 2.7 au away from the Sun. Aims. We characterised the dynamics of both the solar wind and the cometary ions on the night-side of the comet’s atmosphere. Methods. We analysed in situ ion and magnetic field measurements and compared the data to a semi-analytical model. Results. The cometary ions are observed flowing close to radially away from the nucleus during the entire excursion. The solar wind is deflected by its interaction with the new-born cometary ions. -
Interception of Comet Hyakutake's Ion Tail at a Distance of 500 Million Kilometres
letters to nature to distorted discontinuities propagating through the comet, as were ................................................................. seen at comet Halley18, but not previously detected in a tail. One of Interception of comet Hyakutake's these discontinuities may be related to a solar-wind discontinuity detected by Ulysses at 00:53 UT on 1 May. The observation of such ion tail at a distance distorted discontinuities is consistent with some tail ray formation theories19,20. The orientations of the solar-wind ®eld lines surround- of 500 million kilometres ing the tail suggest upstream pile-up, as the wind encountered the slower tail. Due to the comet's retrograde motion, the tail's G. Gloeckler*², J. Geiss³, N. A. Schwadron², L. A. Fisk², orientation was almost opposite to that of the surrounding ®eld T. H. Zurbuchen², F. M. Ipavich*, R. von Steiger³, H. Balsiger§ (which followed the archimedean spiral expected from the Sun's & B. Wilkenk rotation). This difference in orientations probably meant that a complex interaction region surrounded the tail. * Department of Physics and Institute for Physical Science and Technology, Hyakutake was intrinsically less active than Halley (their water University of Maryland, College Park, Maryland 20742, USA 29 production rates at 0.9 AU from the Sun being 1.8 ´ 10 and 5.5 ´ ² Department of Atmospheric, Oceanic, and Space Sciences, University of 1029 molecules s-1, respectively11,21), but Hyakutake's small helio- Michigan, Ann Arbor, Michigan 48109, USA centric distance on 23 April 1996 resulted in a higher production ³ International Space Science Institute, Hallerstrasse 6, CH-3012 Bern, rate, making it the most productive comet encountered by a space- Switzerland craft. -
THE COMETS of DESTINY MAJOR NAKED-EYE COMETS Countdown of the Prophetic Celestial Harbingers by Luis B
THE COMETS OF DESTINY MAJOR NAKED-EYE COMETS Countdown of the Prophetic Celestial Harbingers by Luis B. Vega [email protected] www.PostScripts.org The purpose of this study is to highlight several key and unique properties of the ‘Naked-Eye’ comets that have thus far been cataloged from 1996-2012. There appears to be somewhat of a ’pattern’ since 1996. Perhaps such a pattern of these types of comets is heralding a time in the upcoming decade that will be of some great significance prophetically. Several elements of these comets will be noted and some definitions will be provided for context. The dates used to mark the comets on the timeline are taken from data that was available, of when the comets reached their ‘epoch’ or perihelion and not necessarily when they were first ‘seen’. Metaphorically, comets seem to be ‘underlining’ the storyline of the Zodiac as it passes through certain constellations of the Mazzaroth. If the Mazzaroth is indeed the ‘Gospel’ written in the Stars as many Biblical scholars propose, then these comet’s path are accenting or underlining specific parts of the ’Witness’ or Gospel in the Cosmos. The ‘Sun, Moon and the Stars’ are like a clock with the 3 corresponding hands, the hour, the minutes and the seconds, etc. YHVH, the Creator of the Universe wants the world, and especially His Bride, those within His Church to take note of such Signs as they were designed to tell time. It could be clocking the countdown to the Rapture, the world’s judgment, and 2nd coming of Jesus.