Coastal Dynamics 2017 Paper No. 69 399 Rip Currents Vorticity Scaling
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
Well-Balanced Schemes for the Shallow Water Equations with Coriolis Forces
Well-balanced schemes for the shallow water equations with Coriolis forces Alina Chertock, Michael Dudzinski, Alexander Kurganov & Mária Lukáčová- Medvid’ová Numerische Mathematik ISSN 0029-599X Volume 138 Number 4 Numer. Math. (2018) 138:939-973 DOI 10.1007/s00211-017-0928-0 1 23 Your article is protected by copyright and all rights are held exclusively by Springer- Verlag GmbH Germany, part of Springer Nature. This e-offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Numer. Math. (2018) 138:939–973 Numerische https://doi.org/10.1007/s00211-017-0928-0 Mathematik Well-balanced schemes for the shallow water equations with Coriolis forces Alina Chertock1 · Michael Dudzinski2 · Alexander Kurganov3,4 · Mária Lukáˇcová-Medvid’ová5 Received: 28 April 2014 / Revised: 19 September 2017 / Published online: 2 December 2017 © Springer-Verlag GmbH Germany, part of Springer Nature 2017 Abstract In the present paper we study shallow water equations with bottom topog- raphy and Coriolis forces. The latter yield non-local potential operators that need to be taken into account in order to derive a well-balanced numerical scheme. -
Observation of Rip Currents by Synthetic Aperture Radar
OBSERVATION OF RIP CURRENTS BY SYNTHETIC APERTURE RADAR José C.B. da Silva (1) , Francisco Sancho (2) and Luis Quaresma (3) (1) Institute of Oceanography & Dept. of Physics, University of Lisbon, 1749-016 Lisbon, Portugal (2) Laboratorio Nacional de Engenharia Civil, Av. do Brasil, 101 , 1700-066, Lisbon, Portugal (3) Instituto Hidrográfico, Rua das Trinas, 49, 1249-093 Lisboa , Portugal ABSTRACT Rip currents are near-shore cellular circulations that can be described as narrow, jet-like and seaward directed flows. These flows originate close to the shoreline and may be a result of alongshore variations in the surface wave field. The onshore mass transport produced by surface waves leads to a slight increase of the mean water surface level (set-up) toward the shoreline. When this set-up is spatially non-uniform alongshore (due, for example, to non-uniform wave breaking field), a pressure gradient is produced and rip currents are formed by converging alongshore flows with offshore flows concentrated in regions of low set-up and onshore flows in between. Observation of rip currents is important in coastal engineering studies because they can cause a seaward transport of beach sand and thus change beach morphology. Since rip currents are an efficient mechanism for exchange of near-shore and offshore water, they are important for across shore mixing of heat, nutrients, pollutants and biological species. So far however, studies of rip currents have mainly relied on numerical modelling and video camera observations. We show an ENVISAT ASAR observation in Precision Image mode of bright near-shore cell-like signatures on a dark background that are interpreted as surface signatures of rip currents. -
Part II-1 Water Wave Mechanics
Chapter 1 EM 1110-2-1100 WATER WAVE MECHANICS (Part II) 1 August 2008 (Change 2) Table of Contents Page II-1-1. Introduction ............................................................II-1-1 II-1-2. Regular Waves .........................................................II-1-3 a. Introduction ...........................................................II-1-3 b. Definition of wave parameters .............................................II-1-4 c. Linear wave theory ......................................................II-1-5 (1) Introduction .......................................................II-1-5 (2) Wave celerity, length, and period.......................................II-1-6 (3) The sinusoidal wave profile...........................................II-1-9 (4) Some useful functions ...............................................II-1-9 (5) Local fluid velocities and accelerations .................................II-1-12 (6) Water particle displacements .........................................II-1-13 (7) Subsurface pressure ................................................II-1-21 (8) Group velocity ....................................................II-1-22 (9) Wave energy and power.............................................II-1-26 (10)Summary of linear wave theory.......................................II-1-29 d. Nonlinear wave theories .................................................II-1-30 (1) Introduction ......................................................II-1-30 (2) Stokes finite-amplitude wave theory ...................................II-1-32 -
Part III-2 Longshore Sediment Transport
Chapter 2 EM 1110-2-1100 LONGSHORE SEDIMENT TRANSPORT (Part III) 30 April 2002 Table of Contents Page III-2-1. Introduction ............................................................ III-2-1 a. Overview ............................................................. III-2-1 b. Scope of chapter ....................................................... III-2-1 III-2-2. Longshore Sediment Transport Processes ............................... III-2-1 a. Definitions ............................................................ III-2-1 b. Modes of sediment transport .............................................. III-2-3 c. Field identification of longshore sediment transport ........................... III-2-3 (1) Experimental measurement ............................................ III-2-3 (2) Qualitative indicators of longshore transport magnitude and direction ......................................................... III-2-5 (3) Quantitative indicators of longshore transport magnitude ..................... III-2-6 (4) Longshore sediment transport estimations in the United States ................. III-2-7 III-2-3. Predicting Potential Longshore Sediment Transport ...................... III-2-7 a. Energy flux method .................................................... III-2-10 (1) Historical background ............................................... III-2-10 (2) Description ........................................................ III-2-10 (3) Variation of K with median grain size................................... III-2-13 (4) Variation of K with -
Fluid Simulation Using Shallow Water Equation
Fluid Simulation using Shallow Water Equation Dhruv Kore Itika Gupta Undergraduate Student Graduate Student University of Illinois at Chicago University of Illinois at Chicago [email protected] [email protected] 847-345-9745 312-478-0764 ABSTRACT rivers and channel. As the name suggest, the main In this paper, we present a technique, which shows how characteristic of shallow Water flows is that the vertical waves once generated from a small drop continue to ripple. dimension is much smaller as compared to the horizontal Waves interact with each other and on collision change the dimension. Naïve Stroke Equation defines the motion of form and direction. Once the waves strike the boundary, fluids and from these equations we derive SWE. they return with the same speed and in sometime, depending on the delay, you can see continuous ripples in In Next section we talk about the related works under the the surface. We use shallow water equation to achieve the heading Literature Review. Then we will explain the desired output. framework and other concepts necessary to understand the SWE and wave equation. In the section followed by it, we Author Keywords show the results achieved using our implementation. Then Naïve Stroke Equation; Shallow Water Equation; Fluid finally we talk about conclusion and future work. Simulation; WebGL; Quadratic function. LITERATURE REVIEW INTRODUCTION In [2] author in detail explains the Shallow water equation In early years of fluid simulation, procedural surface with its derivation. Since then a lot of authors has used generation was used to represent waves as presented by SWE to present the formation of waves in water. -
OCEANS ´09 IEEE Bremen
11-14 May Bremen Germany Final Program OCEANS ´09 IEEE Bremen Balancing technology with future needs May 11th – 14th 2009 in Bremen, Germany Contents Welcome from the General Chair 2 Welcome 3 Useful Adresses & Phone Numbers 4 Conference Information 6 Social Events 9 Tourism Information 10 Plenary Session 12 Tutorials 15 Technical Program 24 Student Poster Program 54 Exhibitor Booth List 57 Exhibitor Profiles 63 Exhibit Floor Plan 94 Congress Center Bremen 96 OCEANS ´09 IEEE Bremen 1 Welcome from the General Chair WELCOME FROM THE GENERAL CHAIR In the Earth system the ocean plays an important role through its intensive interactions with the atmosphere, cryo- sphere, lithosphere, and biosphere. Energy and material are continually exchanged at the interfaces between water and air, ice, rocks, and sediments. In addition to the physical and chemical processes, biological processes play a significant role. Vast areas of the ocean remain unexplored. Investigation of the surface ocean is carried out by satellites. All other observations and measurements have to be carried out in-situ using research vessels and spe- cial instruments. Ocean observation requires the use of special technologies such as remotely operated vehicles (ROVs), autonomous underwater vehicles (AUVs), towed camera systems etc. Seismic methods provide the foundation for mapping the bottom topography and sedimentary structures. We cordially welcome you to the international OCEANS ’09 conference and exhibition, to the world’s leading conference and exhibition in ocean science, engineering, technology and management. OCEANS conferences have become one of the largest professional meetings and expositions devoted to ocean sciences, technology, policy, engineering and education. -
Shallow Water Waves and Solitary Waves Article Outline Glossary
Shallow Water Waves and Solitary Waves Willy Hereman Department of Mathematical and Computer Sciences, Colorado School of Mines, Golden, Colorado, USA Article Outline Glossary I. Definition of the Subject II. Introduction{Historical Perspective III. Completely Integrable Shallow Water Wave Equations IV. Shallow Water Wave Equations of Geophysical Fluid Dynamics V. Computation of Solitary Wave Solutions VI. Water Wave Experiments and Observations VII. Future Directions VIII. Bibliography Glossary Deep water A surface wave is said to be in deep water if its wavelength is much shorter than the local water depth. Internal wave A internal wave travels within the interior of a fluid. The maximum velocity and maximum amplitude occur within the fluid or at an internal boundary (interface). Internal waves depend on the density-stratification of the fluid. Shallow water A surface wave is said to be in shallow water if its wavelength is much larger than the local water depth. Shallow water waves Shallow water waves correspond to the flow at the free surface of a body of shallow water under the force of gravity, or to the flow below a horizontal pressure surface in a fluid. Shallow water wave equations Shallow water wave equations are a set of partial differential equations that describe shallow water waves. 1 Solitary wave A solitary wave is a localized gravity wave that maintains its coherence and, hence, its visi- bility through properties of nonlinear hydrodynamics. Solitary waves have finite amplitude and propagate with constant speed and constant shape. Soliton Solitons are solitary waves that have an elastic scattering property: they retain their shape and speed after colliding with each other. -
Shallow-Water Equations and Related Topics
CHAPTER 1 Shallow-Water Equations and Related Topics Didier Bresch UMR 5127 CNRS, LAMA, Universite´ de Savoie, 73376 Le Bourget-du-Lac, France Contents 1. Preface .................................................... 3 2. Introduction ................................................. 4 3. A friction shallow-water system ...................................... 5 3.1. Conservation of potential vorticity .................................. 5 3.2. The inviscid shallow-water equations ................................. 7 3.3. LERAY solutions ........................................... 11 3.3.1. A new mathematical entropy: The BD entropy ........................ 12 3.3.2. Weak solutions with drag terms ................................ 16 3.3.3. Forgetting drag terms – Stability ............................... 19 3.3.4. Bounded domains ....................................... 21 3.4. Strong solutions ............................................ 23 3.5. Other viscous terms in the literature ................................. 23 3.6. Low Froude number limits ...................................... 25 3.6.1. The quasi-geostrophic model ................................. 25 3.6.2. The lake equations ...................................... 34 3.7. An interesting open problem: Open sea boundary conditions .................... 41 3.8. Multi-level and multi-layers models ................................. 43 3.9. Friction shallow-water equations derivation ............................. 44 3.9.1. Formal derivation ....................................... 44 3.10. -
Waves in Water from Ripples to Tsunamis and to Rogue Waves
Waves in Water from ripples to tsunamis and to rogue waves Vera Mikyoung Hur (Mathematics) (Image from Flickr) The motion of a fluid can be very complicated as we know whenever we see waves break on a beach, (Image from the Internet) The motion of a fluid can be very complicated as we know whenever we fly in an airplane, (Image from the Internet) The motion of a fluid can be very complicated as we know whenever we look at a lake on a windy day. (Image from the Internet) Euler in the 1750s proposed a mathematical model of an incompressible fluid. @u + (u · r)u + rP = F, @t r · u = 0. Here, u(x; t) is the velocity of the fluid at the point x and time t, P(x; t) is the pressure, and F(x; t) is an outside force. The Navier-Stokes equations (adding ν∆u) allow the fluid to be viscous. It is concise and captures the essence of fluid behavior. The theory of fluids has provided source and inspiration to many branches of mathematics, e.g. Cauchy's complex function theory. Difficulties of understanding fluids are profound. e.g. the global-in-time solution of the Navier-Stokes equations in 3 dimensions is a Clay Millennium Problem! Waves, jets, drops come to mind when thinking of fluids. They involve one or more fluids separated by an unknown surface. In the mathematical community, they go by free boundary problems. (Image from the Internet) Free boundaries are mathematically challenging in their own right. They occur in many other situations, such as melting of ice stretching a membrane over an obstacle. -
Modified Shallow Water Equations for Significantly Varying Seabeds Denys Dutykh, Didier Clamond
Modified Shallow Water Equations for significantly varying seabeds Denys Dutykh, Didier Clamond To cite this version: Denys Dutykh, Didier Clamond. Modified Shallow Water Equations for significantly varying seabeds: Modified Shallow Water Equations. Applied Mathematical Modelling, Elsevier, 2016, 40 (23-24), pp.9767-9787. 10.1016/j.apm.2016.06.033. hal-00675209v6 HAL Id: hal-00675209 https://hal.archives-ouvertes.fr/hal-00675209v6 Submitted on 26 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial| 4.0 International License Denys Dutykh CNRS, Université Savoie Mont Blanc, France Didier Clamond Université de Nice – Sophia Antipolis, France Modified Shallow Water Equations for significantly varying seabeds arXiv.org / hal Last modified: April 26, 2016 Modified Shallow Water Equations for significantly varying seabeds Denys Dutykh∗ and Didier Clamond Abstract. In the present study, we propose a modified version of the Nonlinear Shal- low Water Equations (Saint-Venant or NSWE) for irrotational surface waves in the case when the bottom undergoes some significant variations in space and time. The model is derived from a variational principle by choosing an appropriate shallow water ansatz and imposing some constraints. -
Rip Currents and Alongshore Flows in Single Channels Dredged in the Surf
PUBLICATIONS Journal of Geophysical Research: Oceans RESEARCH ARTICLE Rip currents and alongshore flows in single channels dredged 10.1002/2016JC012222 in the surf zone Key Points: Melissa Moulton1,2 , Steve Elgar2 , Britt Raubenheimer2 , John C. Warner3 , and Rip currents, feeder currents, and Nirnimesh Kumar4 meandering alongshore currents were observed in single channels 1 2 dredged in the surf zone Applied Physics Laboratory, University of Washington, Seattle, Washington, USA, Department of Applied Ocean Physics 3 The model COAWST reproduces the and Engineering, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA, United States Geological observed circulation patterns, and is Survey, Coastal and Marine Geology Program, Woods Hole, Massachusetts, USA, 4Department of Civil and Environmental used to investigate dynamics for a Engineering, University of Washington, Seattle, Washington, USA wider range of conditions A parameter based on breaking-wave-driven setup patterns and alongshore currents predicts Abstract To investigate the dynamics of flows near nonuniform bathymetry, single channels (on average offshore-directed flow speeds 30 m wide and 1.5 m deep) were dredged across the surf zone at five different times, and the subsequent evolution of currents and morphology was observed for a range of wave and tidal conditions. In addition, Correspondence to: circulation was simulated with the numerical modeling system COAWST, initialized with the observed M. Moulton, incident waves and channel bathymetry, and with an extended set of wave conditions and channel [email protected] geometries. The simulated flows are consistent with alongshore flows and rip-current circulation patterns observed in the surf zone. Near the offshore-directed flows that develop in the channel, the dominant terms Citation: Moulton, M., S. -
ATM 500: Atmospheric Dynamics End-Of-Semester Review, December 4 2018 Here, in Bullet Points, Are the Key Concepts from the Second Half of the Course
ATM 500: Atmospheric Dynamics End-of-semester review, December 4 2018 Here, in bullet points, are the key concepts from the second half of the course. They are not meant to be self-contained notes! Refer back to your course notes for notation, derivations, and deeper discussion. Static stability The vertical variation of density in the environment determines whether a parcel, disturbed upward from an initial hydrostatic rest state, will accelerate away from its initial position, or oscillate about that position. For an incompressible or Boussinesq fluid, the buoyancy frequency is g dρ~ N 2 = − ρ~dz For a compressible ideal gas, the buoyancy frequency is g dθ~ N 2 = θ~dz (the expressions are different because density is not conserved in a small upward displacement of a compressible fluid, but potential temperature is conserved) Fluid is statically stable if N 2 > 0; otherwise it is statically unstable. Typical value for troposphere: N = 0:01 s−1, with corresponding oscillation period of 10 minutes. Dry adiabatic lapse rate g −1 Γd = = 9:8 K km cp The rate at which temperature decreases during adiabatic ascent (for which Dθ Dt = 0) \Dry" here means that there is no latent heating from condensation of water vapor. Static stability criteria for a dry atmosphere Environment is stable to dry con- vection if dθ~ dT~ > 0 or − < Γ dz dz d and otherwise unstable. 1 Buoyancy equation for Boussinesq fluid with background stratification Db0 + N 2w = 0 Dt where we have separated the full buoyancy into a mean vertical part ^b(z) and 0 2 d^b 2 everything else (b ), and N = dz .