Arctic Marine Fish Ecology

Total Page:16

File Type:pdf, Size:1020Kb

Arctic Marine Fish Ecology Chapter 4. Synthesis of Arctic Alaska Marine Fish Ecology By Lyman K. Thorsteinson1 and Milton S. Love2 Abstract interpretive component (historical and ecological elements of biogeography) provides a meaningful approach for The compilation of data and information, its review, explaining the observed diversity relationships, synthesizing and the synthesis processes leading to the development of the information presented, and expressing our impressions individual species accounts focused on descriptive elements about outstanding needs. Historical biogeography addresses of Arctic Alaska’s marine fish fauna. The species accounts the origins of distributional patterns as determined from reflect the compilation and review of a large body scientific systematic studies. The paleoceanographic record is not information about the marine fishes off Alaska in United well-developed from this part of the Arctic and here States waters in the northern Bering Sea, north of the Bering we explore species origins in light of possible dispersal Strait, and throughout the circumpolar Arctic. The purpose and vicariance events as suggested by paleontology and of this synthesis is to interpret the whole of this biological geologic records, climatic histories, and known phylogenetic and ecological information in the context of the marine relationships. Ecological biogeography addresses the biogeography of the Chukchi and Beaufort Seas. This environmental relationships including physiochemical factors interpretive approach provides historical and contemporary (for example, temperature, salinity, dissolved oxygen, and perspectives to our descriptions of (1) patterns of species turbidity), mechanisms (for example, currents, migrations, occurrence, habitat and population relationships, and and movements), and biological processes (for example, (2) functional ecosystem processes that affect the distribution competition, predation, colonization, and reproduction) that and abundance of marine fishes, and, with respect to the limit the distribution, relative abundance, and productivity of present, (3) conceptual understanding and information needed a species. Information about body size and trophic position for resource management and conservation. The objectives also are reviewed because they are important parameters that of this synthesis focus on environmental relationships correlate with metabolic processes and other life history traits including physio-chemical factors (for example, temperature, (Romanuk and others, 2011). salinity, dissolved oxygen, and turbidity), mechanisms The descriptive component of biogeography is addressed (for example, currents, migrations, and movements), and in project tasks leading to an updated checklist of marine biological processes (for example, competition, predation, fishes, presentation of information in the species accounts, colonization, and reproduction) that collectively have limited and special analyses related to (1) new species occurrences the distribution, abundance, and productivity of marine fish and range extensions, (2) large-scale patterns of abundance populations through adaptations to Arctic conditions. from past and ongoing studies, and (3) identification of species likely to occur, but yet-to-be confirmed from the Chukchi and Beaufort Seas. The visualization of species information in new maps and depth profiles provides another dimension Introduction—A Biogeographic to evaluation of the status of baseline information than was previously available. This is especially relevant as it applies to Emphasis availability of age- or stage-specific information and related habitat relationships. Quantitative relationships between Individual species accounts present a large amount of age-and-length and size-at-length have been described for information about the biology, geography, and environmental several dominant species, but this information is dated. For factors affecting large-scale patterns of distribution and almost all species, information about stock structure and abundance. Collectively, this compilation of environmental population dynamics (that is, differential mortalities between information is foundational for an improved understanding life stages or age classes) remains to be described. Although of the descriptive and interpretive components of this many science gaps exist, compiling and integrating descriptive region’s biogeography (Nelson, 2006). Our focus on the and interpretive information-types allows a more detailed examination of linkages between geographic distributions, 1U.S. Geological Survey. evolutionary processes (patterns of life history variations), ecological factors, genetic diversity, and population dynamics 2University of California, Santa Barbara. 618 Alaska Arctic Marine Fish Ecology Catalog for the fauna as an initial approach to estimating effects of The estimates of marine fish diversity (occurrence) in environmental change (Winemiller, 2004; Benton and others, table 4.1, was from published literature or acquired through 2006). This approach illustrates why the information presented reliable sources of written communications, and represent in the species accounts is relevant to decision making and, for “working” totals from a field of ichthyology that is rapidly potential indicators species, a rationale for research priorities. changing. These changes relate to new discoveries, increased sampling, and new genetic tools for identification and better understanding of evolutionary relationships. The presence of 15 new marine fishes from the U.S. Arctic not reported Historical Biogeography in the Fishes of Alaska (Mecklenburg and others, 2002) has been confirmed for this report (table 2.2). Many of the The Chukchi and Beaufort Seas occupy a relatively small authors cited reported significant problems associated with region within the zoogeographic realm (Mecklenburg and species identifications (related these to unresolved taxonomic others, 2011) that has been used by classical ichthyologists issues), deficiencies in geographic sampling coverage, to describe the taxonomy and composition of the Arctic or access to existing data and information. Despite these marine fishes (Briggs, 1974; Andriashev and Chernova 1994; issues, the systematic comparisons help to begin to explain Eastman, 1997; and Mecklenburg and others, 2011). In Alaska, large-scale patterns of biodiversity including origins of the Arctic Realm includes the northern Bering Sea and marine 3 species distributions. environments beyond the EEZ . As such, it does not directly Biogeographic research has shown that fish species in correspond to conventional natural resource management areas the Pacific and Atlantic Oceans have similar zoogeographic in the Alaskan Arctic. The southern boundary of the province patterns with respect to latitudinal gradients, but not diversity in the Bering Sea is ecologically significant because the (Christiansen and others, 2008; Christiansen and others, area demarks a sharp gradient in diversity and abundance of 2013). In each ocean, species richness peaks in the tropics Arctic and Boreal marine fishes that is defined by temperature with sharp gradients between tropical and temperate waters. (<2 °C). As such, a natural rather than administrative faunal There is leveling off in decline of richness toward the poles separation is represented. For example, NOAA collected 86 (Roy and others, 1998). Using marine gastropod diversity species of marine fishes in the northern Bering Sea in 1981 data, Roy and others (1998) examined latitudinal gradients (Thorsteinson and others, 1984) compared to the 300 species in the Atlantic Ocean with respect to ecological traits (that reported from the southeastern Bering Sea (Wilimovsky, is, range size, habitable area, and input of solar energy). The 1974). The zonation is important to contemporary Arctic greatest correlation reported was between diversity and sea issues with respect to extralimital species and northerly surface temperature (a proxy for solar input) suggesting that, shifts in distributions and range expansions associated with if the relation was causal, it probably was linked through some climate change and potential fisheries. The importance of the aspect of production. Because the physical mechanisms of Bering Strait with respect to geologic and climatic history dispersal for marine invertebrates and fishes are similar (or and origins and exchanges of fishes, especially during the late the same), process effects—such as production cycles and Pleistocene, has been shown to be critical to understanding events—would similarly influence geographic distribution and Pacific influences on Arctic fauna (for example, Mecklenburg abundance patterns. and others, 2011). In areas where regional faunas are relatively well known, A systematic comparison of the marine fishes reported Briggs and Bowen (2012) described a high concordance from the Arctic province, marginal seas of the Arctic Ocean, between levels of endemism in fishes, molluscs, and other and Bering Sea provides clues and insights about the biota. However, Roy and others (1998) could not explain evolutionary processes (origins, rates of endemism) underlying latitudinal gradients in the North Atlantic based on recent current patterns of taxonomic representation (zoogeographic geologic history. By contrast, Vermeij (1991) and Briggs patterns, chapter 2). The comparison of marine fish faunas (1995, 2003) described the biogeographic consequences from adjacent waters also is instructive with respect
Recommended publications
  • Research Plan 2 3 A
    Arctic Pre-proposal 3.4-Galloway 1 Research Plan 2 3 A. Project Title: Characterizing lipid production hotspots, phenology, and trophic transfer at the 4 algae-herbivore interface in the Chukchi Sea 5 6 B. Category: 3. Oceanography and lower trophic level productivity: Influence of sea ice dynamics and 7 advection on the phenology, magnitude and location of primary and secondary production, match- 8 mismatch, benthic-pelagic coupling, and the influence of winter conditions. 9 10 C. Rationale and justification: 11 The spatial extent of arctic sea ice is declining and earlier seasonal sea ice melt may dramatically 12 affect the magnitude, and spatial and temporal scale of primary production (Kahru et al. 2011, Wassmann 13 2011). In order to predict the consequences of these changes to ecosystems, it is important that we 14 understand the mechanistic links between temporally dynamic ice conditions and the physical factors 15 which govern phytoplankton growth (Popova et al. 2010). The mechanisms that govern productivity of 16 the Chukchi Sea ecosystem are of considerable interest due to dramatically changing temporal and spatial 17 patterns of sea ice coverage and because this area is likely to be the subject of intense fossil fuel 18 exploration in coming decades (Dunton et al. 2014). Tracing the biochemical pathways of basal resources 19 (pelagic and attached micro- and macroalgae) in this system is critical if we are to better understand how 20 the Chukchi Sea ecosystem might be modified in the future by a changing climate and offshore oil and 21 gas exploration and production (McTigue and Dunton 2014).
    [Show full text]
  • Noatak National Arctic Range, Alaska and Associated Area of Ecological Concern, Prepared for Fish An
    ~t·. tv\ ,.! " .., / ANADROMOUS FISH INVENTORY NOATAK NATIONAL ARCTIC RANGE, ALASKA and Associated Area of Ecological Concern I. Pre pared for Fish and Wildlife Service by Acetic Environmenta 1 Information and Data Center University of Alaska, Anchorage September 1975 Alaska Resotlrces 99503 Library InfonY'.ett\011 .Services " ... '-c; ~.---_:·1~ ... ~:-;~,·~·:.: - -~ • Anadromous Fish Inventory . Information Framework a. Bibliography The files of the Arctic Environmental Information and Data Center were utilized for the compilation of an initial bibliography. Refcrenc:ed titles were then obtained and citations pertaining to the area and species of interest which appeared in these reports were added to expand the initial bibliography. References were deleted if, when obtained, the study was not found to pertain to the area or species of interest. lQ a few cases where references were unobtainable, such citations are followed by the note "(not seen)" to indicate that any pertinent data contained in this reference is not included in the remainder of the inventory. All possible reference sources are listed with the exception of those containing extremely general subject matter, most early (before 1910) explor- atory reports, and annual report series such as Alaska Fishery and Jur-Seal Industries in (yeat) which were issued prior to 1960. b. Species Lists A list of anadromous and coastal marine fishes for each proposed refuge or proposed additions to existing refuges was compiled. An initial list was taken from each final environmental statement; however, three major taxonomic references were consulted to add to, or delete from this initial list - List of Fishes of Alaska and Adjacent Waters with a Guide to Some of Their Liter~ture (Quast and Hall 1972), Pacific/ Fishes of Canada (Hart 1973), and Freshwnt~r Flshes of Cannda (Scott and Crossman 1973).
    [Show full text]
  • Early Stages of Fishes in the Western North Atlantic Ocean Volume
    ISBN 0-9689167-4-x Early Stages of Fishes in the Western North Atlantic Ocean (Davis Strait, Southern Greenland and Flemish Cap to Cape Hatteras) Volume One Acipenseriformes through Syngnathiformes Michael P. Fahay ii Early Stages of Fishes in the Western North Atlantic Ocean iii Dedication This monograph is dedicated to those highly skilled larval fish illustrators whose talents and efforts have greatly facilitated the study of fish ontogeny. The works of many of those fine illustrators grace these pages. iv Early Stages of Fishes in the Western North Atlantic Ocean v Preface The contents of this monograph are a revision and update of an earlier atlas describing the eggs and larvae of western Atlantic marine fishes occurring between the Scotian Shelf and Cape Hatteras, North Carolina (Fahay, 1983). The three-fold increase in the total num- ber of species covered in the current compilation is the result of both a larger study area and a recent increase in published ontogenetic studies of fishes by many authors and students of the morphology of early stages of marine fishes. It is a tribute to the efforts of those authors that the ontogeny of greater than 70% of species known from the western North Atlantic Ocean is now well described. Michael Fahay 241 Sabino Road West Bath, Maine 04530 U.S.A. vi Acknowledgements I greatly appreciate the help provided by a number of very knowledgeable friends and colleagues dur- ing the preparation of this monograph. Jon Hare undertook a painstakingly critical review of the entire monograph, corrected omissions, inconsistencies, and errors of fact, and made suggestions which markedly improved its organization and presentation.
    [Show full text]
  • Proceedings of the 76Th National Conference of the Unione Zoologica Italiana
    Quaderni del Centro Studi Alpino – IV th Proceedings of the 76 National Conference of the Unione Zoologica Italiana A cura di Marzio Zapparoli, Maria Cristina Belardinelli Università degli Studi della Tuscia 2015 Quaderni del Centro Studi Alpino – IV Unione Zoologica Italiana 76th National Conference Proceedings Viterbo, 15-18 September 2015 a cura di Marzio Zapparoli, Maria Cristina Belardinelli Università degli Studi della Tuscia 2015 1 Università degli Studi della Tuscia Centro Studi Alpino Via Rovigo 7, 38050 Pieve Tesino (TN) Sede Amministrativa c/o Dipartimento per l’Innovazione nei sistemi Biologici, Agroalimentari e Forestali, Università della Tuscia Via San Camillo de Lellis, s.n.c. 01100 Viterbo (VT) Consiglio del Centro Luigi Portoghesi (Presidente) Gian Maria Di Nocera Maria Gabriella Dionisi Giovanni Fiorentino Anna Scoppola Laura Selbmann Alessandro Sorrentino ISBN: 978 - 88 - 903595 - 4 - 5 Viterbo 2015 2 76th National Conference of the Unione Zoologica Italiana Università degli Studi della Tuscia Viterbo, 15-18 September 2015 Organizing Committee Anna Maria Fausto (President), Carlo Belfiore, Francesco Buonocore, Romolo Fochetti, Massimo Mazzini, Simona Picchietti, Nicla Romano, Giuseppe Scapigliati, Marzio Zapparoli Scientific Committee Elvira De Matthaeis (UZI President), Sapienza, Università di Roma Roberto Bertolani (UZI Secretary-Treasurer), Università di Modena e Reggio Emilia Carlo Belfiore, Università della Tuscia, Viterbo Giovanni Bernardini, Università dell’Insubria, Varese Ferdinando Boero, Università del Salento,
    [Show full text]
  • Temperature Preference of Juvenile Arctic Cisco
    TEMPERATURE PREFERENCE OF JUVENILE ARCTIC CISCO (COREGONUS AUTUMNALIS) FROM THE ALASKAN BEAUFORT SEA, IN RELATION TO SALINITY AND TEM PERATURE ACCLI~~TION by Robert G. Fechhelm LGL Ecological Research Associates, Inc. 1410 Cavitt Street Bryan, Texas 77081 William H. Neill Department of Wildlife and Fisheries Sciences Texas A&M University College Station, Texas 77843 and Benny J . Gallaway LGL Ecological Research Associates . Inc. 1410 Cavitt Street Bryan, Texas 77801 . 1 h lA flG I' ~ ;"riC 11"-' AN,) _H 707 ;.. SHiH AJ"C}1C<AGE. AI( 9'501 March 1982 2 ACKNOWLEDGEM ENTS We wish to express our gratitude to Dave Norton of the Outer Cont inental Shelf Environmental Assessment Program's Arctic Projects Office (or his support during all phases of the research. Thanks are also extended to the members of the Waterflood Monitoring Program survey team -- Bill Griffiths, Dave Schmidt, Brad Adams, Terry Carpenter, Rob Dillinger a nd Dennis Hensel -- who provided the fish for the experiment; to Scott And erson for his statistical a dvi c e ; to Chuck Davis for his help in c onstruct ing the test apparatus; to Bonnie Bower for drafting the figures; and to the s t a f f s of LGL Ecological Research Associates and LGL Alaska for their help a nd encouragement. This study was funded partially by the Bureau of Land Management through i n t e rag e nc y agreement with the National Oceanic and Atmospheric Administration, as part of the Outer Continental Shelf Environmental Assessment Program. 3 ABSTRACT Ho ri zont a l - t he r ma l - g r a d i e n t apparatus of previously undescr ibed design was used to determine the temperature preference of juvenile arctic cisco, (oreganus autumnalis, as a function of acclimation temperature and acclimation-test salinity.
    [Show full text]
  • Identification of Larvae of Three Arctic Species of Limanda (Family Pleuronectidae)
    Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) Morgan S. Busby, Deborah M. Blood & Ann C. Matarese Polar Biology ISSN 0722-4060 Polar Biol DOI 10.1007/s00300-017-2153-9 1 23 Your article is protected by copyright and all rights are held exclusively by 2017. This e- offprint is for personal use only and shall not be self-archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Polar Biol DOI 10.1007/s00300-017-2153-9 ORIGINAL PAPER Identification of larvae of three arctic species of Limanda (Family Pleuronectidae) 1 1 1 Morgan S. Busby • Deborah M. Blood • Ann C. Matarese Received: 28 September 2016 / Revised: 26 June 2017 / Accepted: 27 June 2017 Ó Springer-Verlag GmbH Germany 2017 Abstract Identification of fish larvae in Arctic marine for L. proboscidea in comparison to the other two species waters is problematic as descriptions of early-life-history provide additional evidence suggesting the genus Limanda stages exist for few species. Our goal in this study is to may be paraphyletic, as has been proposed in other studies.
    [Show full text]
  • Spatial Ecology and Fisheries Interactions of Rajidae in the Uk
    UNIVERSITY OF SOUTHAMPTON FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences SPATIAL ECOLOGY AND FISHERIES INTERACTIONS OF RAJIDAE IN THE UK Samantha Jane Simpson Thesis for the degree of DOCTOR OF PHILOSOPHY APRIL 2018 UNIVERSITY OF SOUTHAMPTON 1 2 UNIVERSITY OF SOUTHAMPTON ABSTRACT FACULTY OF NATURAL AND ENVIRONMENTAL SCIENCES Ocean and Earth Sciences Doctor of Philosophy FINE-SCALE SPATIAL ECOLOGY AND FISHERIES INTERACTIONS OF RAJIDAE IN UK WATERS by Samantha Jane Simpson The spatial occurrence of a species is a fundamental part of its ecology, playing a role in shaping the evolution of its life history, driving population level processes and species interactions. Within this spatial occurrence, species may show a tendency to occupy areas with particular abiotic or biotic factors, known as a habitat association. In addition some species have the capacity to select preferred habitat at a particular time and, when species are sympatric, resource partitioning can allow their coexistence and reduce competition among them. The Rajidae (skate) are cryptic benthic mesopredators, which bury in the sediment for extended periods of time with some species inhabiting turbid coastal waters in higher latitudes. Consequently, identifying skate fine-scale spatial ecology is challenging and has lacked detailed study, despite them being commercially important species in the UK, as well as being at risk of population decline due to overfishing. This research aimed to examine the fine-scale spatial occurrence, habitat selection and resource partitioning among the four skates across a coastal area off Plymouth, UK, in the western English Channel. In addition, I investigated the interaction of Rajidae with commercial fisheries to determine if interactions between species were different and whether existing management measures are effective.
    [Show full text]
  • Table of Contents
    Table of Contents Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson .............................................................................................................. 23 Chapter 3 Alaska Arctic Marine Fish Species By Milton S. Love, Mancy Elder, Catherine W. Mecklenburg Lyman K. Thorsteinson, and T. Anthony Mecklenburg .................................................................. 41 Pacific and Arctic Lamprey ............................................................................................................. 49 Pacific Lamprey………………………………………………………………………………….…………………………49 Arctic Lamprey…………………………………………………………………………………….……………………….55 Spotted Spiny Dogfish to Bering Cisco ……………………………………..…………………….…………………………60 Spotted Spiney Dogfish………………………………………………………………………………………………..60 Arctic Skate………………………………….……………………………………………………………………………….66 Pacific Herring……………………………….……………………………………………………………………………..70 Pond Smelt……………………………………….………………………………………………………………………….78 Pacific Capelin…………………………….………………………………………………………………………………..83 Arctic Smelt………………………………………………………………………………………………………………….91 Chapter 2. Alaska Arctic Marine Fish Inventory By Lyman K. Thorsteinson1 Abstract Introduction Several other marine fishery investigations, including A large number of Arctic fisheries studies were efforts for Arctic data recovery and regional analyses of range started following the publication of the Fishes of Alaska extensions, were ongoing concurrent to this study. These (Mecklenburg and others, 2002). Although the results of included
    [Show full text]
  • Using Ecologically Based Relationships to Predict Distribution of Flathead Sole Hippoglossoides Elassodon in the Eastern Bering Sea
    MARINE ECOLOGY PROGRESS SERIES Vol. 290: 251–262, 2005 Published April 13 Mar Ecol Prog Ser Using ecologically based relationships to predict distribution of flathead sole Hippoglossoides elassodon in the eastern Bering Sea Christopher N. Rooper*, Mark Zimmermann, Paul D. Spencer Alaska Fisheries Science Center, National Marine Fisheries Service, 7600 Sand Point Way NE, Seattle, Washington 98115-6349, USA ABSTRACT: This study describes a method for modeling and predicting, from biological and physi- cal variables, habitat use by a commercially harvested groundfish species. Models for eastern Bering Sea flathead sole Hippoglossoides elassodon were developed from 3 relationships describing the response of organism abundance along a resource continua. The model was parameterized for 1998 to 2000 trawl survey data and tested on 2001 and 2002 data. Catch per unit effort (CPUE) of flathead sole had a curvilinear relationship with depth, peaking at 140 m, a proportional relationship with bot- tom water temperature, a positive curvilinear relationship with potential cover (invertebrate shelter- ing organisms such as anemones, corals, sponges, etc.), a negative relationship with increasing mud:sand ratio in the sediment, and an asymptotic relationship with potential prey abundance. The predicted CPUE was highly correlated (r2 = 0.63) to the observations (1998 to 2000) and the model accurately predicted CPUE (r2 = 0.58) in the test data set (2001 and 2002). Because this method of developing habitat-based abundance models is founded on ecological relationships, it should be more robust for predicting fish distributions than statistically based models. Thus, the model can be used to examine the consequences of fishing activity (e.g.
    [Show full text]
  • Foraging Behaviour of Female Weddell Seals (Leptonychotes Weddellii) During Lactation: New Insights from Dietary Biomarkers
    Foraging behaviour of female Weddell seals (Leptonychotes weddellii) during lactation: new insights from dietary biomarkers A thesis submitted in partial fulfilment of the requirements for the degree in Doctor of Philosophy in Antarctic Studies by Crystal C. Lenky November 2012 Acknowledgements Only one name appears on the cover of a thesis, but there are many people involved in its creation. First and foremost, I thank my supervisors for their endless encouragement, knowledge and insightful conversations throughout this journey. I thank Dr Regina Eisert for instilling in me an appreciation of the analytical method and her expertise on data analysis; Dr Victoria Metcalf for her friendship, enthusiasm and advice on all aspects of life; Dr Michael Lever for his wealth of knowledge on betaines and for providing me with lab and office space after the February 22 earthquake; Dr Olav Oftedal for his expertise in nutrition and guidance on scientific writing; Dr Marie Squire for her guidance on the NMR assays, and Professor Bryan Storey for providing me with a great working environment. Funding for this thesis was provided by a National Science Foundation, Office of Polar Programs grant to Drs Regina Eisert and Olav Oftedal. Many people have also given their time and expertise in assisting me with fieldwork, laboratory and data analysis. I thank Dr Wendy Hood, Lisa Ware, Warren Lynch and Rich Joss for their assistance in the field and for making my time in Antarctica an enjoyable experience. Michael Jakubasz (Smithsonian National Zoological Park) provided invaluable assistance during my stay at the Nutrition Lab. I thank him for his guidance on the proximate composition assays and for sorting permits and shipping details.
    [Show full text]
  • XIV. Appendices
    Appendix 1, Page 1 XIV. Appendices Appendix 1. Vertebrate Species of Alaska1 * Threatened/Endangered Fishes Scientific Name Common Name Eptatretus deani black hagfish Lampetra tridentata Pacific lamprey Lampetra camtschatica Arctic lamprey Lampetra alaskense Alaskan brook lamprey Lampetra ayresii river lamprey Lampetra richardsoni western brook lamprey Hydrolagus colliei spotted ratfish Prionace glauca blue shark Apristurus brunneus brown cat shark Lamna ditropis salmon shark Carcharodon carcharias white shark Cetorhinus maximus basking shark Hexanchus griseus bluntnose sixgill shark Somniosus pacificus Pacific sleeper shark Squalus acanthias spiny dogfish Raja binoculata big skate Raja rhina longnose skate Bathyraja parmifera Alaska skate Bathyraja aleutica Aleutian skate Bathyraja interrupta sandpaper skate Bathyraja lindbergi Commander skate Bathyraja abyssicola deepsea skate Bathyraja maculata whiteblotched skate Bathyraja minispinosa whitebrow skate Bathyraja trachura roughtail skate Bathyraja taranetzi mud skate Bathyraja violacea Okhotsk skate Acipenser medirostris green sturgeon Acipenser transmontanus white sturgeon Polyacanthonotus challengeri longnose tapirfish Synaphobranchus affinis slope cutthroat eel Histiobranchus bathybius deepwater cutthroat eel Avocettina infans blackline snipe eel Nemichthys scolopaceus slender snipe eel Alosa sapidissima American shad Clupea pallasii Pacific herring 1 This appendix lists the vertebrate species of Alaska, but it does not include subspecies, even though some of those are featured in the CWCS.
    [Show full text]
  • A List of Common and Scientific Names of Fishes from the United States And
    t a AMERICAN FISHERIES SOCIETY QL 614 .A43 V.2 .A 4-3 AMERICAN FISHERIES SOCIETY Special Publication No. 2 A List of Common and Scientific Names of Fishes -^ ru from the United States m CD and Canada (SECOND EDITION) A/^Ssrf>* '-^\ —---^ Report of the Committee on Names of Fishes, Presented at the Ei^ty-ninth Annual Meeting, Clearwater, Florida, September 16-18, 1959 Reeve M. Bailey, Chairman Ernest A. Lachner, C. C. Lindsey, C. Richard Robins Phil M. Roedel, W. B. Scott, Loren P. Woods Ann Arbor, Michigan • 1960 Copies of this publication may be purchased for $1.00 each (paper cover) or $2.00 (cloth cover). Orders, accompanied by remittance payable to the American Fisheries Society, should be addressed to E. A. Seaman, Secretary-Treasurer, American Fisheries Society, Box 483, McLean, Virginia. Copyright 1960 American Fisheries Society Printed by Waverly Press, Inc. Baltimore, Maryland lutroduction This second list of the names of fishes of The shore fishes from Greenland, eastern the United States and Canada is not sim- Canada and the United States, and the ply a reprinting with corrections, but con- northern Gulf of Mexico to the mouth of stitutes a major revision and enlargement. the Rio Grande are included, but those The earlier list, published in 1948 as Special from Iceland, Bermuda, the Bahamas, Cuba Publication No. 1 of the American Fisheries and the other West Indian islands, and Society, has been widely used and has Mexico are excluded unless they occur also contributed substantially toward its goal of in the region covered. In the Pacific, the achieving uniformity and avoiding confusion area treated includes that part of the conti- in nomenclature.
    [Show full text]