The Neural Origins of Shell Structure and Pattern in Aquatic Mollusks
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
A Hitherto Unnoticed Adaptive Radiation: Epitoniid Species (Gastropoda: Epitoniidae) Associated with Corals (Scleractinia)
Contributions to Zoology, 74 (1/2) 125-203 (2005) A hitherto unnoticed adaptive radiation: epitoniid species (Gastropoda: Epitoniidae) associated with corals (Scleractinia) Adriaan Gittenberger and Edmund Gittenberger National Museum of Natural History, P.O. Box 9517, NL 2300 RA Leiden / Institute of Biology, University Leiden. E-mail: [email protected] Keywords: Indo-Pacific; parasites; coral reefs; coral/mollusc associations; Epitoniidae;Epitonium ; Epidendrium; Epifungium; Surrepifungium; new species; new genera; Scleractinia; Fungiidae; Fungia Abstract E. sordidum spec. nov. ....................................................... 155 Epifungium gen. nov. .............................................................. 157 Twenty-two epitoniid species that live associated with various E. adgranulosa spec. nov. ................................................. 161 hard coral species are described. Three genera, viz. Epidendrium E. adgravis spec. nov. ........................................................ 163 gen. nov., Epifungium gen. nov., and Surrepifungium gen. nov., E. adscabra spec. nov. ....................................................... 167 and ten species are introduced as new to science, viz. Epiden- E. hartogi (A. Gittenberger, 2003) .................................. 169 drium aureum spec. nov., E. sordidum spec. nov., Epifungium E. hoeksemai (A. Gittenberger and Goud, 2000) ......... 171 adgranulosa spec. nov., E. adgravis spec. nov., E. adscabra spec. E. lochi (A. Gittenberger and Goud, 2000) .................. -
INDEPENDENT STUDY: Module 2, Class 20
Hello Students, I am always seeking ways to improve these lessons. With some of the links no longer available, I wanted to credit them for the information I found at the time they were on the internet. My solution is a new color code. For sites that are no longer available, but were the source of information in the transcript, I have added an orange highlight with blue text. Also, there is another homework below, but you only have to choose one shell in question 1 and question 5. Sending Seashell Blessings! Shell INDEPENDENT STUDY: Module 2, Class 20 Please note: The pictures and comments in the transcript and recording below have been gathered over many years and where possible, I attribute them to their original source. If anyone connected with these photographs or comments would like them removed, please notify me and I will be happy to comply. The video recording of Class 20 is around 25 minutes long. Class 20: Shell #s 99,70,73,91, 98, 104 In recent lessons, we have undertaken an exploration of the diverse ways shells interact with man. We covered religion, medicine, artists, and jewelers, and we were just touching on architecture. Inspired by the incredible shapes created by mollusks for their seashell homes, man has been influenced to construct pagodas in the orient, and a remarkable opera house in Australia. Let’s see how the shells worked their architectural magic in the USA. This is a Thatcheria, also called by the common name of Japanese Wonder Shell. It is shell #99 in Ocean Oracle, and its meaning is “Respect.” Due to its quite unusual structure, when the first Thatcheria was discovered it was considered to be a freak of nature, a “monstrosity”. -
WMSDB - Worldwide Mollusc Species Data Base
WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F. -
THE LISTING of PHILIPPINE MARINE MOLLUSKS Guido T
August 2017 Guido T. Poppe A LISTING OF PHILIPPINE MARINE MOLLUSKS - V1.00 THE LISTING OF PHILIPPINE MARINE MOLLUSKS Guido T. Poppe INTRODUCTION The publication of Philippine Marine Mollusks, Volumes 1 to 4 has been a revelation to the conchological community. Apart from being the delight of collectors, the PMM started a new way of layout and publishing - followed today by many authors. Internet technology has allowed more than 50 experts worldwide to work on the collection that forms the base of the 4 PMM books. This expertise, together with modern means of identification has allowed a quality in determinations which is unique in books covering a geographical area. Our Volume 1 was published only 9 years ago: in 2008. Since that time “a lot” has changed. Finally, after almost two decades, the digital world has been embraced by the scientific community, and a new generation of young scientists appeared, well acquainted with text processors, internet communication and digital photographic skills. Museums all over the planet start putting the holotypes online – a still ongoing process – which saves taxonomists from huge confusion and “guessing” about how animals look like. Initiatives as Biodiversity Heritage Library made accessible huge libraries to many thousands of biologists who, without that, were not able to publish properly. The process of all these technological revolutions is ongoing and improves taxonomy and nomenclature in a way which is unprecedented. All this caused an acceleration in the nomenclatural field: both in quantity and in quality of expertise and fieldwork. The above changes are not without huge problematics. Many studies are carried out on the wide diversity of these problems and even books are written on the subject. -
North Carolina Shell Club Auction Catalog III
North Carolina Shell Club Auction Catalog III For shells to have scientific value, where they were collected is of utmost importance. To keep track of this information a shell may have a control number and a data slip stored with it. A catalog may also be present recording the information. If the record becomes separated from the shell its im- portance to science is greatly diminished. This catalog features a collection of shells that were at one time cataloged but have since lost those records. Included in this list are some very special shells from this collection. Even without collecting data shells remain objects of beauty and fascination. The shells are selected for their exceptional qualities including beauty. Here is a chance to add a standout shell or two to your collection without the added value often associated with collecting data. Note: Even without specific collecting data some species have a very limited range of occurrence so where it came from is not a complete mystery. The shells are donated by the Mollusk Collection, North Carolina Museum of Natural Sciences. (NCSM) Lot 58 Lot 59 Victor Dan’s Delphinula Cloudy Cowrie Angaria vicdani Kosuge, 1980 Cypraea nivosa Broderip, 1837 Philippines 58 mm (includes spines) Northwestern Indian Ocean 65 mm A very large specimen! Lot 61 Dog Conch Lot 60 Strombus canarium Linnaeus, 1758 Hebrew Volute Southwest Pacific 110 mm Voluta ebraea Linnaeus, 1758 An exceptionally huge specimen ! North and Northeast Brazil w/op; unusual colors; 110 mm Lot 62 Pontifical Miter Mitra stictica (Link, 1807) Indo- Pacific 69 mmm A very large specimen. -
Kagoshima University Repository
Title Shell-Bearing Molluscs of the Uji Islets Author(s) MURAYAMA, Saburo; HIRATA, Kunio 鹿児島大学水産学部紀要=Memoirs of Faculty of Fisheries Citation Kagoshima University Issue Date 1968-12-25 URL http://hdl.handle.net/10232/13827 Rights *鹿児島大学リポジトリに登録されているコンテンツの著作権は,執筆者,出版社(学協会)などが有します。 The copyright of any material deposited in Kagoshima University Repository is retained by the author and the publisher (Academic Society) *鹿児島大学リポジトリに登録されているコンテンツの利用については,著作権法に規定されている私的使用 や引用などの範囲内で行ってください。 Materials deposited in Kagoshima University Repository must be used for personal use or quotation in accordance with copyright law. *著作権法に規定されている私的使用や引用などの範囲を超える利用を行う場合には,著作権者の許諾を得て ください。 Further use of a work may infringe copyright. If the material is required for any other purpose, you must seek and obtain permission from the copyright owner. Kagoshima University Repository http://ir.kagoshima-u.ac.jp Mem. Fac. Fish., Kagoshima Univ. Vol. 17,pp. 86-93(1968) Shell-Bearing Molluscs of the Uji Islets. Saburo MuRAYAMA* and Kunio HlRATA** Abstract On the fauna of the shell-bearing molluscs of the Uji Islets, there is a report by Hirata(1954), where 106 species were listed3). The present survey was carried out from 20th to 30th, September, 1964 by Murayama, one of the members of the research group about the marine population and the fishing ground around the Islets, and added 48 species to the previous list. The Islets is uninhabited. It is composed of two main islets which have rocky cliffs and a few stony poor beaches, protected by many rocks. The molluscan fauna of the Islets corresponds to such environment. Four families include decisively abundant species: Muricidae 22, Cypraeidae 16, Conidae 15, and Trochidae 13 species; and the other families include less than 6. -
Edward O. Wilson. the Villablanca Connection
The Villablanca Connection “When you have seen one ant, one bird, one tree, you have not seen them all.” Edward O. Wilson. Biology and Geology 1º ESO. Unit 7: Animals I: Invertebrates. The Villablanca Connection. Unit 7: Animals I. Invertebrates. Biology and Geology 1º ESO Villablanca Connection Images in the title page of this unit come from: "Aristobia approximator" by Aleksey Gnilenkov - Flickr: Aristobia approximator. Licensed under CC BY 2.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Aristobia_approximator.jpg#/media/File:Aristobia_approximator.jpg "Reef invertebrates at Ark Rock P9211479" by (WT-shared) Pbsouthwood at wts wikivoyage. Licensed under CC BY-SA 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Reef_invertebrates_at_Ark_Rock_P9211479.JPG#/media/File:Reef_invert ebrates_at_Ark_Rock_P9211479.JPG "Rook Lane Chapel Frome1" by The original uploader was Nabokov at English Wikipedia - Transferred from en.wikipedia to Commons.. Licensed under CC BY-SA 3.0 via Wikimedia Commons - https://commons.wikimedia.org/wiki/File:Rook_Lane_Chapel_Frome1.JPG#/media/File:Rook_Lane_Chapel_Frome 1.JPG Disclaimer This text has been produced with four ideas in mind: - Its use in a school environment - Its free distribution - Its upgrade to the latest scientific knowledge - The use of resources in the public domain and / or with Creative Commons licenses Stated that, the author is not liable for: - The consequences of the use or distribution that can be made of this text - The mistakes in the attribution, -
Molluscs of Christmas Island
Records of the Western Australian Museum Supplement No. 59: 103-115 (2000). MOLLUSCS OF CHRISTMAS ISLAND Fred E. Wells and Shirley M. Slack-Smith Western Australian Museum, Francis Street, Perth, Western Australia 6000, Australia Christmas Island is towards the lower end of sources. Maes considered that the paucity of species species diversity for similar coral reef surveys was largely due to the great distances over which undertaken by the Western Australian Museum . planktonic larvae would have to be carried from (Table 8), with a total of 313 species of molluscs areas of similar habitats, further complicated by collected (Table 9). Mollusc diversity was greater at apparently adverse winds and currents. Christmas Island than the 261 species collected at Of the 313 species collected at Christmas Island, Rowley Shoals and the 279 collected at Seott Reef in 245 were gastropods (78.3%) and 63 were bivalves 1984, but fewer than the 433 collected at Ashmore (20.1 %). No scaphopods, only three species of chitons Reef in 1986. However, with 15 collecting days and two of cephalopods were collected although compared to the maximum of 12 on Ashmore Reef other cephalopod species were seen. This breakdown and the fact that there were three people primarily of the fauna is almost identical to the results from the interested in molluscs on Christmas Island as northwestern shelf-edge atolls of Western Australia, opposed to two on the other expeditions, the where 77.3% of the total of 581 species collected were molluscan fauna of Christmas Island can be seen to gastropods and 20.7% were bivalves (Wells, 1994). -
Marine Biodiversity in India
MARINEMARINE BIODIVERSITYBIODIVERSITY ININ INDIAINDIA MARINE BIODIVERSITY IN INDIA Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR Zoological Survey of India CITATION Venkataraman K, Raghunathan C, Raghuraman R, Sreeraj CR; 2012. Marine Biodiversity : 1-164 (Published by the Director, Zool. Surv. India, Kolkata) Published : May, 2012 ISBN 978-81-8171-307-0 © Govt. of India, 2012 Printing of Publication Supported by NBA Published at the Publication Division by the Director, Zoological Survey of India, M-Block, New Alipore, Kolkata-700 053 Printed at Calcutta Repro Graphics, Kolkata-700 006. ht³[eg siJ rJrJ";t Œtr"fUhK NATIONAL BIODIVERSITY AUTHORITY Cth;Govt. ofmhfUth India ztp. ctÖtf]UíK rvmwvtxe yÆgG Dr. Balakrishna Pisupati Chairman FOREWORD The marine ecosystem is home to the richest and most diverse faunal and floral communities. India has a coastline of 8,118 km, with an exclusive economic zone (EEZ) of 2.02 million sq km and a continental shelf area of 468,000 sq km, spread across 10 coastal States and seven Union Territories, including the islands of Andaman and Nicobar and Lakshadweep. Indian coastal waters are extremely diverse attributing to the geomorphologic and climatic variations along the coast. The coastal and marine habitat includes near shore, gulf waters, creeks, tidal flats, mud flats, coastal dunes, mangroves, marshes, wetlands, seaweed and seagrass beds, deltaic plains, estuaries, lagoons and coral reefs. There are four major coral reef areas in India-along the coasts of the Andaman and Nicobar group of islands, the Lakshadweep group of islands, the Gulf of Mannar and the Gulf of Kachchh . The Andaman and Nicobar group is the richest in terms of diversity. -
Evolution, Distribution, and Phylogenetic Clumping of a Repeated Gastropod Innovation
Zoological Journal of the Linnean Society, 2017, 180, 732–754. With 5 figures. The varix: evolution, distribution, and phylogenetic clumping of a repeated gastropod innovation NICOLE B. WEBSTER1* and GEERAT J. VERMEIJ2 1Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E9 2Department of Earth and Planetary Sciences, University of California, Davis, CA 95616, USA Received 27 June 2016; revised 4 October 2016; accepted for publication 25 October 2016 A recurrent theme in evolution is the repeated, independent origin of broadly adaptive, architecturally and function- ally similar traits and structures. One such is the varix, a shell-sculpture innovation in gastropods. This periodic shell thickening functions mainly to defend the animal against shell crushing and peeling predators. Varices can be highly elaborate, forming broad wings or spines, and are often aligned in synchronous patterns. Here we define the different types of varices, explore their function and morphological variation, document the recent and fossil distri- bution of varicate taxa, and discuss emergent patterns of evolution. We conservatively found 41 separate origins of varices, which were concentrated in the more derived gastropod clades and generally arose since the mid-Mesozoic. Varices are more prevalent among marine, warm, and shallow waters, where predation is intense, on high-spired shells and in clades with collabral ribs. Diversification rates were correlated in a few cases with the presence of varices, especially in the Muricidae and Tonnoidea, but more than half of the origins are represented by three or fewer genera. Varices arose many times in many forms, but generally in a phylogenetically clumped manner (more frequently in particular higher taxa), a pattern common to many adaptations. -
The Family Epitoniidae (Mollusca: Gastropoda) in Southern Africa and Mozambique
Ann. Natal Mus. Vol. 27(1) Pages 239-337 Pietermaritzburg December, 1985 The family Epitoniidae (Mollusca: Gastropoda) in southern Africa and Mozambique by R. N. Kilburn (Natal Museum, Pietermaritzburg) ABSTRACT Eighty species belonging to 15 genera of Epitoniidae are recorded from southern Africa and Mozambique; of these, 37 are new species and 19 are new records for the region. New species: Acirsa amara-, Amaea (1 Amaea) krousma; A . (Amaea) foulisi; A . (Filiscala) youngi; Rulelliscala bombyx; Cycloscala gazae; Opaliopsis meiringnaudeae; Murdochella crispata; M. lobata; Obstopalia pseudosulcata; O. varicosa; Opalia (Pliciscala) methoria; Compressiscala transkeiana; Chuniscala rectilamellata; Epitonium (Epitonium) sororastra; E.(E.) jimpyae; E.(E.) sallykaicherae; E. (Hirtoscala) anabathmos; E. (Perlucidiscala) alabiforme; E. (Nitidiscala) synekhes; E. (Librariscala) parvonatrix; E. (Limiscala) crypticocorona; E. (L.) maraisi; E.(L.) psomion; E. (Parviscala) amiculum; E.(P.) climacotum; E.(P.) columba; E.(P.) harpago; E.(P.) mzambanum; E.(P.) repandum; E.(P.) repandior; E.(P.) tamsinae; E.(P.) thyraeum; E. (Labeoscala) brachyspeira; E. (Asperiscala) spyridion; E. (Foliaceiscala) falconi; E.(F.) lacrima; E. (Pupiscala) opeas. New genus: Rutelliscala, type species R. bom byx sp.n. New subgenus (of Epitonium): Librariscala, type species Scalaria millecostata Pease, 1861. New records: The genera Acirsa, Cycloscala, Opaliopsis, Murdochella, Obstopalia, Plastiscala, Compressiscala and Sagamiscala are recorded from southern Africa for the first time. New species records are: Cirsotrema (Cirsotrema) varicosa (Lamarck, 1822); C. (1 Rectacirsa) peltei (Viader, 1938); Amaea (s.I.) sulcata (Sowerby, 1844); Amaea (Acrilla) xenicima (MelviJl & Standen, 1903); Cycloscala hyalina (Sowerby, 1844); Opalia (Nodiscala) bardeyi (Jousseaume, 1912); O. (N.) attenuata (Pease, I860); O. (Pliciscala) mormulaeformis (Masahito, Kuroda & Habe, 1971); Amaea sulcata (Sowerby, 1844); Epitonium (Epitonium) syoichiroi Masahito & Habe, 1976; E. -
SURVEY of the LITERATURE on RECENT SHELLS from the RED SEA (Second Enlarged and Revised Edition)
TRITON 24 SEPTEMBER 2011 SUPPLEMENT 1 SURVEY OF THE LITERATURE ON RECENT SHELLS FROM THE RED SEA (second enlarged and revised edition) L.J. van Gemert *) Abstract: About 2,100 references are listed in the survey. Shells are being considered here as shell-bearing mollusks of the Gastropoda, Bivalvia and Scaphopoda. And the region covered is not only the Red Sea, but also the Gulf of Aden, including Somalia, and the Suez Canal, including Lessepsian species. Literature on fossils finds, especially from the Pliocene, Pleistocene and Holocene, is listed too. Introduction My interest in recent shells from the Red Sea dates from about 1996. Since then, I have been, now and then, trying to obtain information on this subject. Recently I decide to stop gathering information in a haphazard way and to do it more properly. This resulted in a survey of approximately 1,420 references (Van Gemert, 2010). Since then, this survey has been enlarged considerably and contains now approximately 2,100 references. They are presented here. Scope In principle every publication in which mollusks are reported to live or have lived in the Red Sea should be listed in the survey. This means that besides primary literature, i.e. articles in which researchers are reporting their finds for the first time, secondary and tertiary literature, i.e. reviews, monographs, books, etc are to be included too. These publications were written not only by a wide range of authors ranging from amateur shell collectors to profesional malacologists but also by people interested in other fields. This implies that not only malacological journals and books should be considered, but also publications from other fields or disciplines, such as environmental pollution, toxicology, parasitology, aquaculture, fisheries, biochemistry, biogeography, geology, sedimentology, ecology, archaeology, Egyptology and palaeontology, in which Red Sea shells are mentioned.