Fibroblast Growth Factor 2 Regulates Activity and Gene Expression of Human Post‐Mitotic Excitatory Neurons

Total Page:16

File Type:pdf, Size:1020Kb

Fibroblast Growth Factor 2 Regulates Activity and Gene Expression of Human Post‐Mitotic Excitatory Neurons JOURNAL OF NEUROCHEMISTRY | 2018 | 145 | 188–203 doi: 10.1111/jnc.14255 , *Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA †Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA ‡Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan, USA Abstract Using hES cell lines that inducibly express NEUROG2 as well Many neuropsychiatric disorders are thought to result from as GCaMP6f, we were able to characterize spontaneous subtle changes in neural circuit formation. We used human calcium activity in these neurons and show that calcium embryonic stem cells and induced pluripotent stem cells transients increase in the presence of FGF2. The FGF2- (hiPSCs) to model mature, post-mitotic excitatory neurons responsive genes were determined by RNA-Seq. FGF2- and examine effects of fibroblast growth factor 2 (FGF2). FGF2 regulated genes previously identified in non-neuronal cell types gene expression is known to be altered in brain regions of major were up-regulated (EGR1, ETV4, SPRY4, and DUSP6) as a depressive disorder (MDD) patients and FGF2 has anti- result of chronic FGF2 treatment of siNeurons. Novel neuron- depressive effects in animal models of depression. We gener- specific genes were also identified that may mediate FGF2- ated stable inducible neurons (siNeurons) conditionally dependent increases in synaptic efficacy including NRXN3, expressing human neurogenin-2 (NEUROG2) to generate a SYT2, and GALR1. Since several of these genes have been homogenous population of post-mitotic excitatory neurons and implicated in MDD previously, these results will provide the study the functional as well as the transcriptional effects of basis for more mechanistic studies of the role of FGF2 in MDD. FGF2. Upon induction of NEUROG2 with doxycycline, the vast Keywords: FGF2, glutamatergic, neurogenin-2, neuronal, majority of cells are post-mitotic, and the gene expression stem cells. profile recapitulates that of excitatory neurons within 6 days. J. Neurochem. (2018) 145, 188--203. Cover Image for this issue: doi: 10.1111/jnc.14175. Received August 4, 2017; revised manuscript received November 7, Major depressive disorder (MDD) is one of the most 2017; accepted November 10, 2017. common psychiatric disorders affecting about 28% of the Address correspondence and reprint requests to Dr Michael Uhler, Molecular and Behavioral Research Institute, University of Michigan, US population during their lifetime (Vandeleur et al. 2017). 109 Zina Pitcher Pl., Ann Arbor, MI 48109-2200, USA. E-mail: Because of the clinical and genetic heterogeneity of MDD, [email protected] its pathophysiology remains elusive (Tanti and Belzung Abbreviations used: ACC, anterior cingulate cortex; BDNF, brain- 2010). Previous research has demonstrated that alterations derived neurotrophic factor; DLPFC, dorsolateral prefrontal cortex; Dox, 0 in various neurotransmitters such as serotonin as well as doxycycline; EDTA, ethylenediaminetertaacetic acid; EdU, 5-ethynyl-2 - deoxyuridine; EGFP, enhanced green fluorescent protein; ESCs, embry- neurotrophic factors such as brain-derived neurotrophic onic stem cells; FGF, fibroblast growth factor; FGFR, fibroblast growth factors contribute to MDD (Duman and Aghajanian 2012). factor receptor; GDNF, glial cell line-derived neurotrophic factor; GO, More recently, reduced glutamatergic signaling has been gene ontology; GWAS, genome-wide association studies; iPSCs, linked to MDD (Eisch and Petrik 2012). Brain imaging of induced pluripotent stem cells; IRES, internal ribosome entry site; MDD patients suggests a volume reduction in hippocam- MAPK, mitogen-activated protein kinase; MDD, major depressive disorder; MEA, multielectrode array; PEI, polyethyleneimine; PLC/ pus, dorsolateral prefrontal cortex, and anterior cingulate PKA, phospholipase C/Protein kinase A; qRT-PCR, quantitative real- cortex (Sacher et al. 2012). Post-mortem analyses of these time PCR; RTK, receptor tyrosine kinase; STAT, signal transducer and same brain regions implicate several genes correlating with activator of transcription; TRE, tetracycline response elements. 188 © 2017 International Society for Neurochemistry, J. Neurochem. (2018) 145, 188--203 FGF2 regulation of excitatory neurons 189 fi MDD but the most signi cantly dysregulated genes in Materials and methods MDD patients belong to the fibroblast growth factor (FGF) family (Turner et al. 2016). Microarray hybridization Cell culture and transfection of human embryonic stem cells studies of the dorsolateral prefrontal cortex region of H9 embryonic stem cells (ESCs) were obtained from WiCell Research MDD patients show that the ligand FGF9 is up-regulated Resources (WiCell, Madison, WI, USA; RRID: CVCL_9773); the relative to controls while the ligand FGF2 and the FGF control induced pluripotent stem cells (iPSC) line was derived from fi receptors (FGFR2 and FGFR3) are down-regulated (Evans commercially available human foreskin broblasts (MTI Global Systems, Gaithersburg, Maryland, USA; Cat. No. GSC-3002) and et al. 2004). reprogrammed using episomal plasmids as described (Okita et al. Animal studies using various models of depression in 2011). Both ESCs and iPSCs were maintained in feeder-free rodents have shown anti-depressant effects of FGF2 (Jarosik conditions using Matrigel substrate (Corning; Corning, NY, USA et al. 2011). Rats undergoing social defeat stress showed Cat. No. CB40234B), mTeSR8 medium (E8-Stem Cell Technologies, decreased hippocampal FGF2 expression and administration Cambridge, MA, USA; Cat. No. 05940), and passaged every 4– of FGF2 reversed the behavioral correlates of depression 5 days with EDTA as described (Beers et al. 2012). The H9 ESC line (Elsayed et al. 2012). Furthermore, treatment of adult rats is not a commonly misidentified cell line (iclac.org/databases/cross- with anti-depressants resulted in increased FGF2 expression contaminations). All human cell culture experiments were approved in cerebral cortex and hippocampus (Mallei et al. 2002; by the University of Michigan Human Pluripotent Stem Cell Research Bachis et al. 2008). FGF2 knockout mice displayed Oversight Committee and the University of Michigan Institutional increased anxiety and the phenotype was completely rescued Review Board. upon treatment with FGF2 in adulthood (Salmaso et al. 2016). It has also been established that FGF2 treatment of rat Generation of siNeuron hES and hiPSC lines using Tol2 recombinase – cortical neurons enhances of glutamatergic signaling (Li Stem cells were plated onto Matrigel-coated plates at a density of 1 5 9 104 cells per well in the presence of 1 lM Y-26732 (Tocris et al. 2002). These reports together implicate a role for FGF2 Bio, Minneapolis, MN, USA; Cat. No. 1254) in E8 media. The regulation of fully developed neurons in mediating anti- following day, the media was changed to E8 alone, and cells were depressant effect. transfected with a total of 2.5 lg of Tol2-plasmids (Balciunas et al. FGF2 is the most abundant ligand in the developing brain 2006). Plasmids to be chromosomally integrated contained the Tol2 (Vaccarino et al. 1999; Ford-Perriss et al. 2001) and the arms and were derived from the pMiniTol2 parental plasmid human genome contains 22 genes encoding FGF ligands as (Balciunas et al. 2006). These plasmids included the pMT-US2- well as four genes encoding receptors, most of which are TetOn-internal ribosome entry site-enhanced green fluorescent expressed in the developing nervous system (Guillemot and protein (EGFP) (20% of transfected DNA), pMT-tetracycline Zimmer 2011). All four FGFR genes encode single trans- response elements-hNeurog2 (20% of transfected DNA), and – membrane protein with extracellular immunoglobulin pMT-US2-puro (5 10%) which were generated from previously domain and intracellular tyrosine kinase domains. The described plasmids lacking the minitol integration arms (Huang et al. 2010, 2015). In addition to the integrating plasmids, the binding of an FGF ligand to an FGFR causes dimerization transfected DNA contained 40–50% of the pUS2-Tol2 plasmid resulting in autophosphorylation and activation of four major which expresses the Tol2 recombinase. pUS2-Tol2 was generated intracellular pathways: Ras/MAP kinase, phospholipase C/ by excising the Tol2 coding region from pCMV-Tol2 (Balciunas protein kinase A, signal transducer and activator of tran- et al. 2006) and inserting it into the multiple cloning site of the scription, and/or PI3 kinase signaling pathway. Once pUS2 plasmid containing the human ubiquitin C promoter. activated, these pathways phosphorylate transcription factors Following transfection of 2.5 lg of mixed plasmid DNA using to alter the expression of FGF-dependent genes (Ornitz and Mirus LT1 (Thermo Fisher, Waltham, MA, USA; Cat. No. MIR2300), Itoh 2015). the cells were fed with E8 media after 24 h. At 72 h after transfection, In order to better understand the specific role of FGF2 in cells were treated with 0.8 lg/mL puromycin in E8 media for 24–48 h human neuronal function, we investigated the global tran- followed by growth in E8 media. Approximately 1 week later, scriptional effects of FGF2 in post-mitotic human gluta- colonies of approximately 500 cells were picked manually into matergic neurons and the signaling mechanisms that control individual wells of a 24-well plate. The clones were expanded and replicate cultures were tested for differentiation in the presence of dox. these transcriptional changes. We generated doxycycline (dox)-inducible stable human
Recommended publications
  • Blueprint Genetics ANOS1 Single Gene Test
    ANOS1 single gene test Test code: S00125 Phenotype information Kallmann syndrome Alternative gene names KALIG-1, WFDC19 Some regions of the gene are duplicated in the genome leading to limited sensitivity within the regions. Thus, low-quality variants are filtered out from the duplicated regions and only high-quality variants confirmed by other methods are reported out. Read more. Panels that include the ANOS1 gene Kallmann Syndrome Panel Abnormal Genitalia/ Disorders of Sex Development Panel Test Strengths The strengths of this test include: CAP accredited laboratory CLIA-certified personnel performing clinical testing in a CLIA-certified laboratory Powerful sequencing technologies, advanced target enrichment methods and precision bioinformatics pipelines ensure superior analytical performance Careful construction of clinically effective and scientifically justified gene panels Our Nucleus online portal providing transparent and easy access to quality and performance data at the patient level Our publicly available analytic validation demonstrating complete details of test performance ~2,000 non-coding disease causing variants in our clinical grade NGS assay for panels (please see ‘Non-coding disease causing variants covered by this test’) Our rigorous variant classification scheme Our systematic clinical interpretation workflow using proprietary software enabling accurate and traceable processing of NGS data Our comprehensive clinical statements Test Limitations This test does not detect the following: Complex inversions Gene conversions
    [Show full text]
  • Mechanical Forces Induce an Asthma Gene Signature in Healthy Airway Epithelial Cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T
    www.nature.com/scientificreports OPEN Mechanical forces induce an asthma gene signature in healthy airway epithelial cells Ayşe Kılıç1,10, Asher Ameli1,2,10, Jin-Ah Park3,10, Alvin T. Kho4, Kelan Tantisira1, Marc Santolini 1,5, Feixiong Cheng6,7,8, Jennifer A. Mitchel3, Maureen McGill3, Michael J. O’Sullivan3, Margherita De Marzio1,3, Amitabh Sharma1, Scott H. Randell9, Jefrey M. Drazen3, Jefrey J. Fredberg3 & Scott T. Weiss1,3* Bronchospasm compresses the bronchial epithelium, and this compressive stress has been implicated in asthma pathogenesis. However, the molecular mechanisms by which this compressive stress alters pathways relevant to disease are not well understood. Using air-liquid interface cultures of primary human bronchial epithelial cells derived from non-asthmatic donors and asthmatic donors, we applied a compressive stress and then used a network approach to map resulting changes in the molecular interactome. In cells from non-asthmatic donors, compression by itself was sufcient to induce infammatory, late repair, and fbrotic pathways. Remarkably, this molecular profle of non-asthmatic cells after compression recapitulated the profle of asthmatic cells before compression. Together, these results show that even in the absence of any infammatory stimulus, mechanical compression alone is sufcient to induce an asthma-like molecular signature. Bronchial epithelial cells (BECs) form a physical barrier that protects pulmonary airways from inhaled irritants and invading pathogens1,2. Moreover, environmental stimuli such as allergens, pollutants and viruses can induce constriction of the airways3 and thereby expose the bronchial epithelium to compressive mechanical stress. In BECs, this compressive stress induces structural, biophysical, as well as molecular changes4,5, that interact with nearby mesenchyme6 to cause epithelial layer unjamming1, shedding of soluble factors, production of matrix proteins, and activation matrix modifying enzymes, which then act to coordinate infammatory and remodeling processes4,7–10.
    [Show full text]
  • Instability Restricts Signaling of Multiple Fibroblast Growth Factors
    Cell. Mol. Life Sci. DOI 10.1007/s00018-015-1856-8 Cellular and Molecular Life Sciences RESEARCH ARTICLE Instability restricts signaling of multiple fibroblast growth factors Marcela Buchtova • Radka Chaloupkova • Malgorzata Zakrzewska • Iva Vesela • Petra Cela • Jana Barathova • Iva Gudernova • Renata Zajickova • Lukas Trantirek • Jorge Martin • Michal Kostas • Jacek Otlewski • Jiri Damborsky • Alois Kozubik • Antoni Wiedlocha • Pavel Krejci Received: 18 June 2014 / Revised: 7 February 2015 / Accepted: 9 February 2015 Ó Springer Basel 2015 Abstract Fibroblast growth factors (FGFs) deliver ex- failure to activate FGF receptor signal transduction over tracellular signals that govern many developmental and long periods of time, and influence specific cell behavior regenerative processes, but the mechanisms regulating FGF in vitro and in vivo. Stabilization via exogenous heparin signaling remain incompletely understood. Here, we ex- binding, introduction of stabilizing mutations or lowering plored the relationship between intrinsic stability of FGF the cell cultivation temperature rescues signaling of un- proteins and their biological activity for all 18 members of stable FGFs. Thus, the intrinsic ligand instability is an the FGF family. We report that FGF1, FGF3, FGF4, FGF6, important elementary level of regulation in the FGF sig- FGF8, FGF9, FGF10, FGF16, FGF17, FGF18, FGF20, and naling system. FGF22 exist as unstable proteins, which are rapidly de- graded in cell cultivation media. Biological activity of Keywords Fibroblast growth factor Á FGF Á Unstable Á FGF1, FGF3, FGF4, FGF6, FGF8, FGF10, FGF16, FGF17, Proteoglycan Á Regulation and FGF20 is limited by their instability, manifesting as Electronic supplementary material The online version of this article (doi:10.1007/s00018-015-1856-8) contains supplementary material, which is available to authorized users.
    [Show full text]
  • Expression of Fibroblast Growth Factor 9 in Normal Human Lung and Idiopathic Pulmonary Fibrosis
    JHCXXX10.1369/0022155413497366Coffey et al.FGF9 in IPF 497366research-article2013 Article Journal of Histochemistry & Cytochemistry 61(9) 671 –679 © The Author(s) 2013 Reprints and permissions: sagepub.com/journalsPermissions.nav DOI: 10.1369/0022155413497366 jhc.sagepub.com Expression of Fibroblast Growth Factor 9 in Normal Human Lung and Idiopathic Pulmonary Fibrosis Emily Coffey, Donna R. Newman, and Philip L. Sannes Department of Molecular Biomedical Sciences, Center for Comparative Medicine and Translational Research, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina Summary The fibroblast growth factor (FGF) family of signaling ligands contributes significantly to lung development and maintenance in the adult. FGF9 is involved in control of epithelial branching and mesenchymal proliferation and expansion in developing lungs. However, its activity and expression in the normal adult lung and by epithelial and interstitial cells in fibroproliferative diseases like idiopathic pulmonary fibrosis (IPF) are unknown. Tissue samples from normal organ donor human lungs and those of a cohort of patients with mild to severe IPF were sectioned and stained for the immunolocalization of FGF9. In normal lungs, FGF9 was confined to smooth muscle surrounding airways, alveolar ducts and sacs, and blood vessels. In addition to these same sites, lungs of IPF patients expressed FGF9 in a population of myofibroblasts within fibroblastic foci, hypertrophic and hyperplastic epithelium of airways and alveoli, and smooth muscle cells surrounding vessels embedded in thickened interstitium. The results demonstrate that FGF9 protein increased in regions of active cellular hyperplasia, metaplasia, and fibrotic expansion of IPF lungs, and in isolated human lung fibroblasts treated with TGF- β1 and/or overexpressing Wnt7B.
    [Show full text]
  • Novel Mutations in ANOS1 and FGFR1 Genes Agnieszka Gach1* , Iwona Pinkier1, Maria Szarras-Czapnik2, Agata Sakowicz3 and Lucjusz Jakubowski1
    Gach et al. Reproductive Biology and Endocrinology (2020) 18:8 https://doi.org/10.1186/s12958-020-0568-6 RESEARCH Open Access Expanding the mutational spectrum of monogenic hypogonadotropic hypogonadism: novel mutations in ANOS1 and FGFR1 genes Agnieszka Gach1* , Iwona Pinkier1, Maria Szarras-Czapnik2, Agata Sakowicz3 and Lucjusz Jakubowski1 Abstract Background: Congenital hypogonadotropic hypogonadism (CHH) is a rare disease, triggered by defective GnRH secretion, that is usually diagnosed in late adolescence or early adulthood due to the lack of spontaneous pubertal development. To date more than 30 genes have been associated with CHH pathogenesis with X-linked recessive, autosomal dominant, autosomal recessive and oligogenic modes of inheritance. Defective sense of smell is present in about 50–60% of CHH patients and called Kallmann syndrome (KS), in contrast to patients with normal sense of smell referred to as normosmic CHH. ANOS1 and FGFR1 genes are all well established in the pathogenesis of CHH and have been extensively studied in many reported cohorts. Due to rarity and heterogenicity of the condition the mutational spectrum, even in classical CHH genes, have yet to be fully characterized. Methods: To address this issue we screened for ANOS1 and FGFR1 variants in a cohort of 47 unrelated CHH subjects using targeted panel sequencing. All potentially pathogenic variants have been validated with Sanger sequencing. Results: Sequencing revealed two ANOS1 and four FGFR1 mutations in six subjects, of which five are novel and one had been previously reported in CHH. Novel variants include a single base pair deletion c.313delT in exon 3 of ANOS1, three missense variants of FGFR1 predicted to result in the single amino acid substitutions c.331C > T (p.R111C), c.1964 T > C (p.L655P) and c.2167G > A (p.E723K) and a 15 bp deletion c.374_388delTGCCCGCAGACTCCG in exon 4 of FGFR1.
    [Show full text]
  • Gene Expression Profiling of Corpus Luteum Reveals the Importance Of
    bioRxiv preprint doi: https://doi.org/10.1101/673558; this version posted February 27, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Gene expression profiling of corpus luteum reveals the 2 importance of immune system during early pregnancy in 3 domestic sheep. 4 Kisun Pokharel1, Jaana Peippo2 Melak Weldenegodguad1, Mervi Honkatukia2, Meng-Hua Li3*, Juha 5 Kantanen1* 6 1 Natural Resources Institute Finland (Luke), Jokioinen, Finland 7 2 Nordgen – The Nordic Genetic Resources Center, Ås, Norway 8 3 College of Animal Science and Technology, China Agriculture University, Beijing, China 9 * Correspondence: MHL, [email protected]; JK, [email protected] 10 Abstract: The majority of pregnancy loss in ruminants occurs during the preimplantation stage, which is thus 11 the most critical period determining reproductive success. While ovulation rate is the major determinant of 12 litter size in sheep, interactions among the conceptus, corpus luteum and endometrium are essential for 13 pregnancy success. Here, we performed a comparative transcriptome study by sequencing total mRNA from 14 corpus luteum (CL) collected during the preimplantation stage of pregnancy in Finnsheep, Texel and F1 15 crosses, and mapping the RNA-Seq reads to the latest Rambouillet reference genome. A total of 21,287 genes 16 were expressed in our dataset. Highly expressed autosomal genes in the CL were associated with biological 17 processes such as progesterone formation (STAR, CYP11A1, and HSD3B1) and embryo implantation (eg.
    [Show full text]
  • FGF Signaling Regulates Mesenchymal Differentiation and Skeletal Patterning Along the Limb Bud Proximodistal Axis Kai Yu and David M
    RESEARCH ARTICLE 483 Development 135, 483-491 (2008) doi:10.1242/dev.013268 FGF signaling regulates mesenchymal differentiation and skeletal patterning along the limb bud proximodistal axis Kai Yu and David M. Ornitz* Fibroblast growth factors (FGFs) are signals from the apical ectodermal ridge (AER) that are essential for limb pattern formation along the proximodistal (PD) axis. However, how patterning along the PD axis is regulated by AER-FGF signals remains controversial. To further explore the molecular mechanism of FGF functions during limb development, we conditionally inactivated fgf receptor 2 (Fgfr2) in the mouse AER to terminate all AER functions; for comparison, we inactivated both Fgfr1 and Fgfr2 in limb mesenchyme to block mesenchymal AER-FGF signaling. We also re-examined published data in which Fgf4 and Fgf8 were inactivated in the AER. We conclude that limb skeletal phenotypes resulting from loss of AER-FGF signals cannot simply be a consequence of excessive mesenchymal cell death, as suggested by previous studies, but also must be a consequence of reduced mesenchymal proliferation and a failure of mesenchymal differentiation, which occur following loss of both Fgf4 and Fgf8. We further conclude that chondrogenic primordia formation, marked by initial Sox9 expression in limb mesenchyme, is an essential component of the PD patterning process and that a key role for AER-FGF signaling is to facilitate SOX9 function and to ensure progressive establishment of chondrogenic primordia along the PD axis. KEY WORDS: FGF, FGF receptor, Apical ectodermal ridge (AER), Limb bud development, Chondrogenesis INTRODUCTION Previous studies indicate that AER-FGF signals are important The apical ectodermal ridge (AER) is a specialized ectodermal for maintaining mesenchymal cell survival during limb structure formed at the distal tip of the vertebrate limb bud that is development (Boulet et al., 2004; Sun et al., 2002).
    [Show full text]
  • FGF Signaling Network in the Gastrointestinal Tract (Review)
    163-168 1/6/06 16:12 Page 163 INTERNATIONAL JOURNAL OF ONCOLOGY 29: 163-168, 2006 163 FGF signaling network in the gastrointestinal tract (Review) MASUKO KATOH1 and MASARU KATOH2 1M&M Medical BioInformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center Research Institute, Tokyo 104-0045, Japan Received March 29, 2006; Accepted May 2, 2006 Abstract. Fibroblast growth factor (FGF) signals are trans- Contents duced through FGF receptors (FGFRs) and FRS2/FRS3- SHP2 (PTPN11)-GRB2 docking protein complex to SOS- 1. Introduction RAS-RAF-MAPKK-MAPK signaling cascade and GAB1/ 2. FGF family GAB2-PI3K-PDK-AKT/aPKC signaling cascade. The RAS~ 3. Regulation of FGF signaling by WNT MAPK signaling cascade is implicated in cell growth and 4. FGF signaling network in the stomach differentiation, the PI3K~AKT signaling cascade in cell 5. FGF signaling network in the colon survival and cell fate determination, and the PI3K~aPKC 6. Clinical application of FGF signaling cascade in cell polarity control. FGF18, FGF20 and 7. Clinical application of FGF signaling inhibitors SPRY4 are potent targets of the canonical WNT signaling 8. Perspectives pathway in the gastrointestinal tract. SPRY4 is the FGF signaling inhibitor functioning as negative feedback apparatus for the WNT/FGF-dependent epithelial proliferation. 1. Introduction Recombinant FGF7 and FGF20 proteins are applicable for treatment of chemotherapy/radiation-induced mucosal injury, Fibroblast growth factor (FGF) family proteins play key roles while recombinant FGF2 protein and FGF4 expression vector in growth and survival of stem cells during embryogenesis, are applicable for therapeutic angiogenesis. Helicobacter tissues regeneration, and carcinogenesis (1-4).
    [Show full text]
  • Age-Driven Developmental Drift in the Pathogenesis of Idiopathic Pulmonary Fibrosis
    BACK TO BASICS INTERSTITIAL LUNG DISEASES | Age-driven developmental drift in the pathogenesis of idiopathic pulmonary fibrosis Moisés Selman1, Carlos López-Otín2 and Annie Pardo3 Affiliations: 1Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico city, Mexico. 2Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain. 3Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico city, Mexico. Correspondence: Moisés Selman, Instituto Nacional de Enfermedades Respiratorias, Tlalpan 4502, CP 14080, México DF, México. E-mail: [email protected] ABSTRACT Idiopathic pulmonary fibrosis (IPF) is a progressive and usually lethal disease of unknown aetiology. A growing body of evidence supports that IPF represents an epithelial-driven process characterised by aberrant epithelial cell behaviour, fibroblast/myofibroblast activation and excessive accumulation of extracellular matrix with the subsequent destruction of the lung architecture. The mechanisms involved in the abnormal hyper-activation of the epithelium are unclear, but we propose that recapitulation of pathways and processes critical to embryological development associated with a tissue specific age-related stochastic epigenetic drift may be implicated. These pathways may also contribute to the distinctive behaviour of IPF fibroblasts. Genomic and epigenomic studies have revealed that wingless/ Int, sonic hedgehog and other developmental signalling pathways are reactivated and deregulated in IPF. Moreover, some of these pathways cross-talk with transforming growth factor-β activating a profibrotic feedback loop. The expression pattern of microRNAs is also dysregulated in IPF and exhibits a similar expression profile to embryonic lungs. In addition, senescence, a process usually associated with ageing, which occurs early in alveolar epithelial cells of IPF lungs, likely represents a conserved programmed developmental mechanism.
    [Show full text]
  • TABLE S1 Complete Overview of Protocols for Induction of Pscs Into
    TABLE S1 Complete overview of protocols for induction of PSCs into renal lineages Ref 2D/ Cell type Protocol Days Growth factors Outcome Other analyses # 3D hiPSC, hESC, Collagen type I tx murine epidydymal fat pads,ex vivo 54 2D 8 Y27632, AA, CHIR, BMP7 IM miPSC, mESC Matrigel with murine fetal kidney hiPSC, hESC, Suspension,han tx murine epidydymal fat pads,ex vivo 54 2D 20 AA, CHIR, BMP7 IM miPSC, mESC ging drop with murine fetal kidney tx murine epidydymal fat pads,ex vivo 55 hiPSC, hESC Matrigel 2D 14 CHIR, TTNPB/AM580, Y27632 IM with murine fetal kidney Injury, tx murine epidydymal fat 57 hiPSC Suspension 2D 28 AA, CHIR, BMP7, TGF-β1, TTNPB, DMH1 NP pads,spinal cord assay Matrigel,membr 58 mNPC, hESC 3D 7 BPM7, FGF9, Heparin, Y27632, CHIR, LDN, BMP4, IGF1, IGF2 NP Clonal expansion ane filter iMatrix,spinal 59 hiPSC 3D 10 LIF, Y27632, FGF2/FGF9, TGF-α, DAPT, CHIR, BMP7 NP Clonal expansion cord assay iMatrix,spinal 59 murine NP 3D 8-19 LIF, Y27632, FGF2/FGF9, TGF- α, DAPT, CHIR, BMP7 NP Clonal expansion cord assay murine NP, Suspension, 60 3D 7-19 BMP7, FGF2, Heparin, Y27632, LIF NP Nephrotoxicity, injury model human NP membrane filter Suspension, Contractility and permeability assay, ex 61 hiPSC 2D 10 AA, BMP7, RA Pod gelatin vivo with murine fetal kidney Matrigel. 62 hiPSC, hESC fibronectin, 2D < 50 FGF2, AA, WNT3A, BMP4, BMP7, RA, FGF2, HGF or RA + VITD3 Pod collagen type I Matrigel, Contractility and uptake assay,ex vivo 63 hiPSC 2D 13 Y27632, CP21R7, BMP4, RA, BMP7, FGF9, VITD3 Pod collagen type I with murine fetal kidney Collagen
    [Show full text]
  • Puberdade Precoce
    PUBERDADE PRECOCE Causas centrais JESUS BARREIRO-CONDE Bibliografia: Chen M, Eugster EA. Central Precocious Puberty: Update on Diagnosis and Treatment. Paediatr Drugs. 2015;17(4):273-81. Harrington J, Palmert M R. Definition, etiology, and evaluation of precocious puberty. En UpToDate. Hoppin A G, Martin K, Ed. 2018. Available at: http://www.UpToDate.com/ Bereket A. A Critical Appraisal of the Effect of Gonadotropin-Releasing Hormon Analog Treatment on Adult Height of Girls with Central Precocious Puberty. J Clin Res Pediatr Endocrinol. 2017 30;9(Suppl 2):33-48. MANUAL 2018 | CURSO TEÓRICO-PRÁTICO DE PUBERDADE 56 PUBERDADE PRECOCE | CAUSAS CENTRAIS | JESUS BARREIRO-CONDE HHS Public Access Author manuscript Author Manuscript Author Paediatr Drugs. Author manuscript; available in PMC 2018 March 27. Published in final edited form as: Paediatr Drugs. 2015 August ; 17(4): 273–281. doi:10.1007/s40272-015-0130-8. Central Precocious Puberty: Update on Diagnosis and Treatment Melinda Chen1 and Erica A. Eugster1 1Section of Pediatric Endocrinology, Department of Pediatrics, Riley Hospital for Children, Indiana University School of Medicine, 705 Riley Hospital Drive, Room # 5960, Indianapolis, IN 46202, USA Author Manuscript Author Abstract Central precocious puberty (CPP) is characterized by the same biochemical and physical features as normally timed puberty but occurs at an abnormally early age. Most cases of CPP are seen in girls, in whom it is usually idiopathic. In contrast, ∼50 % of boys with CPP have an identifiable cause. The diagnosis of CPP relies on clinical, biochemical, and radiographic features. Untreated, CPP has the potential to result in early epiphyseal fusion and a significant compromise in adult height.
    [Show full text]
  • Sprouty Proteins, Masterminds of Receptor Tyrosine Kinase Signaling
    CORE Metadata, citation and similar papers at core.ac.uk Provided by RERO DOC Digital Library Angiogenesis (2008) 11:53–62 DOI 10.1007/s10456-008-9089-1 ORIGINAL PAPER Sprouty proteins, masterminds of receptor tyrosine kinase signaling Miguel A. Cabrita Æ Gerhard Christofori Received: 14 December 2007 / Accepted: 7 January 2008 / Published online: 25 January 2008 Ó Springer Science+Business Media B.V. 2008 Abstract Angiogenesis relies on endothelial cells prop- Abbreviations erly processing signals from growth factors provided in Ang Angiopoietin both an autocrine and a paracrine manner. These mitogens c-Cbl Cellular homologue of Casitas B-lineage bind to their cognate receptor tyrosine kinases (RTKs) on lymphoma proto-oncogene product the cell surface, thereby activating a myriad of complex EGF Epidermal growth factor intracellular signaling pathways whose outputs include cell EGFR EGF receptor growth, migration, and morphogenesis. Understanding how eNOS Endothelial nitric oxide synthase these cascades are precisely controlled will provide insight ERK Extracellular signal-regulated kinase into physiological and pathological angiogenesis. The FGF Fibroblast growth factor Sprouty (Spry) family of proteins is a highly conserved FGFR FGF receptor group of negative feedback loop modulators of growth GDNF Glial-derived neurotrophic factor factor-mediated mitogen-activated protein kinase (MAPK) Grb2 Growth factor receptor-bound protein 2 activation originally described in Drosophila. There are HMVEC Human microvascular endothelial cell four mammalian orthologs (Spry1-4) whose modulation of Hrs Hepatocyte growth factor-regulated tyrosine RTK-induced signaling pathways is growth factor – and kinase substrate cell context – dependant. Endothelial cells are a group of HUVEC Human umbilical vein endothelial cell highly differentiated cell types necessary for defining the MAPK Mitogen-activated protein kinase mammalian vasculature.
    [Show full text]